OPTIMIZATION SPECTRAL PROBLEM FOR THE STURM-LIOUVILLE OPERATOR IN THE SPACE OF VECTOR FUNCTIONS
- Authors: Sadovnichii V.A.1, Sultanaev Y.T.2,3, Valeev N.F.4
-
Affiliations:
- M.V. Lomonosov Moscow State University
- Bashkir State Pedagogical University n.a. M. Akmulla
- Moscow Center for Fundamental and Applied Mathematics
- Institute of Mathematics with Computing Centre
- Issue: Vol 513, No 1 (2023)
- Pages: 93-98
- Section: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/647918
- DOI: https://doi.org/10.31857/S2686954323600477
- EDN: https://elibrary.ru/GHJAMX
- ID: 647918
Cite item
Abstract
An inverse spectral optimization problem is considered: for a given matrix potential \({{Q}_{0}}(x)\) it is required to find the matrix function \(\hat {Q}(x)\) closest to it, such that the k-th eigenvalue of the Sturm–Liouville matrix operator with potential \(\hat {Q}(x)\) matched the given value \(\lambda {\kern 1pt} *\). The main result of the paper is the proof of existence and uniqueness theorems. Explicit formulas for the optimal potential are established through solutions to systems of nonlinear differential equations of the second order, known in mathematical physics as systems of nonlinear Schrödinger equations
About the authors
V. A. Sadovnichii
M.V. Lomonosov Moscow State University
Author for correspondence.
Email: info@rector.msu.ru
Russian Federation, Moscow
Ya. T. Sultanaev
Bashkir State Pedagogical University n.a. M. Akmulla; Moscow Center for Fundamental and Applied Mathematics
Author for correspondence.
Email: sultanaevyt@gmail.com
Russian Federation, Ufa; Russian Federation, Moscow
N. F. Valeev
Institute of Mathematics with Computing Centre
Author for correspondence.
Email: valeevnf@yandex.ru
Russian Federation, Ufa
References
- Möller M., Zettl A. Differentiable dependence of eigenvalues of operators in Banach spaces, Journal of Operator Theory. 1996. P. 335–355.
- Pöschel J., Trubowitz E. Inverse spectral theory, volume 130 of Pure and Applied Mathematics, 1987.
- Yurko V.A. Inverse Spectral Problems and their Applications, Saratov, PI Press, 2001. 499 p.
- Chu M., Golub G.H. Inverse eigenvalue problems: theory, algorithms, and applications, Vol. 13. Oxford University Press, 2005.
- Gladwell G.M.L. Inverse Problems in Scattering: An Introduction, Kluwer Academic Publishers, 1993. https://doi.org/10.1007/978-94-011-2046-3
- Садовничий В.А., Султанаев Я.Т., Валеев Н.Ф. Многопараметрические обратные спектральные задачи и их приложения // Доклады академии наук. 2009. Т. 426. № 4. С. 457–460.
- Садовничий В.А., Султанаев Я.Т., Валеев Н.Ф. Оптимизационная обратная спектральная задача для векторного оператора Штурма–Лиувилля // Дифференциальные уравнения. 2022. Т. 58. № 12. С. 1707–1711.
- Ilyasov Y.Sh., Valeev N.F. On nonlinear boundary value problem corresponding to -dimensional inverse spectral problem // J. Diff. Eq. 2019. V. 266. № 8. P. 4533–4543. https://doi.org/10.1016/j.jde.2018.10.00310.1016/j.jde.2018.10.003
- Yavdat Ilyasov, Nur Valeev. Recovery of the nearest potential field from the m observed eigenvalues // Physica D: Nonlinear Phenomena. 2021. V. 426. 5 p. https://doi.org/10.1016/j.physd.2021.132985
- Egorov Y.V., Kondrat’ev V.A. Estimates for the first eigenvalue in some Sturm-Liouville problems // Russian Math. Surv. 1996. V. 51. № 3. P. 439.
- Wei Q., Meng G., Zhang M. Extremal values of eigenvalues of Sturm–Liouville operators with potentials in L1 balls // J. Diff. Eq. 2009. V. 247. № 2. P. 364–400.
- Shuyuan Guo, Zhang Meirong. A Variational Approach to the Optimal Locations of the Nodes of the Second Dirichlet Eigenfunctions. Mathematical Methods in the Applied Sciences. 2022. https://doi.org/10.1002/mma.8930
- Guo H., Qi J. Extremal norm for potentials of Sturm-Liouville eigenvalue problems with separated boundary conditions // EJDE. 2017. V. 99. P. 1–11. http://ejde.math.unt.edu
- Като Т. Теория возмущений линейных операторов. М.: Наука.1972. 740 с.
Supplementary files
