Ramond, Neveu–Schwarz algebras and narrow Lie superalgebras
- Authors: Millionshchikov D.V.1, Pokrovsky T.I.2
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Bauman Moscow State Technical University
- Issue: Vol 515, No 1 (2024)
- Pages: 40-43
- Section: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/647922
- DOI: https://doi.org/10.31857/S2686954324010064
- EDN: https://elibrary.ru/ZTSTDA
- ID: 647922
Cite item
Abstract
Two one-parameter families of positively graded Lie superalgebras generated by two elements and two relations that are narrow in the sense of Zelmanov and Shalev are considered. The first family contains the positive part R+ of the Ramon algebra, the second one contains the positive part NS+ of the Neveu-Schwarz algebra. The results of the article are super analogues of Benoist’s theorem on defining the positive part of the Witt algebra by generators and relations.
About the authors
D. V. Millionshchikov
Steklov Mathematical Institute of Russian Academy of Sciences
Author for correspondence.
Email: dmitry.millionschikov@math.msu.ru
Russian Federation, Moscow
Th. I. Pokrovsky
Bauman Moscow State Technical University
Email: fedya-57@yandex.ru
Russian Federation, Moscow
References
- Benoist Y. Une nilvariété non affine // J. Diff. Geom. 1995. Vol. 41. P. 21–52.
- Фиаловски А. Классификация градуированных алгебр Ли с двумя образующими // Вестн. МГУ. Сер. 1. Матем., мех. 1983. Т. 38. № 2. P. 62–64.
- Bouarroudj S., Navarro R.M. Cohomologically rigid solvable Lie superalgebras with model filiform and model nilpotent nilradical // Communications in Algebra. 2021. Vol. 49. No. 12. P. 5061–5072.
- Camacho L.M., Navarro R.M., Sánchez J.M. On Naturally Graded Lie and Leibniz Superalgebras // Bull. Malays. Math. Sci. Soc. 2020. Vol. 43. P. 3411–3435.
- Миллионщиков Д.В. Филиформные -градуированные алгебры Ли // УМН. 2002. Т. 57. № 2. С. 197–198.
- Миллионщиков Д.В. Естественно градуированные алгебры Ли медленного роста // Матем. сб. 2019. Т. 210. № 6. С. 111–160.
- Миллионщиков Д.В. Узкие положительно градуированные алгебры Ли // Доклады Академии наук. 2018. Т. 483. № 5. С. 492–494.
- Milnor J. On fundamental groups of complete affinely flat manifolds // Adv. Math. 1977. Vol. 25. P. 178–187.
- Shalev A., Zelmanov E.I. Narrow Lie algebras: A coclass theory and a characterization of the Witt algebra // J. Algebra. 1997. Vol. 189. P. 294–331.
Supplementary files
