On a paradoxical property of the shifting mapping on an infinite-dimensional tori
- Authors: Glyzin S.D.1, Kolesov A.Y.1
-
Affiliations:
- Center of Integrable Systems, P.G. Demidov Yaroslavl State University
- Issue: Vol 515, No 1 (2024)
- Pages: 28-33
- Section: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/647916
- DOI: https://doi.org/10.31857/S2686954324010041
- EDN: https://elibrary.ru/ZTWIWM
- ID: 647916
Cite item
Abstract
An infinite-dimensional torus T∞=lp/2πZ∞, where lp, p ≥ 1 – space of sequences, Z∞ – natural integer lattice in lp, is considered. We study the classical question in the theory of dynamical systems about the behavior of trajectories of a shift mapping on the specified torus. More precisely, some sufficient conditions are proposed that guarantee the emptiness of the ω-limit and α-limit sets of any of the shift mapping onto T∞.
About the authors
S. D. Glyzin
Center of Integrable Systems, P.G. Demidov Yaroslavl State University
Author for correspondence.
Email: glyzin.s@gmail.com
Russian Federation, Yaroslavl
A. Yu. Kolesov
Center of Integrable Systems, P.G. Demidov Yaroslavl State University
Email: andkolesov@mail.ru
Russian Federation, Yaroslavl
References
- Каток А.Б., Хасселблат Б. Введение в современную теорию динамических систем. М.: Факториал, 1999.
- Каток А.Б., Хасселблат Б. Введение в теорию динамических систем с обзором последних достижений. М.: МЦНМО, 2005.
- Мищенко Е.Ф., Садовничий В.А., Колесов А.Ю., Розов Н.Х. Многоликий хаос. М.: Физматлит, 2012.
- Jessen B. // Acta Math. 1934. V. 63. P. 249–323.
- Kozlov V.V. // Russian Journal of Mathematical Physics. 2021. V. 28. № 1. P. 73–83.
- Глызин С.Д., Колесов А.Ю. // УМН. 2022. Т. 77. Вып. 3 (465). С. 3–72.
Supplementary files
