Exploring the Mechanisms of Self-made Kuiyu Pingchang Recipe for the Treatment of Ulcerative Colitis and Irritable Bowel Syndrome using a Network Pharmacology-based Approach and Molecular Docking


Cite item

Full Text

Abstract

Background:Ulcerative colitis (UC) and irritable bowel syndrome (IBS) are common intestinal diseases. According to the clinical experience and curative effect, the authors formulated Kuiyu Pingchang Decoction (KYPCD) comprised of Paeoniae radix alba, Aurantii Fructus, Herba euphorbiae humifusae, Lasiosphaera seu Calvatia, Angelicae sinensis radix, Panax ginseng C.A. Mey., Platycodon grandiforus and Allium azureum Ledeb.

Objective:The aim of the present study was to explore the mechanisms of KYPCD in the treatment of UC and IBS following the Traditional Chinese Medicine (TCM) theory of "Treating different diseases with the same treatment".

Methods:The chemical ingredients and targets of KYPCD were obtained using the Traditional Chinese Medicine Systems Pharmacology database and analysis platform (TCMSP). The targets of UC and IBS were extracted using the DisGeNET, GeneCards, DrugBANK, OMIM and TTD databases. The "TCM-component-target" network and the "TCM-shared target-disease" network were imaged using Cytoscape software. The protein-protein interaction (PPI) network was built using the STRING database. The DAVID platform was used to analyze the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Using Autodock Tools software, the main active components of KYPCD were molecularly docked with their targets and visualized using PyMOL.

Results:A total of 46 active ingredients of KYPCD corresponding to 243 potential targets, 1,565 targets of UC and 1,062 targets of IBS, and 70 targets among active ingredients and two diseases were screened. Core targets in the PPI network included IL6, TNF, AKT1, IL1B, TP53, EGFR and VEGFA. GO and KEGG enrichment analysis demonstrated 563 biological processes, 48 cellular components, 82 molecular functions and 144 signaling pathways. KEGG enrichment results revealed that the regulated pathways were mainly related to the PI3K-AKT, MAPK, HIF-1 and IL-17 pathways. The results of molecular docking analysis indicated that the core active ingredients of KYPCD had optimal binding activity to their corresponding targets.

Conclusion:KYPCD may use IL6, TNF, AKT1, IL1B, TP53, EGFR and VEGFA as the key targets to achieve the treatment of UC and IBS through the PI3K-AKT, MAPK, HIF-1 and IL-17 pathways.

About the authors

Yong Wen

Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University

Email: info@benthamscience.net

Xiaoxiang Wang

Gastroenterology Department,, Chengdu First People's Hospital

Email: info@benthamscience.net

Ke Si

Gastroenterology Department,, Chengdu First People's Hospital

Email: info@benthamscience.net

Ling Xu

Anorectal Department, Luzhou Hospital of Traditional Chinese Medicine

Email: info@benthamscience.net

Shuoyang Huang

Gastrointestinal Surgery Department, Chengdu Second People's Hospital

Email: info@benthamscience.net

Yu Zhan

Gastroenterology Department,, Chengdu First People's Hospital,

Author for correspondence.
Email: info@benthamscience.net

References

  1. Segal, J.P.; LeBlanc, J.F.; Hart, A.L. Ulcerative colitis: An update. Clin. Med., 2021, 21(2), 135-139. doi: 10.7861/clinmed.2021-0080 PMID: 33762374
  2. Ng, S.C.; Tang, W.; Ching, J.Y.; Wong, M.; Chow, C.M.; Hui, A.J.; Wong, T.C.; Leung, V.K.; Tsang, S.W.; Yu, H.H.; Li, M.F.; Ng, K.K.; Kamm, M.A.; Studd, C.; Bell, S.; Leong, R.; de Silva, H.J.; Kasturiratne, A.; Mufeena, M.N.F.; Ling, K.L.; Ooi, C.J.; Tan, P.S.; Ong, D.; Goh, K.L.; Hilmi, I.; Pisespongsa, P.; Manatsathit, S.; Rerknimitr, R.; Aniwan, S.; Wang, Y.F.; Ouyang, Q.; Zeng, Z.; Zhu, Z.; Chen, M.H.; Hu, P.J.; Wu, K.; Wang, X.; Simadibrata, M.; Abdullah, M.; Wu, J.C.; Sung, J.J.Y.; Chan, F.K.L. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific Crohn’s and colitis epidemiology study. Gastroenterology, 2013, 145(1), 158-165.e2. doi: 10.1053/j.gastro.2013.04.007 PMID: 23583432
  3. Hirten, R.P.; Sands, B.E. New therapeutics for ulcerative colitis. Annu. Rev. Med., 2021, 72(1), 199-213. doi: 10.1146/annurev-med-052919-120048 PMID: 33502898
  4. Ford, A.C.; Sperber, A.D.; Corsetti, M.; Camilleri, M. Irritable bowel syndrome. Lancet, 2020, 396(10263), 1675-1688. doi: 10.1016/S0140-6736(20)31548-8 PMID: 33049223
  5. Liu, J.; Hou, X. A review of the irritable bowel syndrome investigation on epidemiology, pathogenesis and pathophysiology in China. J. Gastroenterol. Hepatol., 2011, 26(Suppl. 3), 88-93. doi: 10.1111/j.1440-1746.2011.06641.x PMID: 21443718
  6. Spiller, R.; Major, G. IBS and IBD-separate entities or on a spectrum? Nat. Rev. Gastroenterol. Hepatol., 2016, 13(10), 613-621. doi: 10.1038/nrgastro.2016.141 PMID: 27667579
  7. Dignass, A.; Eliakim, R.; Magro, F.; Maaser, C.; Chowers, Y.; Geboes, K.; Mantzaris, G.; Reinisch, W.; Colombel, J.F.; Vermeire, S.; Travis, S.; Lindsay, J.O.; Van Assche, G. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis Part 1: Definitions and diagnosis. J. Crohn’s Colitis, 2012, 6(10), 965-990. doi: 10.1016/j.crohns.2012.09.003 PMID: 23040452
  8. Zhai, X.; Wang, X.; Wang, L.; Xiu, L.; Wang, W.; Pang, X. Treating different diseases with the same method-a traditional chinese medicine concept analyzed for its biological basis. Front. Pharmacol., 2020, 11, 946. doi: 10.3389/fphar.2020.00946 PMID: 32670064
  9. Zhang, R.; Yu, S.; Bai, H.; Ning, K. TCM-Mesh: The database and analytical system for network pharmacology analysis for TCM preparations. Sci. Rep., 2017, 7(1), 2821. doi: 10.1038/s41598-017-03039-7 PMID: 28588237
  10. Zhou, Z.; Chen, B.; Chen, S.; Lin, M.; Chen, Y.; Jin, S.; Chen, W.; Zhang, Y. Applications of network pharmacology in traditional chinese medicine research. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-7. doi: 10.1155/2020/1646905 PMID: 32148533
  11. Zheng, C.; Pei, T.; Huang, C.; Chen, X.; Bai, Y.; Xue, J.; Wu, Z.; Mu, J.; Li, Y.; Wang, Y. A novel systems pharmacology platform to dissect action mechanisms of traditional Chinese medicines for bovine viral diarrhea disease. Eur. J. Pharm. Sci., 2016, 94, 33-45. doi: 10.1016/j.ejps.2016.05.018 PMID: 27208435
  12. Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
  13. Geng, H.; Chen, X.; Wang, C. Systematic elucidation of the pharmacological mechanisms of Rhynchophylline for treating epilepsy via network pharmacology. BMC Complementary Medicine and Therapies, 2021, 21(1), 9. doi: 10.1186/s12906-020-03178-x PMID: 33407404
  14. Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The GeneCards Suite: From gene data mining to disease genome sequence analyses. In: Curr. Protoc. Bioinformatics, 2016, 54(1), 1-30. doi: 10.1002/cpbi.5
  15. Amberger, JS; Hamosh, A Searching online mendelian inheritance in man (OMIM): A knowledgebase of human genes and genetic phenotypes. Curr. Protoc. Bioinformatics., 2017, 58, 1.2.1-1.2.12. doi: 10.1002/cpbi.27
  16. Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082. doi: 10.1093/nar/gkx1037 PMID: 29126136
  17. Piñero, J.; Bravo, À.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong, L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res., 2017, 45(D1), D833-D839. doi: 10.1093/nar/gkw943 PMID: 27924018
  18. Yang, H.; Qin, C.; Li, Y.H.; Tao, L.; Zhou, J.; Yu, C.Y.; Xu, F.; Chen, Z.; Zhu, F.; Chen, Y.Z. Therapeutic target database update 2016: Enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res., 2016, 44(D1), D1069-D1074. doi: 10.1093/nar/gkv1230 PMID: 26578601
  19. Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; Sirota-Madi, A.; Olender, T.; Golan, Y.; Stelzer, G.; Harel, A.; Lancet, D. GeneCards Version 3: The human gene integrator. Database (Oxford), 2010, 2010, baq020. doi: 10.1093/database/baq020 PMID: 20689021
  20. Hamosh, A.; Amberger, J.S.; Bocchini, C.; Scott, A.F.; Rasmussen, S.A. Online mendelian inheritance in man (OMIM®): Victor MCKUSICK 's magnum opus. Am. J. Med. Genet. A., 2021, 185(11), 3259-3265. doi: 10.1002/ajmg.a.62407 PMID: 34169650
  21. Piñero, J.; Saüch, J.; Sanz, F.; Furlong, L.I. The DisGeNET cytoscape app: Exploring and visualizing disease genomics data. Comput. Struct. Biotechnol. J., 2021, 19, 2960-2967. doi: 10.1016/j.csbj.2021.05.015 PMID: 34136095
  22. Zhou, Y.; Zhang, Y.; Lian, X.; Li, F.; Wang, C.; Zhu, F.; Qiu, Y.; Chen, Y. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res., 2022, 50(D1), D1398-D1407. doi: 10.1093/nar/gkab953 PMID: 34718717
  23. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504. doi: 10.1101/gr.1239303 PMID: 14597658
  24. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613. doi: 10.1093/nar/gky1131 PMID: 30476243
  25. Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368. doi: 10.1093/nar/gkw937 PMID: 27924014
  26. Legeay, M.; Doncheva, N.T.; Morris, J.H.; Jensen, L.J. Visualize omics data on networks with Omics Visualizer, a Cytoscape App. F1000 Res., 2020, 9, 157. doi: 10.12688/f1000research.22280.1 PMID: 32399202
  27. Dedhia, M.; Kohetuk, K.; Crusio, W.E.; Delprato, A. Introducing high school students to the Gene Ontology classification system. F1000 Res., 2019, 8, 241. doi: 10.12688/f1000research.18061.3 PMID: 31431825
  28. Burenbatu, W.Y.; Wang, Y.; Wang, S.; Narisu; Wuritunashun; Gong, C.; Hashengaowa; Eerdunduleng; Sarula; Guihua; Bai, H. iTRAQ‐based quantitative proteomics analysis of immune thrombocytopenia patients before and after Qishunbaolier treatment. Rapid Commun. Mass Spectrom., 2021, 35(3), e8993. doi: 10.1002/rcm.8993 PMID: 33140498
  29. Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57. doi: 10.1038/nprot.2008.211 PMID: 19131956
  30. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), 455-461. doi: 10.1002/jcc.21334 PMID: 19499576
  31. Yuan, S.; Chan, H.C.S.; Filipek, S.; Vogel, H. PyMOL and inkscape bridge the data and the data visualization. Structure, 2016, 24(12), 2041-2042. doi: 10.1016/j.str.2016.11.012 PMID: 27926832
  32. Viegas, D.J.; Edwards, T.G.; Bloom, D.C.; Abreu, P.A. Virtual screening identified compounds that bind to cyclin dependent kinase 2 and prevent herpes simplex virus type 1 replication and reactivation in neurons. Antiviral Res., 2019, 172, 104621. doi: 10.1016/j.antiviral.2019.104621 PMID: 31634495
  33. Shen, Z.F.; Wu, H.H.; Zhu, L.; Zhou, Q.; Shen, H. Traditional Chinese medicine for ulcerative colitis: Systematic reviews based on PRIO-harms. Zhongguo Zhongyao Zazhi, 2020, 45(3), 674-682. doi: 10.19540/j.cnki.cjcmm.20190624.501 PMID: 32237528
  34. Yao, C.J.; Li, Y.L.; Pu, M.J.; Luo, L.H.; Feng, P.M. Traditional Chinese medicine for irritable bowel syndrome. Medicine, 2020, 99(48), e23394. doi: 10.1097/MD.0000000000023394 PMID: 33235116
  35. Xu, W.; Zhang, Z.; Lu, Y.; Li, M.; Li, J.; Tao, W. Traditional Chinese medicine Tongxie Yaofang treating irritable bowel syndrome with diarrhea and type 2 diabetes mellitus in rats with liver-depression and spleen-deficiency: A preliminary study. Front. Nutr., 2022, 9, 968930. doi: 10.3389/fnut.2022.968930 PMID: 36438735
  36. Yu, H.; Sun, H.; Wang, K.; Liang, X.; Ding, Y.; Chang, X.; Guo, J.; Peng, D.; Gui, S. Study of the therapeutic effects of Painong powder on ulcerative colitis and the role of Platycodonis Radix in the prescription based on pharmacodynamic, pharmacokinetic, and tissue distribution analyses. J. Ethnopharmacol., 2022, 285, 114872. doi: 10.1016/j.jep.2021.114872 PMID: 34838618
  37. Zhang, Y.; Liu, R.; Wang, J.; Yan, S.; Guo, Z. To assess the effective and safety of compound glutamine entersoluble capsules in irritable bowel syndrome. Medicine, 2021, 100(10), e25098. doi: 10.1097/MD.0000000000025098 PMID: 33725903
  38. Shi, L.; Wang, J.; Yang, Q.; Shi, L.; Liu, L.; Feng, X.; Chai, S.; Gou, J.; Zang, F.; He, S. Effect of Yang-activating and stasis-eliminating decoction from Traditional Chinese Medicine on intestinal mucosal permeability in rats with ulcerative colitis induced by dextran sulfate sodium. J. Tradit. Chin. Med., 2017, 37(4), 452-460.
  39. Zhou, J.X.; Wink, M. Reversal of multidrug resistance in human colon cancer and human leukemia cells by three plant extracts and their major secondary metabolites. Medicines, 2018, 5(4), 123. doi: 10.3390/medicines5040123 PMID: 30428619
  40. Feng, S.H.; Zhao, B.; Zhan, X.; Motanyane, R.; Wang, S.M.; Li, A. Danggui Buxue Decoction in the treatment of metastatic colon cancer: Network pharmacology analysis and experimental validation. Drug Des. Devel. Ther., 2021, 15, 705-720. doi: 10.2147/DDDT.S293046 PMID: 33658761
  41. Chen, S.T.; Lee, T.Y.; Tsai, T.H.; Lin, Y.C.; Lin, C.P.; Shieh, H.R.; Hsu, M.L.; Chi, C.W.; Lee, M.C.; Chang, H.H.; Chen, Y.J. The traditional chinese medicine dangguibuxue tang sensitizes colorectal cancer cells to chemoradiotherapy. Molecules, 2016, 21(12), 1677. doi: 10.3390/molecules21121677 PMID: 27929437
  42. Wargovich, M.J. Colon cancer chemoprevention with ginseng and other botanicals. J. Korean Med. Sci., 2001, 16Suppl(Suppl.), S81-S86. doi: 10.3346/jkms.2001.16.S.S81 PMID: 11748382
  43. Chen, H.; Li, G.; Liu, Y.; Lang, Y.; Yang, W.; Zhang, W.; Liang, X. Jiegeng decoction potentiates the anticancer efficacy of paclitaxel in vivo and in vitro. Front. Pharmacol., 2022, 13, 827520. doi: 10.3389/fphar.2022.827520 PMID: 35281908
  44. Liu, Y.T.; Tzang, B.S.; Yow, J.; Chiang, Y.H.; Huang, C.Y.; Hsu, T.C. Traditional Chinese medicine formula T33 inhibits the proliferation of human colorectal cancer cells by inducing autophagy. Environ. Toxicol., 2022, 37(5), 1007-1017. doi: 10.1002/tox.23460 PMID: 34995006
  45. Luo, X.; Zheng, Y.; Bao, Y.; Wang, S.; Li, T.; Leng, J.; Meng, X. Potential effects of fructus aurantii ethanol extracts against colitis-associated carcinogenesis through coordination of Notch/NF-κB/IL-1 signaling pathways. Biomed. Pharmacother., 2022, 152, 113278. doi: 10.1016/j.biopha.2022.113278 PMID: 35709655
  46. Zhao, B.; Kang, Q.; Peng, Y.; Xie, Y.; Chen, C.; Li, B.; Wu, Q. Effect of Angelica sinensis root extract on cancer prevention in different stages of an AOM/DSS mouse model. Int. J. Mol. Sci., 2017, 18(8), 1750. doi: 10.3390/ijms18081750 PMID: 28800083
  47. Park, J.S.; Kim, S.H.; Han, K.M.; Kim, Y.S.; Kwon, E.; Paek, S.H.; Seo, Y.K.; Yun, J.W.; Kang, B.C. Efficacy and safety evaluation of black ginseng (Panax ginseng C.A. Mey.) extract (CJ EnerG): Broad spectrum cytotoxic activity in human cancer cell lines and 28-day repeated oral toxicity study in Sprague-Dawley rats. BMC Complement. Med. Ther., 2022, 22(1), 44. doi: 10.1186/s12906-022-03522-3 PMID: 35172794
  48. Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 2014, 6(10), a016295. doi: 10.1101/cshperspect.a016295 PMID: 25190079
  49. Tang, Q.Z.; Liu, Y.L. Expression of HBD-2, NF-κB, IL-6 and IL-23 in the colonic mucosa of ulcerative colitis and irritable bowel syndrome. China Modern Doctor., 2013, 51(22), 42-44.
  50. Morsy, M.A.; Gupta, S.; Nair, A.B.; Venugopala, K.N.; Greish, K.; El-Daly, M. Protective effect of Spirulina platensis extract against dextran-sulfate-sodium-induced ulcerative colitis in rats. Nutrients, 2019, 11(10), 2309. doi: 10.3390/nu11102309 PMID: 31569451
  51. Gupta, R.A.; Motiwala, M.N.; Mahajan, U.N.; Sabre, S.G. Protective effect of Sesbania grandiflora on acetic acid induced ulcerative colitis in mice by inhibition of TNF-α and IL-6. J. Ethnopharmacol., 2018, 219, 222-232. doi: 10.1016/j.jep.2018.02.043 PMID: 29530609
  52. Wang, C.; Li, W.; Wang, H.; Ma, Y.; Zhao, X.; Zhang, X.; Yang, H.; Qian, J.; Li, J. Saccharomyces boulardii alleviates ulcerative colitis carcinogenesis in mice by reducing TNF-α and IL-6 levels and functions and by rebalancing intestinal microbiota. BMC Microbiol., 2019, 19(1), 246. doi: 10.1186/s12866-019-1610-8 PMID: 31694526
  53. Zhang, Y.; Zhang, Y.; Zhao, Y.; Wu, W.; Meng, W.; Zhou, Y.; Qiu, Y.; Li, C. Protection against ulcerative colitis and colorectal cancer by evodiamine via anti inflammatory effects. Mol. Med. Rep., 2022, 25(5), 188. doi: 10.3892/mmr.2022.12704 PMID: 35362542
  54. Hu, J.; Huang, H.; Che, Y.; Ding, C.; Zhang, L.; Wang, Y.; Hao, H.; Shen, H.; Cao, L. Qingchang Huashi Formula attenuates DSS-induced colitis in mice by restoring gut microbiota-metabolism homeostasis and goblet cell function. J. Ethnopharmacol., 2021, 266, 113394. doi: 10.1016/j.jep.2020.113394 PMID: 32941971
  55. Huang, C.; Dong, J.; Jin, X.; Ma, H.; Zhang, D.; Wang, F.; Cheng, L.; Feng, Y.; Xiong, X.; Jiang, J.; Hu, L.; Lei, M.; Wu, B.; Zhang, G. Intestinal anti-inflammatory effects of fuzi-ganjiang herb pair against DSS-induced ulcerative colitis in mice. J. Ethnopharmacol., 2020, 261, 112951. doi: 10.1016/j.jep.2020.112951 PMID: 32574670
  56. Li, R.; Chen, Y.; Shi, M.; Xu, X.; Zhao, Y.; Wu, X.; Zhang, Y. Gegen Qinlian decoction alleviates experimental colitis via suppressing TLR4/NF-κB signaling and enhancing antioxidant effect. Phytomedicine, 2016, 23(10), 1012-1020. doi: 10.1016/j.phymed.2016.06.010 PMID: 27444346
  57. Migliorini, P.; Italiani, P.; Pratesi, F.; Puxeddu, I.; Boraschi, D. The IL-1 family cytokines and receptors in autoimmune diseases. Autoimmun. Rev., 2020, 19(9), 102617. doi: 10.1016/j.autrev.2020.102617 PMID: 32663626
  58. Claesson-Welsh, L.; Welsh, M. VEGFA and tumour angiogenesis. J. Intern. Med., 2013, 273(2), 114-127. doi: 10.1111/joim.12019 PMID: 23216836
  59. Zhu, F.; Zheng, J.; Xu, F.; Xi, Y.; Chen, J.; Xu, X. Resveratrol alleviates dextran sulfate sodium-induced acute ulcerative colitis in mice by mediating PI3K/Akt/VEGFA pathway. Front. Pharmacol., 2021, 12, 693982. doi: 10.3389/fphar.2021.693982 PMID: 34497510
  60. Talukdar, S.; Emdad, L.; Das, S.K.; Fisher, P.B. EGFR: An essential receptor tyrosine kinase-regulator of cancer stem cells. Adv. Cancer Res., 2020, 147, 161-188. doi: 10.1016/bs.acr.2020.04.003 PMID: 32593400
  61. Liu, X.; Fan, Y.; Du, L.; Mei, Z.; Fu, Y. In silico and in vivo studies on the mechanisms of chinese medicine formula (Gegen Qinlian Decoction) in the treatment of ulcerative colitis. Front. Pharmacol., 2021, 12, 665102. doi: 10.3389/fphar.2021.665102 PMID: 34177580
  62. Synoradzki, K.J.; Bartnik, E.; Czarnecka, A.M.; Fiedorowicz, M.; Firlej, W.; Brodziak, A.; Stasinska, A.; Rutkowski, P.; Grieb, P. TP53 in biology and treatment of osteosarcoma. Cancers, 2021, 13(17), 4284. doi: 10.3390/cancers13174284 PMID: 34503094
  63. Arai, N.; Kudo, T.; Tokita, K.; Kyodo, R.; Sato, M.; Miyata, E.; Hosoi, K.; Ikuse, T.; Jimbo, K.; Ohtsuka, Y.; Shimizu, T. Expression of oncogenic molecules in pediatric ulcerative colitis. Digestion, 2022, 103(2), 150-158. doi: 10.1159/000519559 PMID: 34718239
  64. Liu, J.; Liu, J.; Tong, X.; Peng, W.; Wei, S.; Sun, T.; Wang, Y.; Zhang, B.; Li, W. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of huai hua san against ulcerative colitis. Drug Des. Devel. Ther., 2021, 15, 3255-3276. doi: 10.2147/DDDT.S319786 PMID: 34349502
  65. Wang, M.; Li, J.; Yin, Y.; Liu, L.; Wang, Y.; Qu, Y.; Hong, Y.; Ji, S.; Zhang, T.; Wang, N.; Liu, J.; Cao, X.; Zao, X.; Zhang, S. Network pharmacology and in vivo experiment-based strategy to investigate mechanisms of JingFangFuZiLiZhong formula for ulcerative colitis. Ann. Med., 2022, 54(1), 3218-3232. doi: 10.1080/07853890.2022.2095665 PMID: 36382627
  66. Yang, Y.; Hua, Y.; Chen, W.; Zheng, H.; Wu, H.; Qin, S.; Huang, S. Therapeutic targets and pharmacological mechanisms of Coptidis Rhizoma against ulcerative colitis: Findings of system pharmacology and bioinformatics analysis. Front. Pharmacol., 2022, 13, 1037856. doi: 10.3389/fphar.2022.1037856 PMID: 36532769
  67. Sarker, R.S.J.; Steiger, K. A critical role for Akt1 signaling in acute pancreatitis progression †. J. Pathol., 2020, 251(1), 1-3. doi: 10.1002/path.5391 PMID: 32003469
  68. Zhu, Y.; Shi, Y.; Ke, X.; Xuan, L.; Ma, Z. RNF8 induces autophagy and reduces inflammation by promoting AKT degradation via ubiquitination in ulcerative colitis mice. J. Biochem., 2020, 168(5), 445-453. doi: 10.1093/jb/mvaa068 PMID: 32597970
  69. Cui, X.F.; Zhou, W.M.; Yang, Y.; Zhou, J.; Li, X.L.; Lin, L.; Zhang, H.J. Epidermal growth factor upregulates serotonin transporter and its association with visceral hypersensitivity in irritable bowel syndrome. World J. Gastroenterol., 2014, 20(37), 13521-13529. doi: 10.3748/wjg.v20.i37.13521 PMID: 25309082
  70. Compare, D.; Rocco, A.; Coccoli, P.; Angrisani, D.; Sgamato, C.; Iovine, B.; Salvatore, U.; Nardone, G. Lactobacillus casei DG and its postbiotic reduce the inflammatory mucosal response: An ex-vivo organ culture model of post-infectious irritable bowel syndrome. BMC Gastroenterol., 2017, 17(1), 53. doi: 10.1186/s12876-017-0605-x PMID: 28410580
  71. Seyedmirzaee, S.; Hayatbakhsh, M.M.; Ahmadi, B.; Baniasadi, N.; Bagheri Rafsanjani, A.M.; Nikpoor, A.R.; Mohammadi, M. Serum immune biomarkers in irritable bowel syndrome. Clin. Res. Hepatol. Gastroenterol., 2016, 40(5), 631-637. doi: 10.1016/j.clinre.2015.12.013 PMID: 26850360
  72. Kuo, B.; Bhasin, M.; Jacquart, J.; Scult, M.A.; Slipp, L.; Riklin, E.I.K.; Lepoutre, V.; Comosa, N.; Norton, B.A.; Dassatti, A.; Rosenblum, J.; Thurler, A.H.; Surjanhata, B.C.; Hasheminejad, N.N.; Kagan, L.; Slawsby, E.; Rao, S.R.; Macklin, E.A.; Fricchione, G.L.; Benson, H.; Libermann, T.A.; Korzenik, J.; Denninger, J.W. Genomic and clinical effects associated with a relaxation response mind-body intervention in patients with irritable bowel syndrome and inflammatory bowel disease. PLoS One, 2015, 10(4), e0123861. doi: 10.1371/journal.pone.0123861 PMID: 25927528
  73. Sun, M.H.; Sun, L.Q.; Guo, G.L.; Zhang, S. Tumour necrosis factor-α gene -308 G > A and -238 G > A polymorphisms are associated with susceptibility to irritable bowel syndrome and drug efficacy in children. J. Clin. Pharm. Ther., 2019, 44(2), 180-187. doi: 10.1111/jcpt.12775 PMID: 30578560
  74. Zeng, L.; Li, K.; Wei, H.; Hu, J.; Jiao, L.; Yu, S.; Xiong, Y. A novel EphA2 inhibitor exerts beneficial effects in PI-IBS in vivo and in vitro models via Nrf2 and NF-κB signaling pathways. Front. Pharmacol., 2018, 9, 272. doi: 10.3389/fphar.2018.00272 PMID: 29662452
  75. Wang, F.; Su, M.; Zheng, Y.; Wang, X.; Kang, N.; Chen, T.; Zhu, E.; Bian, Z.; Tang, X. Herbal prescription Chang’an II repairs intestinal mucosal barrier in rats with post-inflammation irritable bowel syndrome. Acta Pharmacol. Sin., 2015, 36(6), 708-715. doi: 10.1038/aps.2014.170 PMID: 25960135
  76. Wang, Y.; Cui, W.; Yang, C.; Wei, H.; Liu, Q.; Xiong, L.; Li, H.; Lin, Y. Comparison of Geqingpi and Sihuaqingpi based on ultra‐high‐performance liquid chromatography‐tandem mass spectrometry combined with multivariate statistics, network pharmacology analysis, and molecular docking. J. Sep. Sci., 2022, 45(22), 4079-4098. doi: 10.1002/jssc.202200564 PMID: 36200604
  77. Sun, Y.; Liu, W.Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H.F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res., 2015, 35(6), 600-604. doi: 10.3109/10799893.2015.1030412 PMID: 26096166
  78. Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis (Review). Exp. Ther. Med., 2020, 19(3), 1997-2007. doi: 10.3892/etm.2020.8454 PMID: 32104259
  79. Kim, E.K.; Choi, E.J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta Mol. Basis Dis., 2010, 1802(4), 396-405. doi: 10.1016/j.bbadis.2009.12.009 PMID: 20079433
  80. Yong, H.Y.; Koh, M.S.; Moon, A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin. Investig. Drugs, 2009, 18(12), 1893-1905. doi: 10.1517/13543780903321490 PMID: 19852565
  81. Zheng, Y.; Han, Z.; Zhao, H.; Luo, Y. MAPK: A key player in the development and progression of stroke. CNS Neurol. Disord. Drug Targets, 2020, 19(4), 248-256. doi: 10.2174/1871527319666200613223018 PMID: 32533818
  82. Bora, G.; Yaba, A. The role of mitogen‐activated protein kinase signaling pathway in endometriosis. J. Obstet. Gynaecol. Res., 2021, 47(5), 1610-1623. doi: 10.1111/jog.14710 PMID: 33590617
  83. Yu, L.; Wei, J.; Liu, P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin. Cancer Biol., 2022, 85, 69-94. doi: 10.1016/j.semcancer.2021.06.019 PMID: 34175443
  84. Xu, F.; Na, L.; Li, Y.; Chen, L. RETRACTED ARTICLE: Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci., 2020, 10(1), 54. doi: 10.1186/s13578-020-00416-0 PMID: 32266056
  85. Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci., 2018, 14(11), 1483-1496. doi: 10.7150/ijbs.27173 PMID: 30263000
  86. Basile, M.S.; Cavalli, E.; McCubrey, J.; Hernández-Bello, J.; Muñoz-Valle, J.F.; Fagone, P.; Nicoletti, F. The PI3K/Akt/mTOR pathway: A potential pharmacological target in COVID-19. Drug Discov. Today, 2022, 27(3), 848-856. doi: 10.1016/j.drudis.2021.11.002 PMID: 34763066
  87. Wang, M.; Zhang, J.; Gong, N. Role of the PI3K/Akt signaling pathway in liver ischemia reperfusion injury: A narrative review. Ann. Palliat. Med., 2022, 11(2), 806-817. doi: 10.21037/apm-21-3286 PMID: 35016518
  88. Wang, J.; Hu, K.; Cai, X.; Yang, B.; He, Q.; Wang, J.; Weng, Q. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm. Sin. B, 2022, 12(1), 18-32. doi: 10.1016/j.apsb.2021.07.023 PMID: 35127370
  89. Qin, W.; Cao, L.; Massey, I.Y. Role of PI3K/Akt signaling pathway in cardiac fibrosis. Mol. Cell. Biochem., 2021, 476(11), 4045-4059. doi: 10.1007/s11010-021-04219-w PMID: 34244974
  90. Sun, K.; Luo, J.; Guo, J.; Yao, X.; Jing, X.; Guo, F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A narrative review. Osteoarthr. Cartil., 2020, 28(4), 400-409. doi: 10.1016/j.joca.2020.02.027 PMID: 32081707
  91. Zhang, M.; Zhang, X. The role of PI3K/AKT/FOXO signaling in psoriasis. Arch. Dermatol. Res., 2019, 311(2), 83-91. doi: 10.1007/s00403-018-1879-8 PMID: 30483877
  92. Pezzuto, A.; Carico, E. Role of HIF-1 in Cancer progression: Novel insights. A review. Curr. Mol. Med., 2019, 18(6), 343-351. doi: 10.2174/1566524018666181109121849 PMID: 30411685
  93. Korbecki, J.; Simińska, D.; Gąssowska-Dobrowolska, M.; Listos, J.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. Chronic and cycling hypoxia: Drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: A review of the molecular mechanisms. Int. J. Mol. Sci., 2021, 22(19), 10701. doi: 10.3390/ijms221910701 PMID: 34639040
  94. Semenza, G.L. Hypoxia-inducible factor 1 and cardiovascular disease. Annu. Rev. Physiol., 2014, 76(1), 39-56. doi: 10.1146/annurev-physiol-021113-170322 PMID: 23988176
  95. Ghoreschi, K.; Balato, A.; Enerbäck, C.; Sabat, R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet, 2021, 397(10275), 754-766. doi: 10.1016/S0140-6736(21)00184-7 PMID: 33515492
  96. Fletcher, J.M.; Moran, B.; Petrasca, A.; Smith, C.M. IL-17 in inflammatory skin diseases psoriasis and hidradenitis suppurativa. Clin. Exp. Immunol., 2020, 201(2), 121-134. doi: 10.1111/cei.13449 PMID: 32379344
  97. Bridgewood, C.; Newton, D.; Bragazzi, N.; Wittmann, M.; McGonagle, D. Unexpected connections of the IL-23/IL-17 and IL-4/IL-13 cytokine axes in inflammatory arthritis and enthesitis. Semin. Immunol., 2021, 58, 101520. doi: 10.1016/j.smim.2021.101520 PMID: 34799224
  98. Dong, L.; Du, H.; Zhang, M.; Xu, H.; Pu, X.; Chen, Q.; Luo, R.; Hu, Y.; Wang, Y.; Tu, H.; Zhang, J.; Gao, F. Anti‐inflammatory effect of Rhein on ulcerative colitis via inhibiting PI3K/Akt/MTOR signaling pathway and regulating gut microbiota. Phytother. Res., 2022, 36(5), 2081-2094. doi: 10.1002/ptr.7429 PMID: 35229916
  99. Ni, L.; Lu, Q.; Tang, M.; Tao, L.; Zhao, H.; Zhang, C.; Yu, Y.; Wu, X.; Liu, H.; Cui, R. Periplaneta americana extract ameliorates dextran sulfate sodium-induced ulcerative colitis via immunoregulatory and PI3K/AKT/NF-κB signaling pathways. Inflammopharmacology, 2022, 30(3), 907-918. doi: 10.1007/s10787-022-00955-7 PMID: 35303235
  100. Zaghloul, M.S.; Elshal, M.; Abdelmageed, M.E. Preventive empagliflozin activity on acute acetic acid-induced ulcerative colitis in rats via modulation of SIRT-1/PI3K/AKT pathway and improving colon barrier. Environ. Toxicol. Pharmacol., 2022, 91, 103833. doi: 10.1016/j.etap.2022.103833 PMID: 35218923
  101. Lin, X.; Guo, X.; Qu, L.; Tu, J.; Li, S.; Cao, G.; Liu, Y. Preventive effect of Atractylodis Rhizoma extract on DSS-induced acute ulcerative colitis through the regulation of the MAPK/NF-κB signals in vivo and in vitro. J. Ethnopharmacol., 2022, 292, 115211. doi: 10.1016/j.jep.2022.115211 PMID: 35331877
  102. Ma, H.; Zhou, M.; Duan, W.; Chen, L.; Wang, L.; Liu, P. Anemoside B4 prevents acute ulcerative colitis through inhibiting of TLR4/NF-κB/MAPK signaling pathway. Int. Immunopharmacol., 2020, 87, 106794. doi: 10.1016/j.intimp.2020.106794 PMID: 32688280
  103. Deng, X.; Wang, Y.; Tian, L.; Yang, M.; He, S.; Liu, Y.; Khan, A.; Li, Y.; Cao, J.; Cheng, G. Anneslea fragrans Wall. ameliorates ulcerative colitis via inhibiting NF-κB and MAPK activation and mediating intestinal barrier integrity. J. Ethnopharmacol., 2021, 278, 114304. doi: 10.1016/j.jep.2021.114304 PMID: 34116185
  104. Zhuang, H.; Lv, Q.; Zhong, C.; Cui, Y.; He, L.; Zhang, C.; Yu, J. Tiliroside ameliorates ulcerative colitis by restoring the M1/M2 macrophage balance via the HIF-1α/glycolysis pathway. Front. Immunol., 2021, 12, 649463. doi: 10.3389/fimmu.2021.649463 PMID: 33868286
  105. Brown, E.; Rowan, C.; Strowitzki, M.J.; Fagundes, R.R.; Faber, K.N.; Güntsch, A.; Halligan, D.N.; Kugler, J.; Jones, F.; Lee, C.T.; Doherty, G.; Taylor, C.T. Mucosal inflammation downregulates PHD1 expression promoting a barrier‐protective HIF‐1α response in ulcerative colitis patients. FASEB J., 2020, 34(3), 3732-3742. doi: 10.1096/fj.201902103R PMID: 31944416
  106. Kakiuchi, N.; Yoshida, K.; Uchino, M.; Kihara, T.; Akaki, K.; Inoue, Y.; Kawada, K.; Nagayama, S.; Yokoyama, A.; Yamamoto, S.; Matsuura, M.; Horimatsu, T.; Hirano, T.; Goto, N.; Takeuchi, Y.; Ochi, Y.; Shiozawa, Y.; Kogure, Y.; Watatani, Y.; Fujii, Y.; Kim, S.K.; Kon, A.; Kataoka, K.; Yoshizato, T.; Nakagawa, M.M.; Yoda, A.; Nanya, Y.; Makishima, H.; Shiraishi, Y.; Chiba, K.; Tanaka, H.; Sanada, M.; Sugihara, E.; Sato, T.; Maruyama, T.; Miyoshi, H.; Taketo, M.M.; Oishi, J.; Inagaki, R.; Ueda, Y.; Okamoto, S.; Okajima, H.; Sakai, Y.; Sakurai, T.; Haga, H.; Hirota, S.; Ikeuchi, H.; Nakase, H.; Marusawa, H.; Chiba, T.; Takeuchi, O.; Miyano, S.; Seno, H.; Ogawa, S. Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature, 2020, 577(7789), 260-265. doi: 10.1038/s41586-019-1856-1 PMID: 31853061
  107. Chen, Y.; Chen, Y.; Cao, P.; Su, W.; Zhan, N.; Dong, W. Fusobacterium nucleatum facilitates ulcerative colitis through activating IL‐17F signaling to NF‐κB via the upregulation of CARD3 expression. J. Pathol., 2020, 250(2), 170-182. doi: 10.1002/path.5358 PMID: 31610014
  108. Li, B.; Luo, X.F.; Liu, S.W.; Zhao, N.; Li, H.N.; Zhang, W.; Chen, Y.Y.; Bao, A.; Wang, J.G.; Wang, Q.S. Abdominal massage reduces visceral hypersensitivity via regulating GDNF and PI3K/AKT signal pathway in a rat model of irritable bowel syndrome. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-10. doi: 10.1155/2020/3912931 PMID: 32565856
  109. Fei, L.; Wang, Y. microRNA‐495 reduces visceral sensitivity in mice with diarrhea‐predominant irritable bowel syndrome through suppression of the PI3K/AKT signaling pathway via PKIB. IUBMB Life, 2020, 72(7), 1468-1480. doi: 10.1002/iub.2270 PMID: 32187820
  110. Mahurkar-Joshi, S.; Rankin, C.R.; Videlock, E.J.; Soroosh, A.; Verma, A.; Khandadash, A.; Iliopoulos, D.; Pothoulakis, C.; Mayer, E.A.; Chang, L. The colonic mucosal MicroRNAs, MicroRNA-219a-5p, and MicroRNA-338-3p are downregulated in irritable bowel syndrome and are associated with barrier function and MAPK signaling. Gastroenterology, 2021, 160(7), 2409-2422.e19. doi: 10.1053/j.gastro.2021.02.040 PMID: 33617890
  111. Luo, H.; Vong, C.T.; Tan, D.; Zhang, J.; Yu, H.; Yang, L.; Zhang, C.; Luo, C.; Zhong, Z.; Wang, Y. Panax notoginseng saponins modulate the inflammatory response and improve IBD-like symptoms via TLR/NF-κB and MAPK signaling pathways. Am. J. Chin. Med., 2021, 49(4), 925-939. doi: 10.1142/S0192415X21500440 PMID: 33829964
  112. Yang, Y.; Qian, C.; Wu, R.; Wang, R.; Ou, J.; Liu, S. Exploring the mechanism of the Fructus Mume and Rhizoma Coptidis herb pair intervention in Ulcerative Colitis from the perspective of inflammation and immunity based on systemic pharmacology. BMC Complement. Med. Ther., 2023, 23(1), 11. doi: 10.1186/s12906-022-03823-7 PMID: 36647064
  113. Shou, X.; Wang, Y.; Zhang, X.; Zhang, Y.; Yang, Y.; Duan, C.; Yang, Y.; Jia, Q.; Yuan, G.; Shi, J.; Shi, S.; Cui, H.; Hu, Y. Network pharmacology and molecular docking analysis on molecular mechanism of Qingzi Zhitong decoction in the treatment of ulcerative colitis. Front. Pharmacol., 2022, 13, 727608. doi: 10.3389/fphar.2022.727608 PMID: 35237152
  114. Tang, R.; Peng, X.; Zhou, X.; Zheng, Z.; Yin, J.; Liu, H. Mechanism of the treatment of irritable bowel syndrome with sini powder and Tong Xie Yao Fang decoction based on network pharmacology. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-13. doi: 10.1155/2022/3598856 PMID: 35399629

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers