Physiological effect of 24-epibrassinolide and its conjugate with succinic acid on the resistance of rapeseed plants to chloride salinity
- Autores: Kolomeichuk L.V.1, Litvinovskaya R.P.2, Khripach V.А.2, Kuznetsov V.V.1,3, Efimova М.V.1
- 
							Afiliações: 
							- National research Tomsk State University
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences
 
- Edição: Volume 521, Nº 1 (2025)
- Páginas: 260-267
- Seção: Articles
- URL: https://rjeid.com/2686-7389/article/view/684071
- DOI: https://doi.org/10.31857/S2686738925020168
- ID: 684071
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
It has been shown for the first time that exogenous 24-epibrassinolide (EBL) and a conjugate synthesized on its basis, which is 2,3,22,23-tetraester of EBL and succinic acid, at a concentration of 10 nM almost equally mitigate the negative effects of salt stress (150 mM NaCl) on rapeseed plants, maintaining photosynthetic activity and growth parameters. Specificity of the action of the studied compounds in regulating the resistance of rapeseed plants to NaCl is noted. EBL against the background of chloride salinity increases the content of carotenoids, superoxide dismutase and peroxidase activity, while conjugate EBL increases only peroxidase activity. Pretreatment of plants for 4 hours before stress was more effective than the introduction of the studied regulators simultaneously with the stressor.
Texto integral
 
												
	                        Sobre autores
L. Kolomeichuk
National research Tomsk State University
							Autor responsável pela correspondência
							Email: kolomeychuklv@mail.ru
				                					                																			                												                	Rússia, 							Tomsk						
R. Litvinovskaya
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
														Email: kolomeychuklv@mail.ru
				                					                																			                												                	Belarus, 							Minsk						
V. Khripach
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
														Email: kolomeychuklv@mail.ru
				                					                																			                												                	Belarus, 							Minsk						
V. Kuznetsov
National research Tomsk State University; Timiryazev Institute of Plant Physiology, Russian Academy of Sciences
														Email: kolomeychuklv@mail.ru
				                					                																			                								
Corresponding Member of the RAS
Rússia, Tomsk; MoscowМ. Efimova
National research Tomsk State University
														Email: kolomeychuklv@mail.ru
				                					                																			                												                	Rússia, 							Tomsk						
Bibliografia
- Wu, X. Gong, D. Zhao, K. Chen, D. Dong, Y. Gao, Y. Wang, Q. Hao, G. Research and Development Trends in Plant Growth Regulators. // Adv. Agrochem, 2024, vol. 3(1) pp. 99–106.
- Waadt, R., Seller, C.A., Hsu, P.K., Takahashi, Y., Munemasa, S., Schroeder, J. I. Plant hormone regulation of abiotic stress responses. // Nat Rev Mol Cell Biol, 2022, 23(10), pp. 680–694.
- Al-Taey, D.K., Al-Musawi, Z.J., Kadium, S. M. A., Abbas, A. K., Alsaffar, M. F., Mahmood, S. S. Brassinolides’ Function and Involvement in Salt Stress Response: A Review. // In IOP Conference Series: Earth and Environmental Science, 2024, vol. 1371(4), P. 042032.
- Garrido-Auñón, F., Puente-Moreno, J., García-Pastor, M.E., Serrano, M., Valero, D. Brassinosteroids: An Innovative Compound Family That Could Affect the Growth, Ripening, Quality, and Postharvest Storage of Fleshy Fruits. // Plants, 2024, vol. 13(21), P. 3082.
- Zajączkowska M., Pacholczak A. Effect of brassinosteroids on rooting of the ornamental deciduous shrubs. // Acta Scientiarum Polonorum Hortorum Cultus, 2024, vol. 23(1), pp. 51–62.
- Yang, Y., Chu, C., Qian, Q., Tong, H. Leveraging brassinosteroids towards the next Green Revolution. // Trends in Plant Science, 2024, vol. 29(1), pp. 86–98.
- Litvinovskaya, R.P., Minin M.E., Raiman, G.A., Zhilitskaya, A.L., Kurtikova, K.G., Kozharnovich, Derevyanchuk, M.V., Kravets, V.S., Khripach V.A., Indolyl-3-acetoxy derivatives of brassinosteroids: synthesis and growth-regulating activity. // Chem Nat Compd, 2013, Vol. 49, pp. 478–485.
- Litvinovskaya, R.P., Vayner, A.A., Zhylitskaya, H.A., Kolupaev, Yu.E., Savachka, A.P., Khripach V.A., Synthesis and stress-protective action on plants of brassinosteroid conjugates with salicylic acid. // Chem Nat Compd., 2016, Vol. 52, pp. 452–457.
- Арчибасова, Я.В., Литвиновская, Р.П., Влияние эпибрассинолида и его конъюгатов с серной кислотой на рост и солеустойчивость Helianthus annuus L. // Вісник харківського національного аграрного університету. Серія біологія (The bulletin of kharkiv national agrarian university. Series biology), 2021, T. 2(53), сс. 41–52.
- Хомюк, Я.В., Артемук, Е.Г., Литвиновская, Р.П. Влияние эпикастастерона и его конъюгатов с кислотами на морфометрические и физиолого-биохимические параметры Trifolium prаtense L. // Веснік Брэсцкага ўніверсітэта. Серыя 5. Біялогія. Навукі аб зямлі, 2022, № 2/20, сс. 52–62.
- Литвиновская, Р.П., Манжелесова, Н.Е., Савочка, О.П., Хрипач, В.А. Синтез тетрагемисукцинатов брассиностероидов и их влияние на начальный рост растений ярового ячменя. // Биоорганическая химия, 2022, T. 48(3), pp. 352–356.
- Lichtenthaler, H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. // Meth. Enzymol., 1987, vol., 148, pp. 350–382.
- Bates, L.S., Waldran, R.P., Teare, I.D., Rapid determination of free proline for water stress studies. // Plant and Soil, 1973, vol. 39, pp. 205–208. https://doi.org/10.1007/BF00018060
- Buege J.A., Aust S.D. Microsomal lipid peroxidation // Methods Enzymol. 1978. V. 52. P. 302–310.
- Beauchamp, Ch., Fridovich, I. Superoxide dismutase improved assays and an assay applicable to acrylamide gels. // Anal. Biochem., 1971, vol. 44, pp. 276–287.
- Ridge, I., Osborne, D.J. Role peroxidase when hydroxyprolin-rich protein in plant cell wall is increased by ethylene. // Nature New Biol, 1971. vol. 229, 205–208
- Esen, A. A simple method for quantitative, semiquantitative, and qualitative assay of protein. // Anal. Biochem., 1978, vol. 89., pp. 264–273.
- Garcia-Caparros, P., De Filippis, L., Gul, A., Hasanuzzaman, M., Ozturk, M., Altay, V., Lao, M. T. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. // The Botanical Review, 2021, vol. 87, pp. 421–466.
- Hasanuzzaman, M., Bhuyan, M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fyjita M., Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. // Antioxidants, 2020, vol. 9(8), p.681.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 







