Graph Condensation for Large Factor Models
- Autores: Chetverushkin B.N.1, Sudakov V.A.1, Titov Y.P.2
- 
							Afiliações: 
							- Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)
- Moscow Aviation Institute (National Research University)
 
- Edição: Volume 517 (2024)
- Páginas: 66-73
- Seção: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/647988
- DOI: https://doi.org/10.31857/S2686954324030119
- EDN: https://elibrary.ru/YAYMIS
- ID: 647988
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The paper proposes an original method for processing large factor models based on graph condensation using machine learning models and artificial neural networks. The proposed mathematical apparatus can be used in problems of planning and managing complex organizational and technical systems, in optimizing large socio-economic objects on the scale of state sectors, to solve problems of preserving the health of the nation (searching for compatibility when taking medications, optimizing resource provision for healthcare).
Palavras-chave
Texto integral
 
												
	                        Sobre autores
B. Chetverushkin
Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)
							Autor responsável pela correspondência
							Email: office@keldysh.ru
				                					                																			                								
Academician of the RAS
Rússia, MoscowV. Sudakov
Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)
														Email: sudakov@ws-dss.com
				                					                																			                												                	Rússia, 							Moscow						
Yu. Titov
Moscow Aviation Institute (National Research University)
														Email: kalengul@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Четверушкин Б.Н., Судаков В.А. Факторная модель для исследования сложных процессов // Доклады Академии наук. 2019. Т. 489. № 1. С. 17–21.
- Forrester J.W. Policies, decisions and information sources for modeling // European Journal of Operational Research. 1992. V. 59. № 1. P. 42–63.
- Honti G., Dörgő G., Abonyi J. Network analysis dataset of system dynamics models // Data in Brief. 2019. V. 27. P. 104723.
- Jain A., Murty M., Flynn P. Data Clustering: A Review // ACM Computing Surveys. 1999. V. 31. № 3.
- Lance G.N., Williams W.T. A general theory of classification sorting strategies in hierarchical system // Comp. J. 1967. № 9. P. 373–380.
- Kohonen T. Essentials of the self-organizing map // Neural Networks. 2013. V. 37. P. 52–65.
- Alam A., Ahamad M.K. K-Means Hybridization with Enhanced Firefly Algorithm for High-Dimension Automatic Clustering // Journal of Advanced Research in Applied Sciences and Engineering Technology. 2023. V. 33. № 3. P. 137–153.
- Reynolds D. Gaussian Mixture Models // Encyclopedia of Biometrics. Boston, MA: Springer, 2009.
- Нестеров В.А., Судаков В.А., Сыпало К.И., Титов Ю.П. Матрица нечетких корреспонденций модели авиационных перевозок // Известия Российской академии наук. Теория и системы управления. 2022. Т. 6. № 6. С. 95–102.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



