Semi-analytical solution of Brent equations
- Авторлар: Kaporin I.E.1
- 
							Мекемелер: 
							- FRC CSC RAS
 
- Шығарылым: Том 518 (2024)
- Беттер: 29-34
- Бөлім: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/647987
- DOI: https://doi.org/10.31857/S2686954324040056
- EDN: https://elibrary.ru/YZJHHB
- ID: 647987
Дәйексөз келтіру
Аннотация
A parametrization of Brent equations is proposed which admit for a several times reduction of the number of unknowns and equations. The arising equations are solved numerically, and for the resulting fast matrix multiplication algorithms many known values of rank are reproduced and even improved, in particular, the designs (4,4,4;48) and (2,4,5;32) are found.
Негізгі сөздер
Толық мәтін
 
												
	                        Авторлар туралы
I. Kaporin
FRC CSC RAS
							Хат алмасуға жауапты Автор.
							Email: igorkaporin@mail.ru
				                					                																			                												                	Ресей, 							Moscow						
Әдебиет тізімі
- Brent R.P. Algorithms for matrix multiplication. (Report No. STAN-CS-70-157). Stanford Univ. CA Dept. of Computer Science, 1970, 58p.
- Strassen V. Gaussian elimination is not optimal // Numer. Math. 1969. V. 13. № 4. P. 354–356.
- Смирнов А.В. О билинейной сложности и практических алгоритмах умножения матриц // ЖВМ и МФ. 2013. Т. 53. № 12. С. 1970–1984.
- Beniamini G. et al., Sparsifying the operators of fast matrix multiplication algorithms. arXiv preprint arXiv:2008.03759 (2020) https://arxiv.org/pdf/2008.03759.pdf
- Ballard G., Ikenmeyer C., Landsberg J.M., Ryder N. The geometry of rank decompositions of matrix multiplication II: 3×3 matrices // J. of Pure and Applied Algebra. 2019. V. 223. № 8. P. 3205–3224.
- Laderman J.D. A noncommutative algorithm for multiplying 3x3 matrices using 23 multiplications // Bull. Amer. Math. Soc. 1976. V. 82. № 1. P. 126–128.
- Kaporin I. A derivative-free nonlinear least squares solver. In: Olenev N.N., Evtushenko Y.G., Jacimovic M., Khachay M., Malkova V. (eds.) Optimization and Applications. OPTIMA 2021. Lecture Notes in Computer Science, V. 13078. P. 217–230. Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-91059-4_16
- Kaporin I. Verifying the correctness of the (4,4,4;48) matrix multiplication scheme with complex coefficients exact up to the floating point tolerance // 2024. URL: https://cloud.mail.ru/public/Yfij/ErDxopqBh
- Hopcroft J.E., Kerr L.R. On minimizing the number of multiplications necessary for matrix multiplication // SIAM Journal on Appl. Math. 1971. V. 20. № 1 P. 30–36.
- Berger G.O., Absil P.A., De Lathauwer L., Jungers R.M., Van Barel M. Equivalent polyadic decompositions of matrix multiplication tensors // J. of Comput. and Appl. Math. 2022. V. 406. P. 113941. https://doi.org/10.1016/j.cam.2021.113941
- Fawzi A. et al. Discovering faster matrix multiplication algorithms with reinforcement learning // Nature. 2022. V. 610. № 7930. P. 47–53.
- Li X., Zhang L., Ke Y. Deflation conjecture and local dimensions of Brent equations // arXiv preprint arXiv:2310.11686. 2023 Oct 18.
- Ballard G., Weissenberger J., Zhang L. Accelerating neural network training using arbitrary precision approximating matrix multiplication algorithms // 50th International Conference on Parallel Processing Workshop 2021 Aug 9. P. 1–8. https://doi.org/10.1145/3458744.3474050
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді