Ramond, Neveu–Schwarz algebras and narrow Lie superalgebras
- Autores: Millionshchikov D.V.1, Pokrovsky T.I.2
- 
							Afiliações: 
							- Steklov Mathematical Institute of Russian Academy of Sciences
- Bauman Moscow State Technical University
 
- Edição: Volume 515 (2024)
- Páginas: 40-43
- Seção: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/647922
- DOI: https://doi.org/10.31857/S2686954324010064
- EDN: https://elibrary.ru/ZTSTDA
- ID: 647922
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Two one-parameter families of positively graded Lie superalgebras generated by two elements and two relations that are narrow in the sense of Zelmanov and Shalev are considered. The first family contains the positive part R+ of the Ramon algebra, the second one contains the positive part NS+ of the Neveu-Schwarz algebra. The results of the article are super analogues of Benoist’s theorem on defining the positive part of the Witt algebra by generators and relations.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
D. Millionshchikov
Steklov Mathematical Institute of Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: dmitry.millionschikov@math.msu.ru
				                					                																			                												                	Rússia, 							Moscow						
Th. Pokrovsky
Bauman Moscow State Technical University
														Email: fedya-57@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Benoist Y. Une nilvariété non affine // J. Diff. Geom. 1995. Vol. 41. P. 21–52.
- Фиаловски А. Классификация градуированных алгебр Ли с двумя образующими // Вестн. МГУ. Сер. 1. Матем., мех. 1983. Т. 38. № 2. P. 62–64.
- Bouarroudj S., Navarro R.M. Cohomologically rigid solvable Lie superalgebras with model filiform and model nilpotent nilradical // Communications in Algebra. 2021. Vol. 49. No. 12. P. 5061–5072.
- Camacho L.M., Navarro R.M., Sánchez J.M. On Naturally Graded Lie and Leibniz Superalgebras // Bull. Malays. Math. Sci. Soc. 2020. Vol. 43. P. 3411–3435.
- Миллионщиков Д.В. Филиформные -градуированные алгебры Ли // УМН. 2002. Т. 57. № 2. С. 197–198.
- Миллионщиков Д.В. Естественно градуированные алгебры Ли медленного роста // Матем. сб. 2019. Т. 210. № 6. С. 111–160.
- Миллионщиков Д.В. Узкие положительно градуированные алгебры Ли // Доклады Академии наук. 2018. Т. 483. № 5. С. 492–494.
- Milnor J. On fundamental groups of complete affinely flat manifolds // Adv. Math. 1977. Vol. 25. P. 178–187.
- Shalev A., Zelmanov E.I. Narrow Lie algebras: A coclass theory and a characterization of the Witt algebra // J. Algebra. 1997. Vol. 189. P. 294–331.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
