COUNTABLE MODELS OF COMPLETE ORDERED THEORIES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article consists of observations regarding complete theories of countable signatures and their countable models. We provide a construction of a countable linearly ordered theory which has the same number of countable non-isomorphic models as the given countable, not necessarily linearly ordered, theory.

About the authors

T. S. Zambarnaya

Institute of Mathematics and Mathematical Modeling

Author for correspondence.
Email: zambarnaya@math.kz
Kazakhstan, Almaty

B. Baizhanov

Institute of Mathematics and Mathematical Modeling; Suleyman Demirel University

Email: zambarnaya@math.kz
Kazakhstan, Almaty; Kazakhstan, Kaskelen

References

  1. Morley M. The number of countable models // The Journal of Symbolic Logic. 1970. V. 35. №1. P. 14–18.
  2. Rubin M. Theories of linear order // Israel Journal of Mathematics. 1974. V. 17. P. 392–443.
  3. Mayer L. Vaught’s conjecture for o-minimal theories // Journal of Symbolic Logic. 1988. V. 53. № 1. P. 146–159.
  4. Alibek A., Baizhanov B.S. Examples of countable models of a weakly o-minimal theory // Int. J. Math. Phys. 2012. V. 3. № 2. P. 1–8.
  5. Kulpeshov B.Sh., Sudoplatov S.V. Vaught’s conjecture for quite o-minimal theories // Annals of Pure and Applied Logic. 2017. V. 168. № 1. P. 129–149.
  6. Alibek A., Baizhanov B.S., Kulpeshov B.Sh., Zambarnaya T.S. Vaught’s conjecture for weakly o-minimal theories of convexity rank 1 // Annals of Pure and Applied Logic. 2018. V. 169. № 11. P. 1190–1209.
  7. Moconja S., Tanovic P. Stationarily ordered types and the number of countable models // Annals of Pure and Applied Logic. 2019. V. 171. № 3. P. 102765.
  8. Kulpeshov B.Sh. Vaught’s conjecture for weakly o-minimal theories of finite convexity rank // Izvestiya: Mathematics. 2020. V. 84. № 2. P. 324–347.
  9. Верещагин Н.К., Шень А. Лекции по математической логике и теории алгоритмов. Часть 2. Языки и исчисления. М.: МЦНМО, 2002.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Т.С. Замбарная, Б.С. Байжанов