APPROXIMATE THEORY OF A GYROSCOPE AND ITS APPLICATIONS TO THE MOTION OF SPACE OBJECTS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The motion of an axisymmetric rigid body with a fixed point under the action of a periodic torque is considered. Two small parameters are introduced: the first characterizes the smallness of the amplitude of the torque, and the second characterizes the smallness of the component of the kinetic moment perpendicular to the axis of symmetry. The smallness of the second small parameter is usually the basis for using the approximate theory of the gyroscope. Using this approximation, one can quite simply find the precession velocity of the top under the action of a small periodic torque. It is shown that the relative accuracy of the velocity calculated in this way is practically independent of the second small parameter, which does not exceed a value of the order of unity. In this way, a simple formula is found for the precession of the Earth’s satellite under the action of the Earth’s gravitational field. The resulting simple formula for the velocity of the Lunar-Solar precession of the Earth agrees well with astronomical observations.

Sobre autores

A. Petrov

Ishlinsky Institute of Mechanics Problems of RAS

Email: petrovipmech@gmail.com
Moscow, Russia

Bibliografia

  1. Журавлев В. Ф. Основы теоретической механики. М.: Наука, 1997. 320 с.
  2. Журавлев В. Ф., Климов Д. М. Прикладные методы в теории колебаний. М.: Наука, 1988. 326 с.
  3. Абрашкин и др. Космические исследования, 45. № 5. (2007). C. 450–470.
  4. Куликовский П. Г. Справочник любителя астрономии. Эдиториал УРСС. 2002, 688 с.
  5. Справочное руководство по небесной механике и астродинамике. М.: Наука, 1976. 864 c.
  6. Белецкий В. В. Движение спутника относительно центра масс в гравтационном поле. М.: Изд-во МГУ. 1975. 308 c.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024