Maximum induced trees in sparse random graphs

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We prove that a.a.s. for any ε > 0 and ne23e2+εp=o(1) the maximum size of an induced subtree of the binomial random graph Gn,p is concentrated in 2 consecutive points.

Sobre autores

J. Buitrago Oropeza

Moscow Institute of Physics and Technology (National Research University)

Autor responsável pela correspondência
Email: buitrago.okh@phystech.edu

Department of Discrete Mathematics, Advanced Combinatorics and Network Applications Laboratory

Rússia, Dolgoprudny, Moscow region

Bibliografia

  1. Bollobás B. Random Graphs. 2nd ed. Cambridge University Press, 2001.
  2. Janson S., Luczak T., Ruciński A. Random Graphs. New York: Wiley, 2000.
  3. Жуковский М.Е., Райгородский А.М. Случайные графы: модели и предельные характеристики // Успехи математических наук. 2015. T. 70. № 1. С. 35–88.
  4. Деревянко Н.М., Киселев С.Г. Числа независимости случайных подграфов некоторого дистанционного графа // Проблемы передачи информации. 2017. Т. 53. № 4. С. 307–318.
  5. Егорова А.Н., Жуковский М.Е. Опровержение закона нуля или единицы для экзистенциальных монадических свойств разреженного биномиального случайного графа // Доклады Академии наук. Т. 99. № 1. С. 68–70.
  6. Ostrovsky L.B., Zhukovskii M.E. Monadic second-order properties of very sparse random graphs // Annals of Pure and Applied Logic. 2017. V. 168. N 11. P. 2087–2101.
  7. Bollobás B., Erdös P. Cliques in random graphs // Math. Proc. Camb. Phil. Soc. 1976. V. 80. P. 419–427.
  8. Matula D. The largest clique size in a random graph // Tech. Rep. Dept. Comp. Sci. Dallas, Texas: Southern Methodist University, 1976.
  9. Krivelevich M., Sudakov B., Vu V.H., Wormald N.C. On the probability of independent sets in random graphs // Random Structures & Algorithms. 2003. V. 22. N 1. P. 1–14.
  10. Fountoulakis N., Kang R.J., McDiarmid C. Largest sparse subgraphs of random graphs // European Journal of Combinatorics. 2014. V. 35. P. 232–244.
  11. Balogh J., Zhukovskii M. On the sizes of large subgraphs of the binomial random graph // Discrete Mathematics. 2022. V. 345. N 2. 112675. ISSN 0012-365X.
  12. Kamaldinov D., Skorkin A., Zhukovskii M. Maximum sparse induced subgraphs of the binomial random graph with given number of edges // Discrete Mathematics. 2021. V. 344. N 2. 112205. ISSN 0012-365X.
  13. Krivoshapko M., Zhukovskii M. Maximum induced forests in random graphs // Discrete Applied Mathematics. 2021. V. 305. P. 211–213.
  14. Bohman T., Hofstad J. Two-Point Concentration of the Independence Number of the Random Graph // 2022. arXiv:2208.00117.
  15. Moon J.W. Counting Labelled Trees. Canadian Mathematical Monograph. 1970.
  16. Bohman T., Warnke L., Zhu E. Two-point concentration of the domination number of random graphs // 2024. arXiv:2401.10486.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024