The Interaction of Economic Agents in Cournot Duopoly Models under Ecological Conditions: A Comparison of Organizational Modes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This paper presents a comparative analysis of the efficiency of organizational modes (information structures) for the interaction of economic agents in static and dynamic Cournot duopoly models. We compare the independent behavior of equal players, their cooperation, and the hierarchy formalized as Germeier games. The efficiency of individual players and the entire society is quantitatively assessed using the private and social relative efficiency indices. The ecological safety conditions of the system are investigated. An organizational and economic interpretation of the results is proposed

About the authors

G. A Ugol'nitskiy

Southern Federal University

Email: ougoln@mail.ru
Rostov-on-Don, Russia

A. B Usov

Southern Federal University

Author for correspondence.
Email: abusov@sfedu.ru
Rostov-on-Don, Russia

References

  1. Algorithmic Game Theory / Ed. by Nisan N., Roughgarden T., Tardos E., Vazirani V. Cambridge University Press, 2007.
  2. Johari R., Tsitsiklis J.N. Efficiency loss in a network resource allocation game // Math. Oper. Res. 2004. No. 29(3). P. 407-435.
  3. Papadimitriou C.H. Algorithms, games, and the Internet // Proc. 33rd Symp. Theory of Computing. 2001. P. 749-753.
  4. Roughgarden T. Selfish Routing and the Price of Anarchy. MIT Press, 2005.
  5. Basar T., Zhu Q. Prices of Anarchy, Information, and Cooperation in Differential Games // J. Dynam. Games and Appl. 2011. No. 1. P. 50-73.
  6. Aubin J.-P. Viability Theory. Springer-Verlag, 1991.
  7. Cairns R.D., Martinet V. An environmental-economic measure of sustainable development // Eur. Econom. Rev. 2014. No. 69. P. 4-17.
  8. Doyen L., Martinet V. Maximin, viability and sustainability // J. Econ. Dynam. Control. 2012 V. 36(9). P. 1414-1430.
  9. Мулен Э. Теория игр с примерами из математической экономики. М.: Мир, 1985.
  10. Maskin E., Tirole J. A Theory of Dynamic Oligopoly, III. Cournot Competition // Eur. Econ. Rev. 1987. No. 31. P. 947-968.
  11. Bischi G.I., Naimzada A. Global Analysis of a Dynamic Duopoly Game with Bounded Rationality // Advances in Dynamic Games and Applications. Ed. by J. Filar et al. - Birkhauser. 2000. P. 361-385.
  12. Geras'kin M.I. Modeling Reflexion in the Non-Linear Model of the Stakelberg Three- Agent Oligopoly for the Russian Telecommunication Market // Autom. Remote Control. 2018. V. 79. No. 5. P. 841-859.
  13. Geras'kin M.I. Reflexive Games in the Linear Stackelberg Duopoly Models under Incoincident Reflexion Ranks // Autom. Remote Control. 2020. V. 81. No. 2. P. 302-319.
  14. Geras'kin M.I. The Properties of Conjectural Variations in the Nonlinear Stackelberg Oligopoly Model // Autom. Remote Control. 2020. V. 81. No. 6. P. 1051-1072.
  15. Geras'kin M.I. Approximate Calculation of Equilibria in the Nonlinear Stackelberg Oligopoly Model: A Linearization Based Approach // Autom. Remote Control. 2020. V. 81. No. 9. P. 1659-1678.
  16. Geras'kin M.I. Reflexive Analysis of Equilibria in a Triopoly Game with Linear Cost Functions of the Agents // Autom. Remote Control. 2022. V. 83. No. 3. P. 389-406.
  17. Algazin G.I., Algazina Yu.G. Reflexion Reflexive Dynamics in the Cournot Oligopoly under Uncertainty // Autom. Remote Control. 2020. V. 81. No. 2. P. 287-301.
  18. Algazin G.I., Algazina Yu.G. Reflexion Processes and Equilibrium in an Oligopoly Model with a Leader // Autom. Remote Control. 2020. V. 81. No. 7. P. 1258-1270.
  19. Algazin G.I., Algazina Yu.G. To the Analytical Investigation of the Convergence Conditions of the Processes of Reflexive Collective Behavior in Oligopoly Models // Autom. Remote Control. 2022. V. 83. No. 3. P. 367-388.
  20. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Наука, 1983.
  21. Dockner E., Jorgensen S., Long N.V., Sorger G. Differential Games in Economics and Management Science. Cambridge University Press, 2000.
  22. Ugol'nitskii G.A., Usov A.B. Equilibria in models of hierarchically organized dynamic systems with regard to sustainable development conditions // Autom. Remote Control. 2014. No. 6. P. 1055-1068.
  23. Ougolnitsky G.A., Usov A.B. Solution algorithms for differential models of hierarchical control systems // Autom. Remote Control. 2016. No. 5. P. 872-880.
  24. Ougolnitsky G.A., Usov A.B.Computer Simulations as a Solution Method for Differential Games / Computer Simulations: Advances in Research and Applications. Eds. M.D. Pfeffer and E. Bachmaier. N.Y.: Nova Science Publishers, 2018. P. 63-106.
  25. Гермейер Ю.Б. Игры с непротивоположными интересами. М.: Наука, 1976.
  26. Современное состояние теории исследования операций. Под ред Н.Н. Моисеева. М.: Наука, 1979.
  27. Угольницкий Г.А. Теория управления устойчивым развитием активных систем. Ростов-на-Дону: ЮФУ, 2016.
  28. Bressan A. Noncooperative Differential Games // Milan J. Math. 2011. No. 2. P. 357-427.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 The Russian Academy of Sciences