Investigation on the Anticancer Activity of [6]-Gingerol of Zingiber officinale and its Structural Analogs against Skin Cancer


Cite item

Full Text

Abstract

Introduction:Skin cancer is the most common type of cancer caused by the uncontrolled growth of abnormal cells in the epidermis and the outermost skin layer.

Aim:This study aimed to study the anti-skin cancer potential of [6]-Gingerol and 21 related structural analogs using in vitro and in silico studies.

Method:The ethanolic crude extract of the selected plant was subjected to phytochemical and GC-MS analysis to confirm the presence of the [6]-gingerol. The anticancer activity of the extract was evaluated by MTT (3-[4, 5-dimethylthiazol-2-y]-2, 5-diphenyl tetrazolium bromide) assay using the A431 human skin adenocarcinoma cell line.

Result:The GC-MS analysis confirmed the presence of [6]-Gingerol compound, and its promising cytotoxicity IC50 was found at 81.46 ug/ml in the MTT assay. Furthermore, the in silico studies used [6]-Gingerol and 21 structural analogs collected from the PubChem database to investigate the anticancer potential and drug-likeliness properties. Skin cancer protein, DDX3X, was selected as a target that regulates all stages of RNA metabolism. It was docked with 22 compounds, including [6]-Gingerol and 21 structural analogs. The potent lead molecule was selected based on the lowest binding energy value.

Conclusion:Thus, the [6]-Gingerol and its structure analogs could be used as lead molecules against skin cancer and future drug development process.

About the authors

Monisha Adikesavan

Department of Biotechnology, Prathyusha Engineering College

Email: info@benthamscience.net

Praveena Athiraja

Department of Biotechnology, Prathyusha Engineering College

Author for correspondence.
Email: info@benthamscience.net

Monisha Divakar

Department of Biotechnology, Prathyusha Engineering College

Email: info@benthamscience.net

References

  1. Baba, A.I.; Câtoi, C. Tumor Cell Morphology Bucharest (RO) Comparative Oncology; The Publishing House of the Romanian Academy: Romania, 2007.
  2. Hassanpour, S.H.; Dehghani, M. Review of cancer from perspective of molecular. J. Cancer Res. Pract., 2017, 4(4), 127-129. doi: 10.1016/j.jcrpr.2017.07.001
  3. Howell, J.Y.; Ramsey, M.L. Squamous Cell Skin Cancer; StatPearls, 2022.
  4. Hueng, D.Y.; Tsai, W.C.; Chiou, H.Y.; Feng, S.W.; Lin, C.; Li, Y.F.; Huang, L.C.; Lin, M.H. DDX3X biomarker correlates with poor survival in human Gliomas. Int. J. Mol. Sci., 2015, 16(12), 15578-15591. doi: 10.3390/ijms160715578 PMID: 26184164
  5. Mo, J.; Liang, H.; Su, C.; Li, P.; Chen, J.; Zhang, B. DDX3X: Structure, physiologic functions and cancer. Mol. Cancer, 2021, 20(1), 38. doi: 10.1186/s12943-021-01325-7 PMID: 33627125
  6. Surh, Y.J.; Lee, E.; Lee, J.M. Chemoprotective properties of some pungent ingredients present in red pepper and ginger. Mutat. Res., 1998, 402(1-2), 259-267. doi: 10.1016/S0027-5107(97)00305-9 PMID: 9675305
  7. Eliopoulos, C. Ginger: More than a great spice. Director, 2007, 15(1), 46-47. PMID: 19348054
  8. Nicoll, R.; Henein, M.Y. Ginger (Zingiber officinale Roscoe): A hot remedy for cardiovascular disease? Int. J. Cardiol., 2009, 131(3), 408-409. doi: 10.1016/j.ijcard.2007.07.107 PMID: 18037515
  9. Rahman, G.; Syed Umer, J.; Syed, F.; Samiullah, S.; Nusrat, J. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to balochistan. Sci. World J.,, 2017, 2017, 5873648. doi: 10.1155/2017/5873648
  10. Bryan, CPG.; Elliot, S. C Ancient Egyptian medicine: the Papyrus Ebers; Ares Publishers, 2021.
  11. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242. doi: 10.1093/nar/28.1.235 PMID: 10592235
  12. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395. doi: 10.1093/nar/gkaa971 PMID: 33151290
  13. Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. Autodock vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898. doi: 10.1021/acs.jcim.1c00203 PMID: 34278794
  14. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
  15. Lee, C.S.; Dias, A.P.; Jedrychowski, M.; Patel, A.H.; Hsu, J.L.; Reed, R. Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res., 2008, 36(14), 4708-4718. doi: 10.1093/nar/gkn454 PMID: 18628297
  16. Park, Y.J.; Wen, J.; Bang, S.; Park, S.W.; Song, S.Y. 6-Gingerolinduces cell cycle arrest and cell death of mutant p53-expressing pancreatic cancer cells. Yonsei Med. J., 2006, 47(5), 688-697. doi: 10.3349/ymj.2006.47.5.688
  17. Ortega, S.S.; Cara, L.C.L.; Salvador, M.K. In silico pharmacology for a multidisciplinary drug discovery process. Drug Metabol. Drug Interact., 2012, 27(4), 199-207. doi: 10.1515/dmdi-2012-0021 PMID: 23152402

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers