Solvability analysis of the nonlinear integral equations system arising in the logistic dynamics model in the piecewise constant kernels case

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work is devoted to the analysis of a nonlinear integral equation that arises as a result of parametric closure of the third spatial moment in a single-species model of logistic dynamics by U. Dieckmann and R. Law. The case of piecewise constant kernels is analyzed, which is very important for further computer modeling. Sufficient conditions have been found to guarantee the existence of a nontrivial solution to the equilibrium equation. The use of constant kernels made it possible to obtain more accurate results compared to earlier works, in particular, more accurate estimates were obtained for the norm of the solution, as well as for the closure parameter.

About the authors

M. V. Nikolaev

Lomonosov Moscow State University; Moscow Center of Fundamental and Applied Mathematics

Author for correspondence.
Email: nikolaev.mihail@inbox.ru
Russian Federation, Moscow

A. A. Nikitin

Lomonosov Moscow State University; V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences

Email: nikitin@cs.msu.ru
Russian Federation, Moscow

U. Dieckmann

Okinawa Institute of Science and Technology Graduate University; International Institute for Applied Systems Analysis; Graduate University for Advanced Studies

Email: dieckmann@iiasa.ac.at
Japan, Onna; Laxenburg, Austria; Hayama

References

  1. Law R., Dieckmann U. Moment approximations of individual-based models // The Geometry of Ecological Interactions: Simplifying Spatial Complexity / Ed. by U. Dieckmann, R. Law, J. Metz. Cambridge University Press, 2000. P. 252–270.
  2. Dieckmann U., Law R. Relaxation projections and the method of moments // The Geometry of Ecological Interactions: Simplifying Spatial Complexity / Ed. by U. Dieckmann, R. Law, J. Metz. Cambridge University Press. 2000. P. 412–455.
  3. Murrell D.J., Dieckmann U., Law R. On moment closures for population dynamics in continuous space // J. Theor. Biology. 2004. Vol. 229. P. 421–432.
  4. Красносельский М.А. Два замечания о методе последовательных приближений // УМН. 1955. 10:1(63). С. 123–127.
  5. Никитин А.А., Николаев М.В. Принцип Лере–Шаудера в применении к исследованию одного нелинейного интегрального уравнения // Дифференциальные уравнения. 2019. Т. 55. С. 1209–1217.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences