Ramond, Neveu–Schwarz algebras and narrow Lie superalgebras

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Two one-parameter families of positively graded Lie superalgebras generated by two elements and two relations that are narrow in the sense of Zelmanov and Shalev are considered. The first family contains the positive part R+ of the Ramon algebra, the second one contains the positive part NS+ of the Neveu-Schwarz algebra. The results of the article are super analogues of Benoist’s theorem on defining the positive part of the Witt algebra by generators and relations.

Sobre autores

D. Millionshchikov

Steklov Mathematical Institute of Russian Academy of Sciences

Autor responsável pela correspondência
Email: dmitry.millionschikov@math.msu.ru
Rússia, Moscow

Th. Pokrovsky

Bauman Moscow State Technical University

Email: fedya-57@yandex.ru
Rússia, Moscow

Bibliografia

  1. Benoist Y. Une nilvariété non affine // J. Diff. Geom. 1995. Vol. 41. P. 21–52.
  2. Фиаловски А. Классификация градуированных алгебр Ли с двумя образующими // Вестн. МГУ. Сер. 1. Матем., мех. 1983. Т. 38. № 2. P. 62–64.
  3. Bouarroudj S., Navarro R.M. Cohomologically rigid solvable Lie superalgebras with model filiform and model nilpotent nilradical // Communications in Algebra. 2021. Vol. 49. No. 12. P. 5061–5072.
  4. Camacho L.M., Navarro R.M., Sánchez J.M. On Naturally Graded Lie and Leibniz Superalgebras // Bull. Malays. Math. Sci. Soc. 2020. Vol. 43. P. 3411–3435.
  5. Миллионщиков Д.В. Филиформные -градуированные алгебры Ли // УМН. 2002. Т. 57. № 2. С. 197–198.
  6. Миллионщиков Д.В. Естественно градуированные алгебры Ли медленного роста // Матем. сб. 2019. Т. 210. № 6. С. 111–160.
  7. Миллионщиков Д.В. Узкие положительно градуированные алгебры Ли // Доклады Академии наук. 2018. Т. 483. № 5. С. 492–494.
  8. Milnor J. On fundamental groups of complete affinely flat manifolds // Adv. Math. 1977. Vol. 25. P. 178–187.
  9. Shalev A., Zelmanov E.I. Narrow Lie algebras: A coclass theory and a characterization of the Witt algebra // J. Algebra. 1997. Vol. 189. P. 294–331.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024