Geometric Features of Structuring of Amphiphilic Macromolecules on the Surface of a Spherical Nanoparticle
- Autores: Mitkovskiy D.A.1,2, Lazutin A.A.1, Ushakova A.S.1, Talis A.L.1, Vasilevskaya V.V.1,3
- 
							Afiliações: 
							- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University
- Faculty of Chemistry, Lomonosov Moscow State University
 
- Edição: Volume 65, Nº 1 (2023)
- Páginas: 5-13
- Seção: Articles
- URL: https://rjeid.com/2308-1147/article/view/674803
- DOI: https://doi.org/10.31857/S2308114723700280
- EDN: https://elibrary.ru/HTLEVM
- ID: 674803
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The self-assembly of amphiphilic homopolymers tightly grafted to the spherical nanoparticle and immersed in a selective solvent is studied by the computer experiment method. Conditions under which macromolecules form thin membrane-like layers surrounding the nanoparticle are determined. It is first shown that the emerging polymer structures may be approximated by complete embedded minimal surfaces satisfying the Weierstrass representation, namely, helicoid, catenoid, and Enneper and Costa surfaces. Mathematical constructions defining these minimal surfaces highlight a new type of ordering of polymer structures and determine its symmetry classification similar to crystal classification by Fedorov groups. Calculations for the two considered sets of parameters show that structures approximated by a helicoid are energetically more favorable than structures approximated by other minimal surfaces.
Sobre autores
D. Mitkovskiy
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University
														Email: vvvas@polly.phys.msu.ru
				                					                																			                												                								119991, Moscow, Russia; 119991, Moscow, Russia						
A. Lazutin
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
														Email: vvvas@polly.phys.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
A. Ushakova
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
														Email: vvvas@polly.phys.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
A. Talis
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
														Email: talishome@mail.ru
				                					                																			                												                								119991, Moscow, Russia						
V. Vasilevskaya
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Faculty of Chemistry, Lomonosov Moscow State University
							Autor responsável pela correspondência
							Email: vvvas@polly.phys.msu.ru
				                					                																			                												                								119991, Moscow, Russia; 119991, Moscow, Russia						
Bibliografia
- Bates F.S., Fredrickson G.H. // Annu. Rev. Phys. Chem. 1990. V. 41. P. 525.
- Lodge T. // Mikrochim. Acta. 1994. V. 116. P. 1.
- Hamley I.W., Koppi K.A., Rosedale J.H., Bates F.S., Almdal K., Mortensen K. // Macromolecules. 1993. V. 26. P. 5959.
- Block Copolymers in Nanoscience / Ed. by M. Lazzari, G. Liu, S. Lecommandoux. Darmstadt: Wiley, 2006.
- Lodge T.P. // Macromol. Chem. Phys. 2003. V. 204. P. 265.
- Leibler L. // Macromolecules. 1980. V. 13. P. 1602.
- Semenov A.N. // JETP. 1985. V. 61. P. 733.
- Ерухимович И.Я., Хохлов А.Р. // Высокомолек. соед. А.1993. Т. 35. № 11. P. 1808.
- Floudas G., Hadjichristidis N., Tselikas Y., Erukhimo-vich I. // Macromolecules. 1997. V. 30. P. 3090.
- Erukhimovich I., Abetz V., Stadler R. // Macromolecules. 1997. V. 30. P. 7435.
- Erukhimovich I.Ya., Smirnova Yu.G., Abetz V. // Polymer Science A. 2003. V. 45. № 11. P. 1093.
- Smirnova Y.G., ten Brinke G., Erukhimovich I.Ya. // J. Chem. Phys. 2006. V. 124. 054907.
- Erukhimovich I.Y. // Eur. Phys. J. E. 2005. V. 18. P. 383.
- Nap R., Sushko N., Erukhimovich I., ten Brinke G. // Macromolecules. 2006. V. 39. P. 6765.
- Kriksin Y.A., Khalatur P.G., Erukhimovich I.Ya., ten Brinke G., Khokhlov A.R. // Soft Matter. 2009. V. 5. P. 2896.
- Glagoleva A., Erukhimovich I., Vasilevskaya V. // Macromol. Theory Simul. 2013. V. 22. P. 31.
- Erukhimovich I. // Polymer Science C. 2018. V. 60. № 2. P. 49.
- Lee S., Bluemle M.J., Bates F.S. // Science. 2010. V. 330. P. 349.
- Hajduk D.A., Harper P.E., Gruner S.M., Honeker C.C., Kim G., Thomas E.L., Fetters L.J. // Macromolecules. 1994. V. 27. P. 4063.
- Thomas E.L., Alward D.B., Kinning D.J., Martin D.C., Handlin D.L., Fetters L.J. // Macromolecules.1986. V. 19. P. 2197.
- Khandpur A.K., Foerster S., Bates F.S., Hamley I.W., Ryan A.J., Bras W., Almdal K., Mortensen K. // Macromolecules. 1995. V. 28. P. 8796.
- Reddy A., Feng X., Thomas E.L., Grason G.M. // Macromolecules. 2021. V. 54. P. 9223.
- Mosseri R., Sadoc J.F. // J. Phys. Colloques. 1990. V. 51. C7–257.
- Talis A., Everstov A., Kraposhin V. // Acta Crystallogr. A. 2021. V. 77. P. 7.
- Castle T., Evans M.E., Hyde S.T., Ramsden S., Robins V. // Interface Focus. 2012. V. 2. P. 555.
- Вайнштейн Б.К. Современная rристаллография. М.: Наука, 1979. Т. 1.
- Тужилин А.А., Фоменко А.Т. Элементы геометрии и топологии минимальных поверхностей. М.: URSS, 2022.
- Фоменко А.Т. Вариационные методы в топологии. М.: Наука, 1982.
- Anetor L. Minimal Surfaces Embedded in Euclidean Space, aster. Differential Geometry. Bucharest: Geometry Balkan Press, 2016.
- Pu W.-F., Ushakova A., Liu R., Lazutin A.A., Vasilevskaya V.V. // J. Chem. Phys. 2020. V. 152. P. 234903.
- Ushakova A.S., Lazutin A.A., Vasilevskaya V.V. // Macromolecules. 2021. V. 54. P. 6285.
- Ushakova A.S., Vasilevskaya V.V. // Polymers. 2022. V. 14. P. 4358.
- Saraev Z.R., Lazutin A.A., Vasilevskaya V.V. // Molecules. 2022. V. 27. P. 8535.
- Lazutin A.A., Vasilevskaya V.V. // Polymer. 2022. V. 255. P. 125172.
- Хоффман Д., Кархер Г. Итоги науки и техники. Серия “Современные проблемы математики. Фундаментальные направления”. М.: ФИЗМАТЛИТ, 2003. Т. 90. С. 13.
- Löbling T.I., Haataja J.S., Synatschke C.V., Schacher F.H., Müller M., Hanisch A., Gröschel A.H., H Müller E. // ACS Nano. 2014. V. 8. P. 11330.
- Plimpton S.J. // Computat. Phys. 1995. V. 117. P. 1.
- Weeks J.D., Chandler D., Andersen H.C. // J. Chem. Phys. 1971. V. 54. P. 5237.
- Verlet L. // Phys. Rev. 1967. V. 159. P. 98.
- Smith J. // Compos. Sci. Technol. 2003. V. 63. P. 1599.
- Bishop M., Kalos M.H., Frisch H.L. // J. Chem. Phys. 1979. V. 70. P. 1299.
- Grest G.S., Kremer K. // Phys. Rev. A. 1986. V. 33. P. 3628.
- Cho J., Ogata Y. // J. Geom. 2017. V. 108. P. 463.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






