GALA3-containing modular nanotransporters are capable of delivering Keap1 monobody to target cells and inhibiting the formation of reactive oxygen species in the cells
- Autores: Khramtsov Y.V.1, Bunin E.S.1, Ulasov A.V.1, Lupanova T.N.1, Georgiev G.P.1, Sobolev A.S.1,2
- 
							Afiliações: 
							- Institute of Gene Biology, RAS
- Lomonosov Moscow State University
 
- Edição: Volume 520, Nº 1 (2025)
- Páginas: 159-163
- Seção: Articles
- URL: https://rjeid.com/2686-7389/article/view/682070
- DOI: https://doi.org/10.31857/S2686738925010268
- EDN: https://elibrary.ru/svxdcs
- ID: 682070
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
In the previously created modular nanotransporter (MNT) capable of delivering a monobody to Keap1 into the cytosol, the translocation domain of diphtheria toxin (DTox) was replaced by the endosomolytic peptide GALA3. It was found that this substitution more than doubles the lifetime of MNT in the blood. Using confocal microscopy, it was shown that MNT with GALA3 was internalized into AML12 cells mainly due to binding to the epidermal growth factor receptor, and is also able to exit from endosomes into the cytosol. Using cellular thermal shift assay, it was shown that MNT with GALA3 and MNT with DTox are equally effective in disrupting the formation of the Nrf2 complex with Keap1, which led to similar protection of AML12 cells from the action of hydrogen peroxide. The obtained results allow not only to optimize the systemic use of MNT, but can also serve as a basis for creating agents aimed at treating diseases associated with oxidative stress.
Texto integral
 
												
	                        Sobre autores
Y. Khramtsov
Institute of Gene Biology, RAS
														Email: alsobolev@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
E. Bunin
Institute of Gene Biology, RAS
														Email: alsobolev@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Ulasov
Institute of Gene Biology, RAS
														Email: alsobolev@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
T. Lupanova
Institute of Gene Biology, RAS
														Email: alsobolev@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
G. Georgiev
Institute of Gene Biology, RAS
														Email: alsobolev@yandex.ru
				                					                																			                								
Corresponding Member of the RAS
Rússia, MoscowA. Sobolev
Institute of Gene Biology, RAS; Lomonosov Moscow State University
							Autor responsável pela correspondência
							Email: alsobolev@yandex.ru
				                					                																			                								
Academician of the RAS
Rússia, Moscow; MoscowBibliografia
- Bellezza I., Giambanco I., Minelli A., et al. // Acta Mol. Cell Res. 2018. V. 1865(5). P. 721–733.
- Hayes J.D., Dinkova-Kostova A.T. // Trends Biochem. Sci. 2014. V. 39(4). P. 199–218.
- Yamamoto M., Kensler T.W., Motohashi H. // Physiol. Rev. 2018. V. 98(3). P. 1169–1203.
- Robledinos-Anton N., Fernandez-Gines R., Manda G., et al. // Oxid. Med. Cell Longev. 2019. V. 2019. 9372182.
- Ngo V., Duennwald M.L. // Antioxidants. (Basel). 2022. V. 11(12).
- Taguchi K., Kensler T.W. // Arch. Pharm. Res. 2020. V. 43(3). P. 337–349.
- Patra U., Mukhopadhyay U., Sarkar R., et al. // Antivir. Res. 2019. V. 161. P. 53–62.
- Olagnier D., Farahani E., Thyrsted J., et al. // Nat. Commun. 2020. V. 11. 4938.
- Khramtsov Y.V., Ulasov A.V., Slastnikova T.A., et al. // Pharmaceutics. 2023. V. 15. 2687.
- Khramtsov Y.V., Ulasov A.V., Rosenkranz A.A., et al. // Dokl. Biochem. Biophys. 2018. V 478. P. 55–57.
- Aloia T.A., Fahy B.N. // Expert Rev. Anticancer Ther. 2010. V. 10. P. 521–527.
- Nikitin N.P., Zelepukin I.V., Shipunova V.O., et al. // Nat. Biomed. Eng. 2020. V. 4(7). P. 717–731.
- An Q., Lei Y., Jia N., et al. // Biomol. Eng. 2007. V. 24. P. 643–649.
- Pfister D., Morbidelli M. // J. Contr. Release. 2014. V. 180. P. 134–149.
- Rosenkranz A.A., Ulasov A.V., Slastnikova T.A., et al. // Biochemistry (Moscow). 2014. V. 79(9). P. 928–946.
- Li C., Cao X.W., Zhao J., et al. // J. Membr. Biol. 2020. V. 253(2). P. 139–152.
- Khramtsov Y.V., Ulasov A.V., Rosenkranz A.A., et al. // Phramaceutics. 2024. V. 16. 1345.
- Khramtsov Y.V., Ulasov A.V., Rosenkranz A.A., et al. // Phramaceutics. 2023. V. 15. 324.
- Murphy M.P., Bayir H., Belousov V., et al. // Nat. Metab. 2022. V. 4(6). P. 651–662.
- Thurber G.M., Dane W.K. // J. Theor. Biol. 2012. V. 314. P. 57–68.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




