Removal of Acid Gases from Methane-Containing Gas Mixtures by Membrane-Assisted Gas Absorption. Hollow-Fibre Module Configuration with Absorption System Based on Dimethyldiethanolammonium Glycinate
- Autores: Atlaskina M.E.1, Atlaskin A.A.1, Petukhov A.N.1,2, Smorodin K.A.1, Kryuchkov S.S.1, Vorotyntsev I.V.1
- 
							Afiliações: 
							- Mendeleev University of Chemical Technology of Russia
- Lobachevsky State University of Nizhny Novgorod
 
- Edição: Volume 14, Nº 4 (2024)
- Páginas: 302-316
- Seção: Articles
- URL: https://rjeid.com/2218-1172/article/view/674219
- DOI: https://doi.org/10.31857/S2218117224040066
- EDN: https://elibrary.ru/MPPTZR
- ID: 674219
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The present study is focused on continuing the development, improvement and optimisation of a new hybrid separation method – membrane-assisted gas absorption, which is designed for processing methane-containing gas mixtures, namely for the removal of acid gases. The second part is devoted to the design of absorbent solutions and their application in the proposed technology in order to improve the efficiency of acid gas removal and reduce hydrocarbon losses. Absorbents of acid gases based on aqueous solutions of methyldiethanolamine containing ionic liquid [M2E2A][Gly] have been proposed and investigated. As a result of the study, the optimal absorbent composition for further separation tests in a membrane-assisted gas absorption unit was determined. The efficiency of the process was investigated on the example of 8-component gas mixture containing methane, ethane, propane, n-butane, nitrogen, carbon dioxide, hydrogen sulfide and xenon. The membrane-assisted gas absorption unit demonstrated high efficiency of acid gas removal and high hydrocarbon recovery. The final efficiency of the investigated system with the new absorbent was up to 99 % for acid gas removal with hydrocarbon losses of up to 1 % at maximum capacity.
Texto integral
 
												
	                        Sobre autores
M. Atlaskina
Mendeleev University of Chemical Technology of Russia
														Email: atlaskina.m.e@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
A. Atlaskin
Mendeleev University of Chemical Technology of Russia
														Email: atlaskina.m.e@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
A. Petukhov
Mendeleev University of Chemical Technology of Russia; Lobachevsky State University of Nizhny Novgorod
														Email: atlaskina.m.e@gmail.com
				                					                																			                												                	Rússia, 							Moscow; Nizhny Novgorod						
K. Smorodin
Mendeleev University of Chemical Technology of Russia
							Autor responsável pela correspondência
							Email: atlaskina.m.e@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
S. Kryuchkov
Mendeleev University of Chemical Technology of Russia
														Email: atlaskina.m.e@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
I. Vorotyntsev
Mendeleev University of Chemical Technology of Russia
														Email: atlaskina.m.e@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Mendonça A.K. de S., de Andrade Conradi Barni G., Moro M.F., Bornia A.C., Kupek E., Fernandes L // Sustainable Production and Consumption. 2020. V. 22. P. 58–67.
- Smith C., Hill A.K., Torrente-Murciano L. // Energy and Environmental Science. 2020. V. 13. I. 2. P. 331–344.
- Pata U.K. // Renewable Energy. 2021. V. 173. P. 197–208.
- Ebrahimi A., Ziabasharhagh M. // Energy Conversion and Management. 2020. V. 209. № 112624.
- Xu D., Wu Q., Zhou B., Li C., Bai L., Huang S. // IEEE Transactions on Sustainable Energy. 2020. V. 11. I. 4. P. 2457–2469.
- Tcvetkov P., Cherepovitsyn A., Makhovikov A. // Energy Reports. 2020. V. 6. P. 391–402.
- Azam A., Rafiq M., Shafique M., Zhang H., Yuan J. // Energy. 2021. V. 219. № 119592.
- Wright R.F., Lu P., Devkota J., Lu F., Ziomek-Moroz M., Ohodnicki P.R. // Sensors (Switzerland). 2019. V. 19. I. 18. № 3964.
- Karthigaiselvan K., Panda R.C. // Journal of Natural Gas Science and Engineering. 2021. V. 95. № 104087.
- Harrigan D.J., Lawrence J.A., Reid H.W., Rivers J.B., O’Brien J.T., Sharber S.A., Sundell B.J. // Journal of Membrane Science. 2020. V. 602. № 117947.
- Jasim D., Mohammed T., Abid M. // Engineering and Technology Journal. 2022. V. 40. I. 3. P. 441–450.
- Gupta N.K., Achary S.N., Viltres H., Bae J., Kim K.S. // Scientific Reports. 2023. V. 13. I. 1. № 2330.
- Zhang W., Garg N., Peter Andersson M., Chen Q., Zhang B., Gani R., Mansouri S.S. // Separation and Purification Technology. 2022. V. 286. № 120436.
- Jahandar Lashaki M., Khiavi S., Sayari A. // Chemical Society Reviews. 2019. V. 48. I. 12. P. 3320–3405.
- Mukhtar A., Saqib S., Mellon N.B., Babar M., Rafiq S., Ullah S., Bustam M.A., Al-Sehemi A.G., Muhammad N., Chawla M. // Journal of Natural Gas Science and Engineering. 2020. V. 77. № 103203.
- Abd A.A., Naji S.Z., Hashim A.S., Othman M.R. // Journal of Environmental Chemical Engineering. 2020. V. 8. I. 5. № 104142.
- Siegelman R.L., Milner P.J., Kim E.J., Weston S.C., Long J.R. // Energy and Environmental Science. 2019. V. 12. I. 7. P. 2161–2173.
- Калмыков Д.О., Широких С.А., Матвеев Д.Н., Анохина Т.С., Баженов С.Д. // Мембраны и мембранные технологии. 2023. Т. 13. С. 380
- Алентьев А.Ю., Волков А.В., Воротынцев И.В., Максимов А.Л., Ярославцев А.Б. // Мембраны и мембранные технологии. 2023. Т. 11. С. 283
- Mulk W.U., Ali S.A., Shah S.N., Shah M.U.H., Zhang Q.J., Younas M., Fatehizadeh A., Sheikh M., Rezakazemi M. // Journal of CO2 Utilization. 2023. V. 75. № 102555.
- Sun W., Wang M., Zhang Y., Ding W., Huo F., Wei L., He H. // Green Energy and Environment. 2020. V. 5. I. 2. P. 183–194.
- Lian S., Song C., Liu Q., Duan E., Ren H., Kitamura Y. // Journal of Environmental Sciences (China). 2021. V. 99. P. 281–295.
- Liu Y., Dai Z., Zhang Z., Zeng S., Li F., Zhang X., Nie Y., Zhang L., Zhang S., Ji X. // Green Energy and Environment. 2021. V. 6. I. 3. P. 314–328.
- Kazarina O. V., Petukhov A.N., Nagrimanov R.N., Vorotyntsev A. V., Atlaskina M.E., Atlaskin A.A., Kazarin A.S., Golovacheva A.A., Markin Z.A., Markov A.N., Barysheva A. V., Vorotyntsev I. V. // Journal of Molecular Liquids. 2023. V. 373. № 121216.
- Pishnamazi M., Nakhjiri A.T., Taleghani A.S., Marjani A., Heydarinasab A., Shirazian S. // Journal of Molecular Liquids. 2020. V. 314. № 113635.
- Daryayehsalameh B., Nabavi M., Vaferi B. // Environmental Technology and Innovation. 2021. V. 22. № 101484.
- Chen F.-F., Huang K., Fan J.-P., Tao D.-J. // AIChE Journal. 2017. V. 64. I. 2. P. 632–639.
- Sistla Y.S., Khanna A. // Chemical Engineering Journal. 2015. V. 273. I. September. P. 268–276.
- Yim J.H., Ha S.J., Lim J.S. // Journal of Supercritical Fluids. 2018. V. 138. P. 73–81.
- Noorani N., Mehrdad A. // Fluid Phase Equilibria. 2020. V. 517. P. 112591.
- Petukhov A.N., Atlaskin A.A., Kryuchkov S.S., Smorodin K.A., Zarubin D.M., Petukhova A.N., Atlaskina M.E., Nyuchev A. V., Vorotyntsev A. V., Trubyanov M.M., Vorotyntsev I. V., Vorotynstev V.M. // Chemical Engineering Journal. 2021. V. 421. № 127726.
- Atlaskin A.A., Kryuchkov S.S., Smorodin K.A., Markov A.N., Kazarina O. V., Zarubin D.M., Atlaskina M.E., Vorotyntsev A. V., Nyuchev A. V., Petukhov A.N., Vorotyntsev I. V. // Separation and Purification Technology. 2021. V. 257. № 117835.
- Atlaskin A.A., Kryuchkov S.S., Yanbikov N.R., Smorodin K.A., Petukhov A.N., Trubyanov M.M., Vorotyntsev V.M., Vorotyntsev I. V. // Separation and Purification Technology. 2020. V. 239. № 116578.
- Petukhov A.N., Atlaskin A.A., Smorodin K.A., Kryuchkov S.S., Zarubin D.M., Atlaskina M.E., Petukhova A.N., Stepakova A.N., Golovacheva A.A., Markov A.N., Stepanova E.A., Vorotyntsev A. V., Vorotyntsev I. V. // Polymers. 2022. V. 14. I. 11. № 2214.
- Сырцова Д.А., Шалыгин М.Г., Тепляков В.В., Palanivelu K., Зиновьев А.В., Пискарев М.С., Кузнецов А.А. // Мембраны и мембранные технологии. 2021. Т. 11. С. 48.
- Atlaskina, M. E., Kazarina, O. V., Petukhov, A. N., Atlaskin, A. A., Tsivkovsky, N. S., Tiuleanu, P., Malysheva Y.B., Lin, H., Zhong, G., Lukoyanov A.N., Vorotyntsev A. V., Vorotyntsev, I. V. // Journal of Molecular Liquids. 2024. V. 395. № 123635.
- Fu D., Zhang P., Mi C. L. // Energy. 2016. V. 101. P. 288–295.
- Othmer D. F., Thakar M. S. // Ind. amp; Eng. Chem. 1953. V. 45. I. 3. P. 589-593.
- Barzagli F., Lai S., Mani F. // ChemSusChem. 2015. V. 8. – I. 1. P. 184-191.
- Zhang F., Ma J.W, Zhou Z., Wu Y.T, Zhang Z.B. // J. Chem. Eng. 2012. V. 181. P. 222–228.
- Ahmady A., Hashim M.A., Aroua M.K. // Chemical engineering journal. 2011. V. 172. I. 2–3. P. 763–770.
- Cullinane J. T., Rochelle G. T. // Ind. Eng. Chem. Res. 2006. V. 45. I. 8. P. 2531–2545.
- Arachchige U. S. P. R., Aryal N., Eimer D. A., Melaaen, M. C. // Annu. trans. Nord. Rheol. Soc. 2013. V. 21. P. 299.
- Fu D., Zhang P., Wang L. M. //Energy. 2016. V. 113. P. 1–8.
- Sun, C., Wen, S., Zhao, J., Zhao, C., Li, W., Li, S., & Zhang, D. // Energy & Fuels. 2016. V 31. I. 11. P. 12425–12433.
- Friess K., Izák P., Kárászová M., Pasichnyk M., Lanč M., Nikolaeva D., Luis P., Jansen J. // Membranes. 2021. V. 11. I. 2. P. 97.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 












