CONSTRUCTION OF SMOOTH “SOURCE-SINK” ARCS IN THE SPACE OF DIFFEOMORPHISMS OF A TWO-DIMENSIONAL SPHERE
- Autores: Nozdrinova Е.V.1, Pochinka О.V.1, Tsaplina E.V.1
- 
							Afiliações: 
							- National Research University Higher School of Economics
 
- Edição: Volume 519 (2024)
- Páginas: 39-45
- Seção: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/648004
- DOI: https://doi.org/10.31857/S2686954324050081
- EDN: https://elibrary.ru/XDNVBT
- ID: 648004
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
It is well known that the mapping class group of the two-dimensional sphere 
			                Palavras-chave
Sobre autores
Е. Nozdrinova
National Research University Higher School of Economics
														Email: maati@mail.ru
				                					                																			                												                								Nizhny Novgorod, Russia						
О. Pochinka
National Research University Higher School of Economics
														Email: olga-pochinka@yandex.ru
				                					                																			                												                								Nizhny Novgorod, Russia						
E. Tsaplina
National Research University Higher School of Economics
														Email: ktsaplina11@mail.ru
				                					                																			                												                								Nizhny Novgorod, Russia						
Bibliografia
- Munkres J. Differentiable isotopies on the 2sphere // Michigan Mathematical Journal. 1960. V. 7. № 3. P. 193–197.
- Palis J., Pugh C. Fifty problems in dynamical systems // Dynamical Systems—Warwick 1974: Proceedings of a Symposium Held at the University of Warwick 1973/74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. P. 345–353.
- Newhouse S., Palis J., Takens F. Stable arcs of diffeomorphisms // Bull. Amer. Math. Soc. 1976. V. 82. № 3. P. 499–502.
- Medvedev T. V., Nozdrinova E., Pochinka O. Components of Stable Isotopy Connectedness of Morse ”— Smale Diffeomorphisms // Regular and Chaotic Dynamics. 2022. V. 27. № 1. P. 77–97.
- Grines V. Z., Medvedev T. V., Pochinka O. V. Dynamical systems on 2-and 3-manifolds // Cham: Springer. 2016. V. 46.
- Bonatti C., Grines V. Z., Medvedev V. S., Pochinka O. V. Bifurcations of Morse-Smale diffeomorphisms with wildly embedded separatrices // Proceedings of the Steklov Institute of Mathematics. 2007. V. 256. P. 47–61.
- Милнор Дж. Теорема об ℎ-кобордизме. 1969.
- Banyaga A. On the structure of the group of equivariant diffeomorphisms // Topology. 1977. V. 16. № 3. P. 279–283.
- Rolfsen D. Knots and links // American Mathematical Soc., 2003. P. 346.
- Lickorish W. B. R. Homeomorphisms of nonorientable two-manifolds // Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press, 1963. V. 59. № 2. P. 307–317.
- Косневски Ч. Начальный курс алгебраической топологии // М.: Изд-во Мир. 1983. Т. 304.
- Hirsch M. W. Differential topology // Springer Science Business Media, 2012. V. 33.
- Franks J. Necessary conditions for stability of diffeomorphisms // Transactions of the American Mathematical Society. 1971. V. 158. № 2. P. 301–308.
- Gourmelon N. A Franks’ lemma that preserves invariant manifolds // Ergodic Theory and Dynamical Systems. 2016. V. 36. № 4. P. 1167–1203
- Палис Ж., Ди Мелу В. Геометрическая теория динамических систем. 1986.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
