Asymptotics for eigenvalues of Schrödinger operator with small shift and Dirichlet condition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider a non-self-adjoint Schrödinger operator on the unit segment with the Dirichlet condition perturbed by an operator of small translation. The main result is the three-terms asymptotics for the eigenvalues with respect to their index and this asymptotics is uniform in the small translation. We also show that the system of eigenfunctions and associated functions of the considered operators forms a Bari basis in the space of functions square integrable on the considered unit segment.

About the authors

D. I. Borisov

Institute of Mathematics, Ufa Federal Research Center, Russian Academy of Sciences

Author for correspondence.
Email: borisovdi@yandex.ru
Russian Federation, Ufa

D. M. Polyakov

Institute of Mathematics, Ufa Federal Research Center, Russian Academy of Sciences; Southern Mathematical Institute, Vladikavkaz Scientific Center, Russian Academy of Sciences

Email: DmitryPolyakow@mail.ru
Russian Federation, Ufa; Vladikavkaz

References

  1. Skubachevskii A.L. Elliptic functional differential equations and applications. Basel: Birkhauser Verlag, 1997. 304 p.
  2. Kamenskii G.A. Extrema of nonlocal functional and boundary value problems for functional differential equations. New York: Nova Science Publishers, 2007. 225 p.
  3. Скубачевский А.Л. // УМН. 2016. Т. 71. № 5(431). С. 3–112.
  4. Скубачевский А.Л., Иванов Н.О. // Докл. РАН. Матем., информ., проц. упр. 2021. Т. 500. С. 74–77.
  5. Скубачевский А.Л., Адхамова А.Ш. // Докл. РАН. Матем., информ., проц. упр. 2020. Т. 490. С. 81–84.
  6. Muravnik A.B. // Discr. Contin. Dyn. Syst. 2006. V. 16. P. 541–561.
  7. Rossovskii L.E. // J. Math. Sci. 2017. V. 223. P. 351–493.
  8. Левитан Б.М., Саргсян И.С. Введение в спектральную теорию. Самосопряженные обыкновенные дифференциальные операторы. М.: Гл. ред. физ.-мат. литер, 1970. 671 c.
  9. Марченко В.А. Операторы Штурма-Лиувилля и их приложения. Киев: Наукова Думка, 1977. 330 c.
  10. Шкаликов А.А. // Матем. заметки. 1997. Т. 62. № 6. С. 950–953.
  11. Туманов С.Н., Шкаликов А.А. // Изв. РАН. Сер. матем. 2002. Т. 66. № 4. С. 177–204.
  12. Borisov D.I., Polyakov D.M. // Mathematics. 2023. V. 11. № 20. 4260.
  13. Като Т. Теория возмущений линейных операторов. М: Мир, 1972. 740 с.
  14. Поляков Д.М. // Алгебра и анализ. 2015. Т. 27. № 5. С. 117–152.
  15. Баскаков А.Г., Поляков Д.М. // Матем. сб. 2017. Т. 208. № 1. С. 3–47.
  16. Поляков Д.М. // Дифференц. уравнения. 2021. Т. 57. № 1. С. 14–21.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences