On a paradoxical property of the shifting mapping on an infinite-dimensional tori

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An infinite-dimensional torus T=lp/2πZ, where lp, p ≥ 1 – space of sequences, Z – natural integer lattice in lp, is considered. We study the classical question in the theory of dynamical systems about the behavior of trajectories of a shift mapping on the specified torus. More precisely, some sufficient conditions are proposed that guarantee the emptiness of the ω-limit and α-limit sets of any of the shift mapping onto T.

About the authors

S. D. Glyzin

Center of Integrable Systems, P.G. Demidov Yaroslavl State University

Author for correspondence.
Email: glyzin.s@gmail.com
Russian Federation, Yaroslavl

A. Yu. Kolesov

Center of Integrable Systems, P.G. Demidov Yaroslavl State University

Email: andkolesov@mail.ru
Russian Federation, Yaroslavl

References

  1. Каток А.Б., Хасселблат Б. Введение в современную теорию динамических систем. М.: Факториал, 1999.
  2. Каток А.Б., Хасселблат Б. Введение в теорию динамических систем с обзором последних достижений. М.: МЦНМО, 2005.
  3. Мищенко Е.Ф., Садовничий В.А., Колесов А.Ю., Розов Н.Х. Многоликий хаос. М.: Физматлит, 2012.
  4. Jessen B. // Acta Math. 1934. V. 63. P. 249–323.
  5. Kozlov V.V. // Russian Journal of Mathematical Physics. 2021. V. 28. № 1. P. 73–83.
  6. Глызин С.Д., Колесов А.Ю. // УМН. 2022. Т. 77. Вып. 3 (465). С. 3–72.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences