On the accuracy of calculating invariants in centered rarefaction waves and in their influence area

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We perform a comparative analysis of the accuracy of second-order TVD (Total Variation Diminishing), third-order RBM (Rusanov-Burstein-Mirin), and fifth-order in space and third-order in time A-WENO (Alternative Weighted Essentially Non-Oscillatory) difference schemes for solving a special Cauchy problem for shallow water equations with discontinuous initial data. The exact solution of this problem contains a centered rarefaction wave and does not contain a shock wave. It is shown that in the centered rarefaction wave and its influence area, the solutions of these three schemes with different orders converge to different invariants of the exact solution. This leads to a decrease in the accuracy of these schemes when calculating the vector of base variables of the considered Cauchy problem. The P-form of the first differential approximation of the difference schemes is used for the theoretical justification of these numerical results.

About the authors

V. V. Ostapenko

Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: ostigil@mail.ru
Russian Federation, Novosibirsk

E. I. Polunina

Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences

Email: ekpolunina2014@gmail.com
Russian Federation, Novosibirsk

N. A. Khandeeva

Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences

Email: nzyuzina1992@gmail.com
Russian Federation, Novosibirsk

References

  1. Ковыркина О.А., Остапенко В.В. О построении комбинированных разностных схем повышенной точности // Докл. АН. 2018. Т. 478. № 5. 517–522. https://doi.org/10.1134/S1064562418010246
  2. Cockburn B. An introduction to the discontinuous Galerkin method for convection-dominated problems, advanced numerical approximation of nonlinear hyperbolic equa-tions // Lect. Notes Math. 1998. V. 1697. 150–268. https://doi.org/10.1007/BFb0096353
  3. Куликовский А.Г., Погорелов Н.В., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. М.: Физматлит, 2001.
  4. LeVeque R.J. Finite-volume methods for hyperbolic problems. Cambridge: Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511791253
  5. Toro E.F. Riemann solvers and numerical methods for fluid dynamics: a practical intro-duction. Berlin: Springer-Verlag Berlin Heidelberg, 2009.
  6. Hesthaven J.S. Numerical methods for conservation laws. // Computational Science and Engineering 18. SIAM, 2018. https://doi.org/10.1137/1.9781611975109
  7. Shu C.-W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes // Acta Numer. 2020. V. 29. 701–762. https://doi.org/10.1017/S0962492920000057
  8. Gelb A., Tadmor E. Adaptive edge detectors for piecewise smooth data based on the minmod limiter // J. Sci. Comput. 2006. V. 28. 279–306. https://doi.org/10.1007/s10915-006-9088-6
  9. Guermond J.L., Pasquetti R., Popov B. Entropy viscosity method for nonlinear conservation laws // J. Comput. Phys. 2011. V. 230. 4248–4267. https://doi.org/10.1016/j.jcp.2010.11.043
  10. Dewar J., Kurganov A., Leopold M. Pressure-based adaption indicator for compressible Euler equations // Numer. Meth. Part. Diff. Eq. 2015. V. 31. № 6. 1844–1874. https://doi.org/10.1002/num.21970
  11. Брагин М.Д., Ковыркина О.А., Ладонкина М.Е., Остапенко В.В., Тишкин В.Ф., Хандеева Н.А. Комбинированные численные схемы // Ж. вычисл. матем. и матем. физ. 2022. Т. 62. № 11. 1763–1803. https://doi.org/10.1134/S0965542522100025
  12. Chu S., Kovyrkina O.A., Kurganov A., Ostapenko V.V. Experimental convergence rate study for three shock-capturing schemes and development of highly accurate com-bined schemes // Numer. Meth. Part. Diff. Eq. 2023. V. 39. № 6. 4317–4346. https://doi.org/10.1002/num.23053
  13. Ковыркина О.А., Остапенко В.В. О точности разностных схем при расчете центрированных волн разрежения // Матем. моделир. 2023. Т. 35. № 7. 83–96. https://doi.org/10.1134/S2070048223070104
  14. Годунов С.К. Разностный метод численного расчета разрывных решений уравнений гидродинамики // Матем. сборник. 1959. Т. 47. № 3. 271–306.
  15. Harten A. High resolution schemes for hyperbolic conservation laws // J. Comput. Phys. 1983. V. 49. № 3. 357–393. https://doi.org/10.1016/0021-9991(83)90136-5
  16. Jiang G.S., Shu C.-W. Efficient implementation of weighted ENO schemes // J. Com-put. Phys. 1996. V. 126. № 1. 202–228. https://doi.org/10.1006/jcph.1996.0130
  17. Русанов В.В. Разностные схемы третьего порядка точности для сквозного счёта разрывных решений // Докл. АН СССР. 1968. Т. 180. № 6. 1303–1305.
  18. Burstein S.Z., Mirin A.A. Third order difference methods for hyperbolic equations // J. Comput. Phys. 1970. V. 5. № 3. 547–571. https://doi.org/10.1016/0021-9991(70)90080-X
  19. Wang B.S., Don W.S., Garg N.K. and Kurganov N.K. Fifth-order A-WENO finite-difference schemes based on a new adaptive diffusion central numerical flux // SIAM J. Sci. Comput. 2020. V. 42. A3932–A3956. https://doi.org/10.1137/20M1327926
  20. Шокин Ю.И., Яненко Н.Н. Метод дифференциального приближения. Новосибирск: Наука, 1985.
  21. Ковыркина О.А., Курганов А.А., Остапенко В.В. Сравнительный анализ точности трех различных схем при расчете ударных волн // Матем. моделир. 2022. Т. 34. № 10. 43–64. https://doi.org/10.1134/S2070048223030092
  22. Ковыркина О.А., Остапенко В.В. О точности схемы типа MUSCL при расчете разрывных решений // Матем. моделир. 2021. Т. 33. № 1. 105–121. https://doi.org/10.1134/S2070048221050136

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences