Ramond, Neveu–Schwarz algebras and narrow Lie superalgebras

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Two one-parameter families of positively graded Lie superalgebras generated by two elements and two relations that are narrow in the sense of Zelmanov and Shalev are considered. The first family contains the positive part R+ of the Ramon algebra, the second one contains the positive part NS+ of the Neveu-Schwarz algebra. The results of the article are super analogues of Benoist’s theorem on defining the positive part of the Witt algebra by generators and relations.

About the authors

D. V. Millionshchikov

Steklov Mathematical Institute of Russian Academy of Sciences

Author for correspondence.
Email: dmitry.millionschikov@math.msu.ru
Russian Federation, Moscow

Th. I. Pokrovsky

Bauman Moscow State Technical University

Email: fedya-57@yandex.ru
Russian Federation, Moscow

References

  1. Benoist Y. Une nilvariété non affine // J. Diff. Geom. 1995. Vol. 41. P. 21–52.
  2. Фиаловски А. Классификация градуированных алгебр Ли с двумя образующими // Вестн. МГУ. Сер. 1. Матем., мех. 1983. Т. 38. № 2. P. 62–64.
  3. Bouarroudj S., Navarro R.M. Cohomologically rigid solvable Lie superalgebras with model filiform and model nilpotent nilradical // Communications in Algebra. 2021. Vol. 49. No. 12. P. 5061–5072.
  4. Camacho L.M., Navarro R.M., Sánchez J.M. On Naturally Graded Lie and Leibniz Superalgebras // Bull. Malays. Math. Sci. Soc. 2020. Vol. 43. P. 3411–3435.
  5. Миллионщиков Д.В. Филиформные -градуированные алгебры Ли // УМН. 2002. Т. 57. № 2. С. 197–198.
  6. Миллионщиков Д.В. Естественно градуированные алгебры Ли медленного роста // Матем. сб. 2019. Т. 210. № 6. С. 111–160.
  7. Миллионщиков Д.В. Узкие положительно градуированные алгебры Ли // Доклады Академии наук. 2018. Т. 483. № 5. С. 492–494.
  8. Milnor J. On fundamental groups of complete affinely flat manifolds // Adv. Math. 1977. Vol. 25. P. 178–187.
  9. Shalev A., Zelmanov E.I. Narrow Lie algebras: A coclass theory and a characterization of the Witt algebra // J. Algebra. 1997. Vol. 189. P. 294–331.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences