Обобщенное решение смешанной задачи для волнового уравнения с негладкой правой частью

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

При минимальных условиях на правую часть волнового уравнения построено обобщенное решение смешанной задачи. Решение представлено в виде ряда из метода Фурье, найдена его сумма. Приведен вид обобщенного решения смешанной задачи для неоднородного телеграфного уравнения.

Об авторах

И. С. Ломов

Московский государственный университет имени М.В. Ломоносова

Автор, ответственный за переписку.
Email: lomov@cs.msu.ru

Московский центр фундаментальной и прикладной математики

Россия, Москва

Список литературы

  1. Хромов А.П., Корнев В.В. Расходящиеся ряды в методе Фурье для волнового уравнения // Тр. ин-та матем. и механ. УрО РАН. 2021. Т. 27. № 4. С. 215238.https://doi.org/10.21538/0134-4889-2021-27-4-215-238
  2. Наймарк М.А. Линейные дифференциальные операторы. М.: Наука, 1969. 528 с.
  3. Хромов А.П. Необходимые и достаточные условия существования классического решения смешанной задачи для однородного волнового уравнения в случае суммируемого потенциала // Дифференц. уравнения. 2019. Т. 55. № 5. С. 717–731. https://doi.org/10/1134/S0374064119050121
  4. Бари Н.К. Тригонометрические ряды. М.: Гос. изд. физ.-мат. литературы. 1961. 936 с.
  5. Stone M.H. A comparison of the series of Fourier and Birkhoff // Trans. Amer. Math. Soc. 1926. V. 28. N 4. С. 695–761.
  6. Ломов И.С. О скорости сходимости биортогональных разложений функций // Дифференц. уравнения. 1996. Т. 32. № 12. С. 1618–1629.
  7. Ломов И.С. Спектральный метод В.А. Ильина. Несамосопряженные операторы. II. Оценки скорости равносходимости спектральных разложений. М.: МАКС Пресс, 2023. 380 с.
  8. Ломов И.С. Построение обобщенного решения смешанной задачи для телеграфного уравнения: секвенциальный и аксиоматический подходы // Дифференц. уравнения. 2022. Т. 58. № 11. С. 1471–1483.https://doi.org/10.31857/S0374064122110048
  9. Рыхлов В.С. Обобщенная начально–граничная задача для волнового уравнения со смешанной производной // Современная математика. Фундаментальные направления. 2023. Т. 69. № 2. С. 342–363.https://doi.org/10.22363/2413-3639-2023-69-2-342-363
  10. Ломовцев Ф.Е. Глобальная теорема корректности первой смешанной задачи для общего телеграфного уравнения с переменными коэффициентами на отрезке // Проблемы физики, математики и техники. 2022. № 1 (50). С. 62–73.
  11. Владимиров В.С. Уравнения математической физики. М.: Наука, 1981. 512 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024