Обобщение теоремы Якоби о последнем множителе

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Для выполнения условий теоремы Якоби о последнем множителе требуется существование инвариантной меры и наличие достаточного количества независимых первых интегралов. В этом случае система локально интегрируется в квадратурах. Известны примеры систем, в которых для возможности интегрирования в квадратурах оказалось достаточно существования частных первых интегралов. При этом интегрирование в квадратурах происходит на уровнях частных первых интегралов.

В настоящей работе теорема Якоби о последнем множителе распространяется на общую ситуацию, когда среди первых интегралов присутствуют частные интегралы.

Об авторах

Е. И. Кугушев

Московский государственный университет имени М.В. Ломоносова

Автор, ответственный за переписку.
Email: kugushevei@yandex.ru
Россия, Москва

Т. В. Сальникова

Московский государственный университет имени М.В. Ломоносова

Email: tatiana.salnikova@gmail.com
Россия, Москва

Список литературы

  1. Болотин С.В., Карапетян А.В., Кугушев Е.И., Трещев Д.В. Теоретическая механика. М.: Издательский центр “Академия», 2010. 434 с.
  2. Голубев В.В. Лекции по интегрированию уравнений движения тяжелого твердого тела около неподвижной точки. М.: Гостехиздат, 1953. 288 с.
  3. Горр Г.В. Инвариантные соотношения уравнений динамики твердого тела. М.–Ижевск: Институт компьютерных исследований, 2017. 424 с.
  4. Дубровин Б.А., Новиков С.П., Фоменко А.Т. Современная геометрия. Методы и приложения. Т. 2: Геометрия и топология многообразий. М.: Эдиториал УРСС, 2001. 296 с.
  5. Козлов В.В. К теории интегрирования уравнений неголономной механики // Успехи механики. 1985. Т. 8. № 3. С. 85–107.
  6. Козлов В.В. Методы качественного анализа в динамике твердого тела. Ижевск: НИЦ РХД, 2000. 248 с.
  7. Козлов В.В. О некоторых свойствах частных интегалов канонических уравнений // Вестник МГУ. Сер. мат.-мех. 1973. № 1. С. 81–84.
  8. Козлов В.В. Теорема Эйлера–Якоби–Ли об интегрируемости // Нелинейная динам. 2013. Т. 9. № 2. С. 229–245.
  9. Колмогоров А.Н. О динамических системах с интегральным инвариантом на торе // ДАН СССР. 1953. Т. 93. № 5. С. 763–766.
  10. Чаплыгин С.А. О принципе последнего множителя // Математический сборник. 1900. Т. 21. № 3. С. 479–489. – В кн.: Чаплыгин С.А. Собрание сочинений. Т. 1, М.–Л.: Гостехиздат, 1948.
  11. Nucci M.C., Leach P.G.L. Jacobi’s Last Multiplier and the Complete Symmetry Group of the Euler–Poinsot System // Journal of Nonlinear Mathematical Physics. 2002. V. 9. № 2. P. 110–121.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024