The set of Banach limits and its discrete and continuous subsets
- Authors: Avdeev N.N.1, Zvolinskii R.E.1, Semenov E.M.1, Usachev A.S.1,2
- 
							Affiliations: 
							- Voronezh State University
- Central South University
 
- Issue: Vol 518 (2024)
- Pages: 61-64
- Section: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/647994
- DOI: https://doi.org/10.31857/S2686954324040092
- EDN: https://elibrary.ru/YYXBPO
- ID: 647994
Cite item
Abstract
The note states criteria for a Banach limit to belong to discrete or to continuous part of the set of Banach limits. Diameters and radii of these parts are found, too.
Full Text
 
												
	                        About the authors
N. N. Avdeev
Voronezh State University
							Author for correspondence.
							Email: nickkolok@mail.ru
				                					                																			                												                	Russian Federation, 							Voronezh						
R. E. Zvolinskii
Voronezh State University
														Email: roman.zvolinskiy@gmail.com
				                					                																			                												                	Russian Federation, 							Voronezh						
E. M. Semenov
Voronezh State University
														Email: nadezhka_ssm@geophys.vsu.ru
				                					                																			                												                	Russian Federation, 							Voronezh						
A. S. Usachev
Voronezh State University; Central South University
														Email: dr.alex.usachev@gmail.com
				                					                																			                												                	Russian Federation, 							Voronezh; Changsha, Hunan, People's Republic of China						
References
- Lorentz G.G. A contribution to the theory of divergent sequences // Acta mathematica. 1948. V. 80. № 1. P. 167–190.
- Sucheston L. Banach limits // The American Mathematical Monthly. 1967. V. 74. № 3. P. 308–311.
- Mazur S. O metodach sumowalnosci // Ann. Soc. Polon. Math.(Suppl.). 1929. P. 102–107.
- Банах С. Теория линейных операций // РХД, М. – Ижевск, 2001. 272 с.
- Eberlein W.F. Banach–Hausdorff limits // Proceedings of the American Mathematical Society. 1950. V. 1. № 5. P. 662–665.
- Semenov E.M., Sukochev F.A. Invariant Banach limits and applications // Journal of Functional Analysis. 2010. V. 259. № 6. P. 1517–1541.
- Semenov E., Sukochev F., Usachev A., Zanin D. Dilation invariant Banach limits // Indagationes Mathematicae. 2020. V. 31. № 5. P. 885–892.
- Aliprantis C.D., Burkinshaw O. Positive operators // Academic Press. 1985. 376 p.
- Chou C. On the size of the set of left invariant means on a semigroup // Proceedings of the American Mathematical Society. 1969. V. 23. № 1. P. 199–205.
- Семенов Е.М., Сукочев Ф.А., Усачев А.С. Геометрия банаховых пределов и их приложения // Успехи математических наук. 2020. Т. 75. № 4. С. 153–194.
- Семенов Е.М., Сукочев Ф.А., Усачев А.С. Основные классы инвариантных банаховых пределов // Изв. РАН. Сер. матем. 2019. Т. 83. № 1. С. 140–167.
- Семенов Е.М., Сукочев Ф.А., Усачев А.С. Структурные свойства множества банаховых пределов // Докл. РАН. 2011. Т. 441. № 2. С. 177–178.
- Semenov E., Sukochev F. Extreme points of the set of Banach limits // Positivity. 2013. Vol. 17. № 1. P. 163–170.
- Semenov E., Sukochev F., Usachev A., Zanin D. Invariant Banach limits and applications to noncommutative geometry // Pacific Math. J. 2020. V. 306. № 1. P. 357–373.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted