ON ASYMPTOTICS OF ATTRACTORS TO NAVIER-STOCKES SYSTEM IN ANISOTROPIC MEDIUM WITH SMALL PERIODIC OBSTACLES

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper considers a two-dimensional system of Navier–Stokes equations in medium with anisotropic variable viscosity and periodic small obstacles. It is proved that the trajectory attractors of this system tend in a certain weak topology to the trajectory attractors of the averaged system of Navier–Stokes equations with an additional potential in a medium without obstacles.

作者简介

К. Bekmaganbetov

Lomonosov Moscow State University, Kazakhstan Branch; Institute of Mathematics and Mathematical Modeling

编辑信件的主要联系方式.
Email: bekmaganbetov-ka@yandex.kz
Kazakhstan, Astana; Kazakhstan, Almaty

А. Toleubay

Eurasian National University named after L.N. Gumilyov; Institute of Mathematics and Mathematical Modeling

编辑信件的主要联系方式.
Email: altyn.15.94@mail.ru
Kazakhstan, Astana; Kazakhstan, Almaty

G. Chechkin

Moscow State University. M.V. Lomonosov; Institute of Mathematics with a Computer Center – a division of the Ufa Federal Research Center
of the Russian Academy of Sciences; Institute of Mathematics and Mathematical Modeling

编辑信件的主要联系方式.
Email: chechkin@mech.math.msu.su
Russian Federation, Moscow; Russian Federation, Ufa; Kazakhstan, Almaty

参考

  1. Chepyzhov V.V., Vishik M.I. Non-autonomous 2D Navier–Stokes system with singularly oscillating external force and its global attractor // J. Dyn. Diff. Eqns. 2007. V. 19. P. 655–684.
  2. Chepyzhov V.V., Vishik M.I. Evolution equations and their trajectory attractors // J. Math. Pures Appl. 1997. V. 76. № 10. P. 913–964.
  3. Самохин В.Н., Фадеева Г.М., Чечкин Г.А. Уравнения пограничного слоя для модифицированной системы Навье–Стокса // Труды семинара им. И.Г. Петровского. Вып. 28. М.: Изд-во Моск. ун-та, 2011. С. 329–361.
  4. Chechkin G.A., Chechkina T.P., Ratiu T.S., Romanov M.S. Nematodynamics and Random Homogenization // Applicable Analysis. 2016. V. 95. № 10. P. 2243–2253.
  5. Бекмаганбетов К.А., Чечкин Г.А., Чепыжов В.В. Сильная сходимость аттракторов системы реакции–диффузии с быстро осциллирующими членами в ортотропной пористой среде // Известия РАН. 2022. Т. 86. № 6. С. 3–34.
  6. Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V. “Strange Term” in Homogenization of Attractors of Reaction–Diffusion Equation in Perforated Domain // Chaos, Solitons & Fractals. 2020. V. 140. Art. No 110208.
  7. Бекмаганбетов К.А., Толеубай А.М., Чечкин Г.А. Об аттракторах системы уравнений Навье–Стокса в двумерной пористой среде // Проблемы математического анализа. 2022. Т. 115. С. 15–28.
  8. Бабин А.В., Вишик М.И. Аттракторы эволюционных уравнений. М.: Наука, 1989.
  9. Chepyzhov V.V., Vishik M.I. Attractors for equations of mathematical physics. Providence (RI): Amer. Math. Soc., 2002.
  10. Temam R. Navier–Stokes equations: Theory and numerical analysis. Amsterdam–New York–Oxford: North Holland, 1979.
  11. Temam R. Infinite-dimensional dynamical systems in mechanics and physics. Applied Mathematics Series. V. 68. New York (NY): Springer-Verlag, 1988.
  12. Conca C. Mathematical modeling of the steam-water condensation in a condenser. Large-scale computations in fluid mechanics, Part 1 (La Jolla, Calif., 1983), 87–98, Lectures in Appl. Math., 22-1, Amer. Math. Soc., Providence, RI, 1985.
  13. Conca C. Numerical results on the homogenization of Stokes and Navier-Stokes equations modeling a class of problems from fluid mechanics // Comput. Methods Appl. Mech. Engrg. 1985. V. 53. № 3. P. 223–258.
  14. Conca C. On the application of the homogenization theory to a class of problems arising in fluid mechanics. // J. Math. Pures Appl. 1985. V. 64 (9). № 1. P. 31–75.
  15. Беляев А.Г., Пятницкий А.Л., Чечкин Г.А. Усреднение в перфорированной области с осциллирующим третьим краевым условием // Математический сборник. 2001. Т. 192. № 7. С. 3–20.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (519KB)

版权所有 © К.А. Бекмаганбетов, А.М. Толеубай, Г.А. Чечкин, 2023