A new spectral measure of complexity and its capabilities for detecting signals in noise
- Авторлар: Galyaev A.A.1, Babikov V.G.1, Lysenko P.V.1, Berlin L.M.1
-
Мекемелер:
- Institute of Control Sciences of RAS
- Шығарылым: Том 518, № 1 (2024)
- Беттер: 80-88
- Бөлім: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/648005
- DOI: https://doi.org/10.31857/S2686954324040122
- EDN: https://elibrary.ru/YYEJZI
- ID: 648005
Дәйексөз келтіру
Аннотация
This article is devoted to the improvement of signal recognition methods based on the information characteristics of the spectrum. A discrete function of the normalized ordered spectrum is established for a single window function included in the DFT. Lemmas on estimates of entropy, imbalance and statistical complexity in processing a time series of independent Gaussian quantities are proved. New concepts of one-dimensional and two-dimensional spectral complexities are proposed. The theoretical results obtained were verified by numerical experiments, which confirmed the effectiveness of the new information characteristic when detecting a signal mixed with white noise at low signal-to-noise ratios.
Негізгі сөздер
Авторлар туралы
A. Galyaev
Institute of Control Sciences of RAS
Хат алмасуға жауапты Автор.
Email: galaev@ipu.ru
Corresponding Member of the RAS
Ресей, MoscowV. Babikov
Institute of Control Sciences of RAS
Email: babikov@ipu.ru
Ресей, Moscow
P. Lysenko
Institute of Control Sciences of RAS
Email: pavellysen@ipu.ru
Ресей, Moscow
L. Berlin
Institute of Control Sciences of RAS
Email: berlin.lm@phystech.edu
Ресей, Moscow
Әдебиет тізімі
- Amigo J.M. Ordinal methods: Concepts, applications, new developments, and challengesIn memory of Karsten Keller (19612022) / J. M. Amigo, O. A. Rosso // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2023. Vol. 33, no. 8. P. 080401. https://pubs.aip.org/cha/article/33/8/080401/2905538/ Ordinal-methods-Concepts-applications-new.
- Distinguishing Noise from Chaos / O.A. Rosso, H.A. Larrondo, M. T. Martin et al. // Phys. Rev. Lett. 2007. Oct. V. 99. P. 154102. https://link.aps.org/doi/10.1103/PhysRevLett.99.154102.
- Perkey S. Using Fourier Coefficients and Wasserstein Distances to Estimate Entropy in Time Series / S. Perkey, A. Carvalho, A. Krone-Martins // 2023 IEEE 19th International Conference on e-Science (e-Science). Limassol, Cyprus: IEEE, 2023. P. 1–2. https://ieeexplore.ieee.org/document/10254949/.
- Statistical Distributions / C. Forbes, M. Evans, N. Hastings, B. Peacock. 1 edition. Wiley, 2010. https: //onlinelibrary.wiley.com/doi/book/10.1002/9780470627242.
- Klenke A. Probability Theory: A Comprehensive Course / A. Klenke. Universitext. London: Springer London, 2014. https://link.springer.com/10.1007/978-1-4471-5361-0.
- Галяев А.А. Статистическая сложность как критей рий задачи обнаружения полезного сигнала / А.А. Галяев, П.В. Лысенко, Л.М. Берлин // Автоматика и телемеханика. 2023. С. 121–145.
- Distances in Probability Space and the Statistical Complexity Setup / A. M. Kowalski, M. T. Mart’ın, A. Plastino et al. // Entropy. 2011. V. 13. №. 6. P. 1055–1075. http://www.mdpi.com/1099-4300/13/6/1055.
- Richards M.A. The Discrete-Time Fourier Transform and Discrete Fourier Transform of Windowed Stationary White Noise / M.A. Richards // Technical Memorandum. 2013. P. 1–24.
- Kay S.M. Fundamentals Of Statistical Processing, Volume 2: Detection Theory / S.M. Kay. Prentice-Hall signal processing series. Pearson Education, 2009. https://books.google.ru/books?id=wwmnY9xyt9MC.
- Орлов И.Я. Оценка потерь обнаружения сигналов приемнёком с адаптивным порогом на основе метода порядковых статистик / И.Я. Орлов, Е.С. Фитасов // Известия вузов. Радиофизика. 2018. Т. 61. № 7. С. 596–604
- Cazelles E. The Wasserstein-Fourier Distance for Stationary Time Series / E. Cazelles, A. Robert, F. Tobar // IEEE Transactions on Signal Processing. 2021. V. 69. P. 709–721. https://ieeexplore.ieee.org/document/9303405/.
- Berlin L.M. Comparison of Information Criteria for Detection of Useful Signals in Noisy Environments / L.M. Berlin, A.A. Galyaev, P.V. Lysenko // Sensors. 2023. V. 23. № 4. https://www.mdpi.com/1424-8220/23/4/2133.
Қосымша файлдар
