COUNTABLE MODELS OF COMPLETE ORDERED THEORIES
- Authors: Zambarnaya T.S.1, Baizhanov B.1,2
-
Affiliations:
- Institute of Mathematics and Mathematical Modeling
- Suleyman Demirel University
- Issue: Vol 513, No 1 (2023)
- Pages: 5-8
- Section: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/647865
- DOI: https://doi.org/10.31857/S268695432370025X
- EDN: https://elibrary.ru/CMFRBD
- ID: 647865
Cite item
Abstract
The article consists of observations regarding complete theories of countable signatures and their countable models. We provide a construction of a countable linearly ordered theory which has the same number of countable non-isomorphic models as the given countable, not necessarily linearly ordered, theory.
About the authors
T. S. Zambarnaya
Institute of Mathematics and Mathematical Modeling
Author for correspondence.
Email: zambarnaya@math.kz
Kazakhstan, Almaty
B. Baizhanov
Institute of Mathematics and Mathematical Modeling; Suleyman Demirel University
Email: zambarnaya@math.kz
Kazakhstan, Almaty; Kazakhstan, Kaskelen
References
- Morley M. The number of countable models // The Journal of Symbolic Logic. 1970. V. 35. №1. P. 14–18.
- Rubin M. Theories of linear order // Israel Journal of Mathematics. 1974. V. 17. P. 392–443.
- Mayer L. Vaught’s conjecture for o-minimal theories // Journal of Symbolic Logic. 1988. V. 53. № 1. P. 146–159.
- Alibek A., Baizhanov B.S. Examples of countable models of a weakly o-minimal theory // Int. J. Math. Phys. 2012. V. 3. № 2. P. 1–8.
- Kulpeshov B.Sh., Sudoplatov S.V. Vaught’s conjecture for quite o-minimal theories // Annals of Pure and Applied Logic. 2017. V. 168. № 1. P. 129–149.
- Alibek A., Baizhanov B.S., Kulpeshov B.Sh., Zambarnaya T.S. Vaught’s conjecture for weakly o-minimal theories of convexity rank 1 // Annals of Pure and Applied Logic. 2018. V. 169. № 11. P. 1190–1209.
- Moconja S., Tanovic P. Stationarily ordered types and the number of countable models // Annals of Pure and Applied Logic. 2019. V. 171. № 3. P. 102765.
- Kulpeshov B.Sh. Vaught’s conjecture for weakly o-minimal theories of finite convexity rank // Izvestiya: Mathematics. 2020. V. 84. № 2. P. 324–347.
- Верещагин Н.К., Шень А. Лекции по математической логике и теории алгоритмов. Часть 2. Языки и исчисления. М.: МЦНМО, 2002.
Supplementary files
