ON SUBSPACES OF AN ORLICZ SPACE SPANNED BY INDEPENDENT IDENTICALLY DISTRIBUTED FUNCTIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Subspaces of an Orlicz space LM generated by probabilistically independent copies of a function \(f \in {{L}_{M}}\), \(\int_0^1 {f(t){\kern 1pt} dt} = 0\), are studied. In terms of dilations of f, we get a characterization of strongly embedded subspaces of this type and obtain conditions that guarantee that the unit ball of such a subspace has equi-absolutely continuous norms in LM. A class of Orlicz spaces such that for all subspaces generated by independent identically distributed functions these properties are equivalent and can be characterized by Matuszewska–Orlicz indices is determined.

About the authors

S. V. Astashkin

Samara National Research University; Lomonosov Moscow State University; Moscow Сenter of Fundamental and Applied Mathematics; Bahcesehir University

Author for correspondence.
Email: astash@ssau.ru
Russian Federation, Samara; Russian Federation, Moscow; Russian Federation, Moscow; Turkey, Istanbul

References

  1. Красносельский М.А., Рутицкий Я.Б. Выпуклые функции и пространства Орлича. М.: Физматгиз, 1958. 271 с.
  2. Rao M.M., Ren Z.D. Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics. V. 146. N.Y.: Marcel Dekker Inc., 1991. 445 p.
  3. Lindenstrauss J., Tzafriri L. Classical Banach spaces I. Sequence Spaces, Springer-Verlag, Berlin, 1977.
  4. Зигмунд А. Тригонометрические ряды. Т. I. М.: Мир, 1965. 615 с. [перевод с английского Zygmund A. Trigonometric series. V. I. Cambridge Univ. Press, Cambridge, UK, 1959.]
  5. Astashkin S.V. -spaces // J. Funct. Anal. 2014. V. 266. P. 5174–5198.
  6. Bretagnolle J., Dacunha-Castelle D. Mesures aléatoires et espaces d’Orlicz (French) // C. R. Acad. Sci. Paris Ser. A-B. 1967, V. 264. P. A877–A880.
  7. Bretagnolle J., Dacunha-Castelle D. Application de l’étude de certaines formes l’étude aléatoires au plongement d’espaces de Banach dans des espaces // Ann. Sci. Ecole Norm. Sup. 1969. V. 2. № 5. P. 437–480.
  8. Dacunha-Castelle D. Variables aléatoires échangeables et espaces d’Orlicz // Séminaire Maurey-Schwartz 1974–1975: Espaces applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. X et XI, 21 pp. Centre Math., мole Polytech., Paris, 1975.
  9. Braverman M.Sh. On some moment conditions for sums of independent random variables // Probab. Math. Statist. 1993. V. 14. № 1 P. 45–56.
  10. Braverman M.Sh. Independent Random Variables and Rearrangement Invariant Spaces. London Math. Soc. Lecture Note Ser., vol. 194, Cambridge University Press, Cambridge, 1994.
  11. Braverman M.Sh. Independent random variables in Lorentz spaces // Bull. London Math. Soc. 1996. V. 28. № 1. P. 79–87.
  12. Astashkin S., Sukochev F. Orlicz sequence spaces spanned by identically distributed independent random variables in -spaces // J. Math. Anal. Appl. 2014. V. 413. № 1. P. 1–19.
  13. Astashkin S., Sukochev F., Zanin D. On uniqueness of distribution of a random variable whose independent copies span a subspace in // Stud. Math. 2015. V. 230. № 1. P. 41–57.
  14. Astashkin S., Sukochev F., Zanin D. The distribution of a random variable whose independent copies span is unique // Rev. Mat. Complut. 2022. V. 35. № 3. P. 815–834.
  15. Johnson W., Schechtman G., Sums of independent random variables in rearrangement invariant function spaces // Ann. Probab. 1989. V. 17. P. 789–808.
  16. Крейн С.Г., Петунин Ю.И., Семенов Е.М. Интерполяция линейных операторов. М.: Наука, 1978. 400 с.
  17. Astashkin S.V. On symmetric spaces containing isomorphic copies of Orlicz sequence spaces // Comment. Math. 2016. V. 56. № 1. P. 29–44.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 С.В. Асташкин