A Rationalized Approach to Design and Discover Novel Non-steroidal Derivatives through Computational Aid for the Treatment of Prostate Cancer
- Authors: Kumar S.1, Arora P.2, Wadhwa P.3, Kaur P.4
-
Affiliations:
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University
- Department of Biochemistry, School of Bioengineering & Biosciences,, Lovely Professional University
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University,
- Chitkara College of Pharmacy, Chitkara University
- Issue: Vol 20, No 5 (2024)
- Pages: 575-589
- Section: Chemistry
- URL: https://rjeid.com/1573-4099/article/view/644158
- DOI: https://doi.org/10.2174/1573409919666230626113346
- ID: 644158
Cite item
Full Text
Abstract
Background:Prostate cancer is one of the most prevalent cancers in men, leading to the second most common cause of death in men. Despite the availability of multiple treatments, the prevalence of prostate cancer remains high. Steroidal antagonists are associated with poor bioavailability and side effects, while non-steroidal antagonists show serious side effects, such as gynecomastia. Therefore, there is a need for a potential candidate for the treatment of prostate cancer with better bioavailability, good therapeutic effects, and minimal side effects.
Objective:This current research work focused on identifying a novel non-steroidal androgen receptor antagonist through computational tools, such as docking and in silico ADMET analysis.
Methods:Molecules were designed based on a literature survey, followed by molecular docking of all designed compounds and ADMET analysis of the hit compounds.
Results:A library of 600 non-steroidal derivatives (cis and trans) was designed, and molecular docking was performed in the active site of the androgen receptor (PDBID: 1Z95) using Auto- Dock Vina 1.5.6. Docking studies resulted in 15 potent hits, which were then subjected to ADME analysis using SwissADME. ADME analysis predicted three compounds (SK-79, SK-109, and SK-169) with the best ADME profile and better bioavailability. Toxicity studies using Protox-II were performed on the three best compounds (SK-79, SK-109, and SK-169), which predicted ideal toxicity for these lead compounds.
Conclusion:This research work will provide ample opportunities to explore medicinal and computational research areas. It will facilitate the development of novel androgen receptor antagonists in future experimental studies.
About the authors
Shubham Kumar
Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University
Email: info@benthamscience.net
Pinky Arora
Department of Biochemistry, School of Bioengineering & Biosciences,, Lovely Professional University
Email: info@benthamscience.net
Pankaj Wadhwa
Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University,
Author for correspondence.
Email: info@benthamscience.net
Paranjeet Kaur
Chitkara College of Pharmacy, Chitkara University
Author for correspondence.
Email: info@benthamscience.net
References
- Rawla, P. Epidemiology of prostate cancer. World J. Oncol., 2019, 10(2), 63-89. doi: 10.14740/wjon1191 PMID: 31068988
- Available From: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed 15 nov 2022).
- Hammerich, K.H.; Ayala, G.E.; Wheeler, T.M. Anatomy of the prostate gland and surgical pathology of prostate cancer; Cambridge University: Cambridge, 2009, pp. 1-10.
- Yasuoka, S.; Kimura, G.; Toyama, Y.; Moriya, K.; Takahashi, K.; Matsuoka, R.; Shibayama, K.; Obayashi, K.; Inoue, Y.; Shindo, T.; Iigaya, S.; Endo, Y.; Akatsuka, J.; Hayashi, T.; Nakayama, S.; Hamasaki, T.; Inokuchi, K.; Kondo, Y. A case of primary malignant lymphoma of the prostate gland presenting as right lower back pain and dysuria. J. Nippon Med. Sch., 2018, 85(4), 236-240. doi: 10.1272/jnms.JNMS.2018_85-37 PMID: 30259894
- Keyes, M.; Crook, J.; Morton, G.; Vigneault, E.; Usmani, N.; Morris, W.J. Treatment options for localized prostate cancer. Can. Fam. Physician, 2013, 59(12), 1269-1274. PMID: 24336537
- Saman, D.M.; Lemieux, A.M.; Nawal Lutfiyya, M.; Lipsky, M.S. A review of the current epidemiology and treatment options for prostate cancer. Dis. Mon., 2014, 60(4), 150-154. doi: 10.1016/j.disamonth.2014.02.003 PMID: 24726082
- Dunn, M.W.; Kazer, M.W. Prostate cancer overview. Seminars in oncology nursing; Elsevier, 2011, 1, pp. (4)241-250.
- Holmboe, E.S.; Concato, J. Treatment decisions for localized prostate cancer. J. Gen. Intern. Med., 2000, 15(10), 694-701. doi: 10.1046/j.1525-1497.2000.90842.x PMID: 11089712
- Okada, K.; Oishi, K.; Yoshida, O.; Sudo, K.; Kawase, M.; Nakayama, R. Study of the effect of an anti-androgen (Oxendolone) on experimentally induced canine prostatic hyperplasia. Urol. Res., 1988, 16(2), 73-78. doi: 10.1007/BF00261959 PMID: 2453093
- Goldenberg, S.L.; Bruchovsky, N. Use of cyproterone acetate in prostate cancer. Urol. Clin. North Am., 1991, 18(1), 111-122. doi: 10.1016/S0094-0143(21)01398-7 PMID: 1825143
- Beckmann, K.; Garmo, H.; Lindahl, B.; Holmberg, L.; Stattin, P.; Adolfsson, J.; Cruickshank, J.K.; Van Hemelrijck, M. Spironolactone use is associated with lower prostate cancer risk: A population-wide case-control study. Prostate Cancer Prostatic Dis., 2020, 23(3), 527-533. doi: 10.1038/s41391-020-0220-8 PMID: 32123316
- Dhondt, B.; Buelens, S.; Van Besien, J.; Beysens, M.; De Bleser, E.; Ost, P.; Lumen, N. Abiraterone and spironolactone in prostate cancer: A combination to avoid. Acta Clin. Belg., 2019, 74(6), 439-444. doi: 10.1080/17843286.2018.1543827 PMID: 30477405
- Gao, W.; Kim, J.; Dalton, J.T. Pharmacokinetics and pharmacodynamics of nonsteroidal androgen receptor ligands. Pharm. Res., 2006, 23(8), 1641-1658. doi: 10.1007/s11095-006-9024-3 PMID: 16841196
- Maurice-Dror, C.; Le Moigne, R.; Vaishampayan, U.; Montgomery, R.B.; Gordon, M.S.; Hong, N.H.; DiMascio, L.; Perabo, F.; Chi, K.N. A phase 1 study to assess the safety, pharmacokinetics, and anti-tumor activity of the androgen receptor n-terminal domain inhibitor epi-506 in patients with metastatic castration-resistant prostate cancer. Invest. New Drugs, 2022, 40(2), 322-329. doi: 10.1007/s10637-021-01202-6 PMID: 34843005
- Mahler, C.; Verhelst, J.; Denis, L. Clinical pharmacokinetics of the antiandrogens and their efficacy in prostate cancer. Clin. Pharmacokinet., 1998, 34(5), 405-417. doi: 10.2165/00003088-199834050-00005 PMID: 9592622
- Ishioka, T.; Kubo, A.; Koiso, Y.; Nagasawa, K.; Itai, A.; Hashimoto, Y. Novel non-steroidal/non-anilide type androgen antagonists with an isoxazolone moiety. Bioorg. Med. Chem., 2002, 10(5), 1555-1566. doi: 10.1016/S0968-0896(01)00421-7 PMID: 11886817
- Kaur, P.; Khatik, G.L. Advancements in non-steroidal antiandrogens as potential therapeutic agents for the treatment of prostate cancer. Mini Rev. Med. Chem., 2016, 16(7), 531-546. doi: 10.2174/1389557516666160118112448 PMID: 26776222
- Stanisławska, I.J.; Piwowarski, J.P.; Granica, S.; Kiss, A.K. The effects of urolithins on the response of prostate cancer cells to non-steroidal antiandrogen bicalutamide. Phytomedicine, 2018, 46, 176-183. doi: 10.1016/j.phymed.2018.03.054 PMID: 30097116
- Kandil, S.B.; McGuigan, C.; Westwell, A.D. Synthesis and biological evaluation of bicalutamide analogues for the potential treatment of prostate cancer. Molecules, 2020, 26(1), 56. doi: 10.3390/molecules26010056 PMID: 33374450
- Kandil, S.; Lee, K.Y.; Davies, L.; Rizzo, S.A.; Dart, D.A.; Westwell, A.D. Discovery of deshydroxy bicalutamide derivatives as androgen receptor antagonists. Eur. J. Med. Chem., 2019, 167, 49-60. doi: 10.1016/j.ejmech.2019.01.054 PMID: 30743097
- Gomha, S.M.; Abdel-aziz, H.M.; Badrey, M.G.; Abdulla, M.M. efficient synthesis of some new 1, 3, 4‐thiadiazoles and 1, 2, 4‐triazoles linked to pyrazolylcoumarin ring system as potent 5α‐reductase inhibitors. J. Heterocycl. Chem., 2019, 56(4), 1275-1282. doi: 10.1002/jhet.3487
- Mochona, B.; Qi, X.; Euynni, S.; Sikazwi, D.; Mateeva, N.; Soliman, K.F. Design and evaluation of novel oxadiazole derivatives as potential prostate cancer agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2847-2851. doi: 10.1016/j.bmcl.2016.04.058 PMID: 27156770
- Gamal El-Din, M. M.; El-Gamal, M. I.; Abdel-Maksoud, M. S.; Yoo, K. H.; Oh, C.-H. Synthesis and broad-spectrum antiproliferative activity of diarylamides and diarylureas possessing 1,3,4-oxadiazole derivatives. Bioorg. Med. Chem. Let., 2015, 25(8), 1692-1699. doi: 10.1016/j.bmcl.2015.03.001 PMID: 25801936
- Kharlyngdoh, J.B.; Asnake, S.; Pradhan, A.; Olsson, P.E. TBECH, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane, alters androgen receptor regulation in response to mutations associated with prostate cancer. Toxicol. Appl. Pharmacol., 2016, 307, 91-101. doi: 10.1016/j.taap.2016.07.018 PMID: 27473015
- Kumar, S.; Khatik, G.L.; Mittal, A. In silico molecular docking study to search new SGLT2 inhibitor based on dioxabicyclo 3.2. 1 octane scaffold. Curr. Computeraided Drug Des., 2020, 16(2), 145-154. doi: 10.2174/1573409914666181019165821 PMID: 30345926
- Liu, H.; An, X.; Li, S.; Wang, Y.; Li, J.; Liu, H. Interaction mechanism exploration of R-bicalutamide/S-1 with WT/W741L AR using molecular dynamics simulations. Mol. Biosyst., 2015, 11(12), 3347-3354. doi: 10.1039/C5MB00499C PMID: 26442831
- Bohl, C.E.; Wu, Z.; Miller, D.D.; Bell, C.E.; Dalton, J.T. Crystal structure of the T877A human androgen receptor ligand-binding domain complexed to cyproterone acetate provides insight for ligand-induced conformational changes and structure-based drug design. J. Biol. Chem., 2007, 282(18), 13648-13655. doi: 10.1074/jbc.M611711200 PMID: 17311914
- Dorice, M.H.C.; Khurana, N.; Sharma, N.; Khatik, G.L. Identification of possible molecular targets of potential anti-parkinson drugs by predicting their binding affinities using molecular docking. Asian J. Pharm. Clin. Res., 2018, 11(14), 28-32. doi: 10.22159/ajpcr.2018.v11s2.28512
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. PMID: 19499576
- Pharmacophore and ligand-based design with Biovia Discovery Studio. Dassault systemes, 2014. Available from: https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/BIOVIA/PDF/Pharmacophore-Ligand-based-Design-with-BIOVIA-Discover y-Studio.pdf
- Yuan, S.; Chan, H.C.S.; Hu, Z. Using PYMOL as a platform for computational drug design. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2017, 7(2), e1298. doi: 10.1002/wcms.1298
- Jejurikar, B.L.; Rohane, S.H. Drug designing in discovery studio. Asian J. Res. Chem, 2021, 14(2), 135-138.
- Mishra, S.; Dahima, R. In vitro ADME studies of TUG-891, a GPR-120 inhibitor using SWISS ADME predictor. J. Drug Deliv. Ther., 2019, 9(2-s), 366-369.
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263. doi: 10.1093/nar/gky318 PMID: 29718510
- (a) Banerjee, P.; Dehnbostel, F.O.; Preissner, R. Prediction is a balancing act: Importance of sampling methods to balance sensitivity and specificity of predictive models based on imbalanced chemical data sets. Front Chem., 2018, 6, 362. doi: 10.3389/fchem.2018.00362 PMID: 30271769; (b) Pires, D. E.; Blundell, T. L.; Ascher, D. B. PKCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem., 2015, 58(9), 4066-4072. doi: 10.1021/acs.jmedchem.5b00104 PMID: 25860834
Supplementary files
