Synthesis, Molecular Modeling and Biological Evaluation of Novel Trifluoromethyl Benzamides as Promising CETP Inhibitors


Cite item

Full Text

Abstract

Background:Hyperlipidemia is considered a major risk factor for the progress of atherosclerosis.

Objective:Cholesteryl ester transfer protein (CETP) facilitates the relocation of cholesterol esters from HDL to LDL. CETP inhibition produces higher HDL and lower LDL levels.

Methods:Synthesis of nine benzylamino benzamides 8a-8f and 9a-9c was performed.

Results:In vitro biological study displayed potential CETP inhibitory activity, where compound 9c had the best activity with an IC50 of 1.03 µM. Induced-fit docking demonstrated that 8a-8f and 9a-9c accommodated the CETP active site and hydrophobic interaction predominated ligand/ CETP complex formation.

Conclusion::Pharmacophore mapping showed that this scaffold endorsed CETP inhibitors features and consequently elaborated the high CETP binding affinity.

About the authors

Reema Abu Khalaf

Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan

Author for correspondence.
Email: info@benthamscience.net

Amani Abusaad

Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan

Email: info@benthamscience.net

Bara'a Al-Nawaiseh

Department of Pharmacy, Al-Zaytoonah University of Jordan

Email: info@benthamscience.net

Dima Sabbah

Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan

Email: info@benthamscience.net

Ghadeer Albadawi

Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan

Email: info@benthamscience.net

References

  1. Beheshti, S.; Madsen, C.M.; Varbo, A.; Benn, M.; Nordestgaard, B.G. Relationship of familial hypercholesterolemia and high LDL cholesterol to ischemic stroke: The copenhagen general population study. Circulation, 2018, 138(6), 578-589. doi: 10.1161/CIRCULATIONAHA.118.033470 PMID: 29593013
  2. Blauw, L.L.; Noordam, R.; Soidinsalo, S.; Blauw, C.A.; Li-Gao, R.; de Mutsert, R.; Berbée, J.F.P.; Wang, Y.; van Heemst, D.; Rosendaal, F.R.; Jukema, J.W.; Mook-Kanamori, D.O.; Würtz, P.; Willems van Dijk, K.; Rensen, P.C.N. Mendelian randomization reveals unexpected effects of CETP on the lipoprotein profile. Eur. J. Hum. Genet., 2019, 27(3), 422-431. doi: 10.1038/s41431-018-0301-5 PMID: 30420679
  3. Kobayashi, J. Which is the best predictor for the development of atherosclerosis among circulating lipoprotein lipase, Hepatic lipase, and endothelial lipase? J. Atheroscler. Thromb., 2019, 26(9), 758-759. doi: 10.5551/jat.ED108 PMID: 30814386
  4. Jarab, A.S.; Alefishat, E.A.; Al-Qerem, W.; Mukattash, T.L.; Al-Hajjeh, D.M. Lipid control and its associated factors among patients with dyslipidaemia in Jordan. Int. J. Clin. Pract., 2021, 75(5), e14000. doi: 10.1111/ijcp.14000 PMID: 33400313
  5. Gou, L.; Jin, T.; Chen, S.; Li, N.; Hao, D.; Zhang, S.; Zhang, L. Bio-macromolecular dynamic structures and functions, illustrated with DNA, antibody, and lipoprotein. Chin. Phys. B, 2018, 27(2), 028708. doi: 10.1088/1674-1056/27/2/028708
  6. Maugeais, C.; Perez, A.; von der Mark, E.; Magg, C.; Pflieger, P.; Niesor, E.J. Evidence for a role of CETP in HDL remodeling and cholesterol efflux: Role of cysteine 13 of CETP. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2013, 1831(11), 1644-1650. doi: 10.1016/j.bbalip.2013.07.007 PMID: 23872476
  7. Dergunov, A.D.; Shabrova, E.V.; Dobretsov, G.E. Cholesteryl ester diffusion, location and self-association constraints determine CETP activity with discoidal HDL: Excimer probe study. Arch. Biochem. Biophys., 2014, 564, 211-218. doi: 10.1016/j.abb.2014.09.019 PMID: 25449063
  8. Suhy, A.; Hartmann, K.; Newman, L.; Papp, A.; Toneff, T.; Hook, V.; Sadee, W. Genetic variants affecting alternative splicing of human cholesteryl ester transfer protein. Biochem. Biophys. Res. Commun., 2014, 443(4), 1270-1274. doi: 10.1016/j.bbrc.2013.12.127 PMID: 24393849
  9. Liu, S.; Mistry, A.; Reynolds, J.M.; Lloyd, D.B.; Griffor, M.C.; Perry, D.A.; Ruggeri, R.B.; Clark, R.W.; Qiu, X. Crystal structures of cholesteryl ester transfer protein in complex with inhibitors. J. Biol. Chem., 2012, 287(44), 37321-37329. doi: 10.1074/jbc.M112.380063 PMID: 22961980
  10. Abu Khalaf, R.; Abu Sheikha, G.; Bustanji, Y.; Taha, M.O. Discovery of new cholesteryl ester transfer protein inhibitors via ligand-based pharmacophore modeling and QSAR analysis followed by synthetic exploration. Eur. J. Med. Chem., 2010, 45(4), 1598-1617. doi: 10.1016/j.ejmech.2009.12.070 PMID: 20116902
  11. Sheikha, G.A.; Abu Khalaf, R.; Melhem, A.; Albadawi, G. Design, synthesis, and biological evaluation of benzylamino-methanone based cholesteryl ester transfer protein inhibitors. Molecules, 2010, 15(8), 5721-5733. doi: 10.3390/molecules15085721 PMID: 20724961
  12. Abu Khalaf, R.; Abu Sheikha, G.; Al-Sha’er, M.; Albadawi, G.; Taha, M. Design, synthesis, and biological evaluation of sulfonic acid ester and benzenesulfonamide derivatives as potential CETP inhibitors. Med. Chem. Res., 2012, 21(11), 3669-3680. doi: 10.1007/s00044-011-9917-5
  13. Abu Khalaf, R.; Abd El-Aziz, H.; Sabbah, D.; Albadawi, G.; Abu Sheikha, G. CETP inhibitory activity of chlorobenzyl benzamides: QPLD docking, pharmacophore mapping and synthesis. Lett. Drug Des. Discov., 2017, 14(12), 1391-1400. doi: 10.2174/1570180814666170412122304
  14. Abu Khalaf, R.; Al-Rawashdeh, S.; Sabbah, D.; Abu Sheikha, G. Molecular docking and pharmacophore modeling studies of fluorinated benzamides as potential CETP inhibitors. Med. Chem., 2017, 13(3), 239-253. doi: 10.2174/1573406412666161104121042 PMID: 27823564
  15. Abu Khalaf, R.; Sabbah, D.; Al-Shalabi, E.; Bishtawi, S.; Albadawi, G.; Abu Sheikha, G. synthesis, biological evaluation, and molecular modeling study of substituted benzyl benzamides as CETP inhibitors. Arch. Pharm., 2017, 350(12), 1700204. doi: 10.1002/ardp.201700204
  16. Abu Khalaf, R.; NasrAllah, A.; Jarrar, W.; Sabbah, D. Cholesteryl ester transfer protein inhibitory oxoacetamido-benzamide derivatives: Glide docking, pharmacophore mapping, and synthesis. Braz. J. Pharm. Sci., 2022, 58, 1-13.
  17. Khalaf, R.A.; Awad, M.; Al-Qirim, T.; Sabbah, D. Synthesis and molecular modeling of novel 3,5-Bis(trifluoromethyl)benzylamino benzamides as potential CETP inhibitors. Med. Chem., 2022, 18(4), 417-426. doi: 10.2174/1573406417666210830125431 PMID: 34463228
  18. Khalaf, R.A.; Asa’ad, M.; Habash, M. Thiomethylphenyl benzenesulfonamides as potential cholesteryl ester transfer protein inhibitors: Synthesis, molecular modeling and biological evaluation. Curr. Org. Chem., 2022, 26(8), 807-815. doi: 10.2174/1385272826666220601150913
  19. Khalaf, R.A.; Shaiah, H.A.; Sabbah, D. Trifluoromethylated aryl sulfonamides as novel CETP inhibitors: Synthesis, induced fit docking, pharmacophore mapping and subsequent in vitro validation. Med. Chem., 2023, 19(4), 393-404. doi: 10.2174/1573406418666220908164014
  20. Schrödinger. Protein Preparation Wizard, Maestro, Macromodel, QPLD-dock, and Pymol; Schrödinger, LLC: Portland, OR, U.S.A., 2021, p. 97204.
  21. Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749. doi: 10.1021/jm0306430 PMID: 15027865
  22. Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196. doi: 10.1021/jm051256o PMID: 17034125
  23. The Molecular Operating Environment, Chemical Computing Group. Inc Montreal; Quebec, Canada, 2016.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers