Structure-based Virtual Screening and Molecular Dynamic Simulation Approach for the Identification of Terpenoids as Potential DPP-4 Inhibitors


Cite item

Full Text

Abstract

Background:Diabetes mellitus is a metabolic disorder where insulin secretion is compromised, leading to hyperglycemia. DPP-4 is a viable and safer target for type 2 diabetes mellitus. Computational tools have proven to be an asset in the process of drug discovery.

Objective:In the present study, tools like structure-based virtual screening, MM/GBSA, and pharmacokinetic parameters were used to identify natural terpenoids as potential DPP-4 inhibitors for treating diabetes mellitus.

Methods:Structure-based virtual screening, a cumulative mode of elimination technique, was adopted, identifying the top five potent hit compounds depending on the docking score and nonbonding interactions.

Results:According to the docking data, the most important contributors to complex stability are hydrogen bonding, hydrophobic interactions, and Pi-Pi stacking interactions. The dock scores ranged from -6.492 to -5.484 kcal/mol, indicating robust ligand-protein interactions. The pharmacokinetic characteristics of top-scoring hits (CNP0309455, CNP0196061, CNP0122006, CNP0 221869, CNP0297378) were also computed in this study, confirming their safe administration in the human body. Also, based on the synthetic accessibility score, all top-scored hits are easily synthesizable. Compound CNP0309455 was quite stable during molecular dynamic simulation studies.

Conclusion:Virtual database screening yielded new leads for developing DPP-4 inhibitors. As a result, the findings of this study can be used to design and develop natural terpenoids as DPP-4 inhibitors for the medication of diabetes mellitus.

About the authors

Ajay Pulikkottil

Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab

Email: info@benthamscience.net

Amit Kumar

Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab

Email: info@benthamscience.net

Kailash Jangid

Department of Chemistry, Central University of Punjab

Email: info@benthamscience.net

Vinod Kumar

Department of Chemistry, Central University of Punjab

Email: info@benthamscience.net

Vikas Jaitak

Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab

Author for correspondence.
Email: info@benthamscience.net

References

  1. Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2009, 32(Suppl. 1), S62-S67. doi: 10.2337/dc09-S062 PMID: 19118289
  2. Salehi, B.; Ata, A. Sharopov; Ramírez-Alarcón; Ruiz-Ortega; Abdulmajid Ayatollahi; Tsouh Fokou; Kobarfard; Amiruddin Zakaria; Iriti; Taheri; Martorell; Sureda; Setzer; Durazzo; Lucarini; Santini; Capasso; Ostrander; Atta-ur-Rahman; Choudhary, M.I.; Cho, W.C.; Sharifi-Rad, J.; Anil Kumar, V. Antidiabetic potential of medicinal plants and their active components. Biomolecules, 2019, 9(10), 551. doi: 10.3390/biom9100551 PMID: 31575072
  3. Turdu, G.; Gao, H.; Jiang, Y.; Kabas, M. Plant dipeptidyl peptidase-IV inhibitors as antidiabetic agents: A brief review. Future Med. Chem., 2018, 10(10), 1229-1239. doi: 10.4155/fmc-2017-0235 PMID: 29749760
  4. Genuth, S.M.; Palmer, J.P.; Nathan, D.M. Classification and diagnosis of diabetes. In: Diabetes in America, 3rd ed.; National Institute of Diabetes and Digestive and Kidney Diseases (US): Bethesda (MD); , 2021.
  5. Shah, B.M.; Modi, P.; Trivedi, P. Pharmacophore- based virtual screening, 3D- QSAR, molecular docking approach for identification of potential dipeptidyl peptidase IV inhibitors. J. Biomol. Struct. Dyn., 2021, 39(6), 2021-2043. doi: 10.1080/07391102.2020.1750485 PMID: 32242496
  6. Kato, E. Bioactive compounds in plant materials for the prevention of diabetesand obesity. Biosci. Biotechnol. Biochem., 2019, 83(6), 975-985. doi: 10.1080/09168451.2019.1580560 PMID: 30773997
  7. Laha, S.; Paul, S. Gymnema sylvestre (Gurmar): A potent herb with anti-diabetic and antioxidant potential. Pharmacogn. J., 2019, 11(2), 201-206. doi: 10.5530/pj.2019.11.33
  8. Williams, R.; Karuranga, S.; Malanda, B.; Saeedi, P.; Basit, A.; Besançon, S.; Bommer, C.; Esteghamati, A.; Ogurtsova, K.; Zhang, P.; Colagiuri, S. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract., 2020, 162, 108072. doi: 10.1016/j.diabres.2020.108072 PMID: 32061820
  9. Lin, S.R.; Chang, C.H.; Tsai, M.J.; Cheng, H.; Chen, J.C.; Leong, M.K.; Weng, C.F. The perceptions of natural compounds against dipeptidyl peptidase 4 in diabetes: from in silico to in vivo. Ther. Adv. Chronic Dis., 2019, 10 doi: 10.1177/2040622319875305 PMID: 31555430
  10. Pathak, R.; Bridgeman, M.B. Dipeptidyl peptidase-4 (DPP-4) inhibitors in the management of diabetes. P&T, 2010, 35(9), 509-513. PMID: 20975810
  11. Patel, B.D.; Bhadada, S.V.; Ghate, M.D. Design, synthesis and anti-diabetic activity of triazolotriazine derivatives as dipeptidyl peptidase-4 (DPP-4) inhibitors. Bioorg. Chem., 2017, 72, 345-358. doi: 10.1016/j.bioorg.2017.03.004 PMID: 28302310
  12. Chen, S. The pharmacological effects of triterpenoids from Ganoderma lucidum and the regulation of its biosynthesis. Adv. Biol. Chem., 2020, 10(2), 55-65. doi: 10.4236/abc.2020.102005
  13. Paul, R.K.; Nath, V.; Kumar, V. Structure based virtual screening of natural compounds and molecular dynamics simulation: Butirosin as Dipeptidyl peptidase (DPP-IV) inhibitor. Biocatal. Agric. Biotechnol., 2021, 35, 102042. doi: 10.1016/j.bcab.2021.102042
  14. Yong-Lin, W.; Yan, Z.; Yan, T.; Yuan-Fang, K.; Yu-Long, HU.; Jie-Ming, LI.; Shao-Pei, W.; Chun-Hong, D.; Xiao-Fei, LI. Exploring of hypoglycemic mechanism of a Chinese Medicine Xiao-Ke-An based on target dipeptidyl peptidase-4: A molecular docking and molecular dynamics study., 2021.
  15. Tahrani, A.A.; Bailey, C.J.; Del Prato, S.; Barnett, A.H. Management of type 2 diabetes: New and future developments in treatment. Lancet, 2011, 378(9786), 182-197. doi: 10.1016/S0140-6736(11)60207-9 PMID: 21705062
  16. Upadhyay, S.; Dixit, M. Role of polyphenols and other phytochemicals on molecular signaling. Oxid. Med. Cell. Longev., 2015, 2015. doi: 10.1155/2015/504253
  17. Pàmies, L.G. Identification of natural products as antidiabetic agents using computer-aided drug design methods; Universitat Rovira i Virgili, 2011.
  18. Berger, J.P. SinhaRoy, R.; Pocai, A.; Kelly, T.M.; Scapin, G.; Gao, Y.D.; Pryor, K.A.D.; Wu, J.K.; Eiermann, G.J.; Xu, S.S.; Zhang, X.; Tatosian, D.A.; Weber, A.E.; Thornberry, N.A.; Carr, R.D. A comparative study of the binding properties, dipeptidyl peptidase-4 (DPP-4) inhibitory activity and glucose-lowering efficacy of the DPP-4 inhibitors alogliptin, linagliptin, saxagliptin, sitagliptin and vildagliptin in mice. Endocrinol. Diabetes Metab., 2018, 1(1), e00002. doi: 10.1002/edm2.2 PMID: 30815539
  19. Schnapp, G.; Klein, T.; Hoevels, Y.; Bakker, R.A.; Nar, H. Comparative analysis of binding kinetics and thermodynamics of dipeptidyl peptidase-4 inhibitors and their relationship to structure. J. Med. Chem., 2016, 59(16), 7466-7477. doi: 10.1021/acs.jmedchem.6b00475 PMID: 27438064
  20. Yoshida, T.; Akahoshi, F.; Sakashita, H.; Sonda, S.; Takeuchi, M.; Tanaka, Y.; Nabeno, M.; Kishida, H.; Miyaguchi, I.; Hayashi, Y. Fused bicyclic heteroarylpiperazine-substituted l-prolylthiazolidines as highly potent DPP-4 inhibitors lacking the electrophilic nitrile group. Bioorg. Med. Chem., 2012, 20(16), 5033-5041. doi: 10.1016/j.bmc.2012.06.033 PMID: 22824762
  21. Kaur, K.K.; Allahbadia, G.; Singh, M. Monoterpenes-a class of terpenoid group of natural products as a source of natural antidiabetic agents in the future—A review. CPQ Nutrition, 2019, 3(4), 1-21.
  22. Perveen, S.; Al-Taweel, A. Terpenes and terpenoids; BoD–Books on Demand, 2018. doi: 10.5772/intechopen.71175
  23. Putta, S.; Sastry Yarla, N.; Kumar Kilari, E.; Surekha, C.; Aliev, G.; Basavaraju Divakara, M.; Sridhar Santosh, M.; Ramu, R.; Zameer, F.; Prasad, M.N. N.; Chintala, R.; Vijaya Rao, P.; Shiralgi, Y.; Lakkappa Dhananjaya, B.N Therapeutic potentials of triterpenes in diabetes and its associated complications. Curr. Top. Med. Chem., 2016, 16(23), 2532-2542. doi: 10.2174/1568026616666160414123343 PMID: 27086788
  24. Tsiaka, T.; Kritsi, E.; Tsiantas, K.; Christodoulou, P.; Sinanoglou, V.J.; Zoumpoulakis, P. Design and development of novel nutraceuticals: Current trends and methodologies. Nutraceuticals, 2022, 2(2), 71-90. doi: 10.3390/nutraceuticals2020006
  25. Sorokina, M.; Merseburger, P.; Rajan, K.; Yirik, M.A.; Steinbeck, C. COCONUT online: Collection of open natural products database. J. Cheminform., 2021, 13(1), 2. doi: 10.1186/s13321-020-00478-9 PMID: 33423696
  26. Capecchi, A.; Reymond, J.L. Classifying natural products from plants, fungi or bacteria using the COCONUT database and machine learning. J. Cheminform., 2021, 13(1), 82. doi: 10.1186/s13321-021-00559-3 PMID: 34663470
  27. Alshehri, B.; Vijayakumar, R.; Senthilkumar, S.; Ismail, A.; Abdelhadi, A.; Choudhary, R.K.; Albenasy, K.S.; Banawas, S.; Alaidarous, M.A.; Manikandan, P. Molecular target prediction and docking of anti-thrombosis compounds and its activation on tissue-plasminogen activator to treat stroke. J. King Saud Univ. Sci., 2022, 34(1), 101732. doi: 10.1016/j.jksus.2021.101732
  28. Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; Von Bargen, C.D.; Abel, R.; Friesner, R.A.; Harder, E.D. OPLS4: Improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput., 2021, 17(7), 4291-4300. doi: 10.1021/acs.jctc.1c00302 PMID: 34096718
  29. Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234. doi: 10.1007/s10822-013-9644-8 PMID: 23579614
  30. Teli, D.M.; Shah, M.B.; Chhabria, M.T. In silico screening of natural compounds as potential inhibitors of SARS-CoV-2 main protease and spike RBD: Targets for COVID-19. Front. Mol. Biosci., 2021, 7, 599079. doi: 10.3389/fmolb.2020.599079 PMID: 33542917
  31. Rohane, S.H.; Makwana, A.G. In silico study for the prediction of multiple pharmacological activities of novel hydrazone derivatives. Indian J. Chem., 2019, 58, 387-402.
  32. Greenwood, J.R.; Calkins, D.; Sullivan, A.P.; Shelley, J.C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des., 2010, 24(6-7), 591-604. doi: 10.1007/s10822-010-9349-1 PMID: 20354892
  33. Shelley, J.C.; Cholleti, A.; Frye, L.L.; Greenwood, J.R.; Timlin, M.R.; Uchimaya, M. Epik: A software program for pK a prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des., 2007, 21(12), 681-691. doi: 10.1007/s10822-007-9133-z PMID: 17899391
  34. Marondedze, E.F.; Govender, K.K.; Govender, P.P. Ligand-based pharmacophore modelling and virtual screening for the identification of amyloid-beta diagnostic molecules. J. Mol. Graph. Model., 2020, 101, 107711. doi: 10.1016/j.jmgm.2020.107711 PMID: 32898834
  35. Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759. doi: 10.1021/jm030644s PMID: 15027866
  36. Duan, J.; Dixon, S.L.; Lowrie, J.F.; Sherman, W. Analysis and comparison of 2D fingerprints: Insights into database screening performance using eight fingerprint methods. J. Mol. Graph. Model., 2010, 29(2), 157-170. doi: 10.1016/j.jmgm.2010.05.008 PMID: 20579912
  37. Sastry, M.; Lowrie, J.F.; Dixon, S.L.; Sherman, W. Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments. J. Chem. Inf. Model., 2010, 50(5), 771-784. doi: 10.1021/ci100062n PMID: 20450209
  38. Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of absolute solvation free energies using molecular dynamics free Energy Perturbation and the OPLS force field. J. Chem. Theory Comput., 2010, 6(5), 1509-1519. doi: 10.1021/ct900587b PMID: 26615687
  39. Li, J.; Abel, R.; Zhu, K.; Cao, Y.; Zhao, S.; Friesner, R.A. The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins, 2011, 79(10), 2794-2812. doi: 10.1002/prot.23106 PMID: 21905107
  40. Croitoru, A.; Park, S.J.; Kumar, A.; Lee, J. Im, W.; MacKerell, A.D., Jr; Aleksandrov, A. Additive CHARMM36 force field for nonstandard amino acids. J. Chem. Theory Comput., 2021, 17(6), 3554-3570. doi: 10.1021/acs.jctc.1c00254 PMID: 34009984
  41. Evans, D.J.; Holian, B.L. The nose–hoover thermostat. J. Chem. Phys., 1985, 83(8), 4069-4074. doi: 10.1063/1.449071
  42. Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690. doi: 10.1063/1.448118
  43. Lin, X.; Xu, Y.; Pan, X.; Xu, J.; Ding, Y.; Sun, X.; Song, X.; Ren, Y.; Shan, P.F. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci. Rep., 2020, 10(1), 14790. doi: 10.1038/s41598-020-71908-9 PMID: 32901098
  44. Chen, D.; Oezguen, N.; Urvil, P.; Ferguson, C.; Dann, S.M.; Savidge, T.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci. Adv., 2016, 2(3), e1501240. doi: 10.1126/sciadv.1501240 PMID: 27051863
  45. Kufareva, I.; Abagyan, R. Methods of Protein Structure Comparison. In: Homology Modeling: Methods and Protocols; Orry, A.J.W.; Abagyan, R., Eds.; Humana Press: Totowa, NJ, 2012; pp. 231-257.
  46. Prashant, S.; Murthy, D.K. In silico evaluation of 2, 4-diaminoquinazoline derivatives as possible anticancer agents. Curr. Trends Biotechnol. Pharm., 2022, 16(1), 14-22.
  47. Mendie, L.E.; Hemalatha, S. Molecular docking of phytochemicals targeting gfrs as therapeutic sites for cancer: An in silico study. Appl. Biochem. Biotechnol., 2022, 194(1), 215-231. doi: 10.1007/s12010-021-03791-7 PMID: 34988844
  48. Baber, J.; Feher, M. Predicting synthetic accessibility: Application in drug discovery and development. Mini Rev. Med. Chem., 2004, 4(6), 681-692. doi: 10.2174/1389557043403765 PMID: 15279602
  49. Karmakar, S.; Basak, H.K.; Paswan, U.; Pramanik, A.K.; Chatterjee, A. Designing of next-generation dihydropyridine-based calcium channel blockers: An in silico study. J. Appl. Pharm. Sci., 2022, 12(04), 127-135. doi: 10.7324/JAPS.2022.120414
  50. Warr, W.A. A short review of chemical reaction database systems, computer-aided synthesis design, reaction prediction and synthetic feasibility. Mol. Inform., 2014, 33(6-7), 469-476. doi: 10.1002/minf.201400052 PMID: 27485985
  51. Geetha, R.V.; Roy, A. Essential oil repellents-a short review. Int. J. Drug Dev. Res., 2014, 6, 20-27.
  52. Peng, J.; Franzblau, S.G.; Zhang, F.; Hamann, M.T. Novel sesquiterpenes and a lactone from the Jamaican sponge Myrmekioderma styx. Tetrahedron Lett., 2002, 43(52), 9699-9702. doi: 10.1016/S0040-4039(02)02369-9
  53. Serra, S. Enantioselective synthesis of the bisabolane sesquiterpene (+)-1-hydroxy-1,3,5-bisabolatrien-10-one and revision of its absolute configuration. Nat. Prod. Commun., 2012, 7(4), 1934578X1200700. doi: 10.1177/1934578X1200700409 PMID: 22574440
  54. Vernin, G.; Lageot, C.; Gaydou, E.M.; Parkanyi, C. Analysis of the essential oil ofLippia graveolens HBK from El Salvador. Flavour Fragrance J., 2001, 16(3), 219-226. doi: 10.1002/ffj.984
  55. Zdero, C.; Bohlmann, F.; Niemeyer, H.M. Sesquiterpene lactones from Perityle emoryi. Phytochemistry, 1990, 29(3), 891-894. doi: 10.1016/0031-9422(90)80040-N
  56. Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and medicinal uses of terpenes. J. Med. Plant Res., 2019, 333-359.
  57. Brahmachari, G. Andrographolide: A Molecule of Antidiabetic Promise. In: Discovery and Development of Antidiabetic Agents from Natural Products; Brahmachari, G., Ed.; Elsevier, 2017; pp. 1-27. doi: 10.1016/B978-0-12-809450-1.00001-6
  58. Salim, B.; Hocine, A.; Said, G. First study on anti-diabetic effect of rosemary and salvia by using molecular docking. J. Pharm. Res., 2017, 1-12.
  59. Sette-de-Souza, P. H.; Souza, B. A. A.; Costa, M. J. F.; da Costa Araújo, F. A. Kuguacin: biological activities of triterpenoid from Momordica charantia-a scoping review. Adv. Trad. Med.,, 2021, 1-8.
  60. Singla, R.; Singla, N.; Jaitak, V. Stevia rebaudiana targeting α-amylase: An in-vitro and in-silico mechanistic study. Nat. Prod. Res., 2019, 33(4), 548-552. doi: 10.1080/14786419.2017.1395433 PMID: 29072099
  61. Matsabisa, M.G.; Chukwuma, C.I.; Chaudhary, S.K.; Kumar, C.S.; Baleni, R.; Javu, M.; Oyedemi, S.O. Dicoma anomala (Sond.) abates glycation and DPP-IV activity and modulates glucose utilization in Chang liver cells and 3T3-L1 adipocytes. S. Afr. J. Bot., 2020, 128, 182-188. doi: 10.1016/j.sajb.2019.09.013
  62. Kato, E.; Kawakami, K.; Kawabata, J. Macrocarpal C isolated from Eucalyptus globulus inhibits dipeptidyl peptidase 4 in an aggregated form. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 106-109. doi: 10.1080/14756366.2017.1396458 PMID: 29148282

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers