A new spectral measure of complexity and its capabilities for detecting signals in noise

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This article is devoted to the improvement of signal recognition methods based on the information characteristics of the spectrum. A discrete function of the normalized ordered spectrum is established for a single window function included in the DFT. Lemmas on estimates of entropy, imbalance and statistical complexity in processing a time series of independent Gaussian quantities are proved. New concepts of one-dimensional and two-dimensional spectral complexities are proposed. The theoretical results obtained were verified by numerical experiments, which confirmed the effectiveness of the new information characteristic when detecting a signal mixed with white noise at low signal-to-noise ratios.

Авторлар туралы

A. Galyaev

Institute of Control Sciences of RAS

Хат алмасуға жауапты Автор.
Email: galaev@ipu.ru

Corresponding Member of the RAS

Ресей, Moscow

V. Babikov

Institute of Control Sciences of RAS

Email: babikov@ipu.ru
Ресей, Moscow

P. Lysenko

Institute of Control Sciences of RAS

Email: pavellysen@ipu.ru
Ресей, Moscow

L. Berlin

Institute of Control Sciences of RAS

Email: berlin.lm@phystech.edu
Ресей, Moscow

Әдебиет тізімі

  1. Amigo J.M. Ordinal methods: Concepts, applications, new developments, and challengesIn memory of Karsten Keller (19612022) / J. M. Amigo, O. A. Rosso // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2023. Vol. 33, no. 8. P. 080401. https://pubs.aip.org/cha/article/33/8/080401/2905538/ Ordinal-methods-Concepts-applications-new.
  2. Distinguishing Noise from Chaos / O.A. Rosso, H.A. Larrondo, M. T. Martin et al. // Phys. Rev. Lett. 2007. Oct. V. 99. P. 154102. https://link.aps.org/doi/10.1103/PhysRevLett.99.154102.
  3. Perkey S. Using Fourier Coefficients and Wasserstein Distances to Estimate Entropy in Time Series / S. Perkey, A. Carvalho, A. Krone-Martins // 2023 IEEE 19th International Conference on e-Science (e-Science). Limassol, Cyprus: IEEE, 2023. P. 1–2. https://ieeexplore.ieee.org/document/10254949/.
  4. Statistical Distributions / C. Forbes, M. Evans, N. Hastings, B. Peacock. 1 edition. Wiley, 2010. https: //onlinelibrary.wiley.com/doi/book/10.1002/9780470627242.
  5. Klenke A. Probability Theory: A Comprehensive Course / A. Klenke. Universitext. London: Springer London, 2014. https://link.springer.com/10.1007/978-1-4471-5361-0.
  6. Галяев А.А. Статистическая сложность как критей рий задачи обнаружения полезного сигнала / А.А. Галяев, П.В. Лысенко, Л.М. Берлин // Автоматика и телемеханика. 2023. С. 121–145.
  7. Distances in Probability Space and the Statistical Complexity Setup / A. M. Kowalski, M. T. Mart’ın, A. Plastino et al. // Entropy. 2011. V. 13. №. 6. P. 1055–1075. http://www.mdpi.com/1099-4300/13/6/1055.
  8. Richards M.A. The Discrete-Time Fourier Transform and Discrete Fourier Transform of Windowed Stationary White Noise / M.A. Richards // Technical Memorandum. 2013. P. 1–24.
  9. Kay S.M. Fundamentals Of Statistical Processing, Volume 2: Detection Theory / S.M. Kay. Prentice-Hall signal processing series. Pearson Education, 2009. https://books.google.ru/books?id=wwmnY9xyt9MC.
  10. Орлов И.Я. Оценка потерь обнаружения сигналов приемнёком с адаптивным порогом на основе метода порядковых статистик / И.Я. Орлов, Е.С. Фитасов // Известия вузов. Радиофизика. 2018. Т. 61. № 7. С. 596–604
  11. Cazelles E. The Wasserstein-Fourier Distance for Stationary Time Series / E. Cazelles, A. Robert, F. Tobar // IEEE Transactions on Signal Processing. 2021. V. 69. P. 709–721. https://ieeexplore.ieee.org/document/9303405/.
  12. Berlin L.M. Comparison of Information Criteria for Detection of Useful Signals in Noisy Environments / L.M. Berlin, A.A. Galyaev, P.V. Lysenko // Sensors. 2023. V. 23. № 4. https://www.mdpi.com/1424-8220/23/4/2133.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024