Development of Potential Inhibitors for Human T-lymphotropic Virus Type I Integrase Enzyme: A Molecular Modeling Approach


Cite item

Full Text

Abstract

Introduction:Integration of viral DNA into the host cell genome, carried out by the HTLV-1 integrase enzyme, is a crucial step in the Human T-lymphotropic virus type I (HTLV-1) life cycle. Thus, HTLV-1 integrase is considered an attractive therapeutic target; however, no clinically effective inhibitors are available to treat HTLV-1 infection.

Objective:The main objective was to identify potential drug-like compounds capable of effectively inhibiting HTLV-1 integrase activity.

Methods:In this study, a model of HTLV-1 integrase structure and three integrase inhibitors (dolutegravir, raltegravir, and elvitegravir as scaffolds) were used for designing new inhibitors. Designed molecules were used as templates for virtual screening to retrieve new inhibitors from PubChem, ZINC15, and ChEMBL databases. Drug-likeness and docked energy of the molecules were investigated using the SWISS-ADME portal and GOLD software. Stability and binding energy of the complexes were further investigated using molecular dynamic (MD) simulation.

Results:Four novel potential inhibitors were developed using a structure-based design protocol and three compounds from virtual screening. They formed hydrogen bonding interactions with critical residues Asp69, Asp12, Tyr96, Tyr143, Gln146, Ile13, and Glu105. In addition, π stacking, halogen, and hydrogen bond interactions were seen between compounds (especially halogenated benzyl moieties) and viral DNA similar to those seen in parent molecules. MD simulation confirmed higher stability of the receptor-ligand complex than the ligand-free enzyme.

Conclusion:Combing structure-based design and virtual screening resulted in identifying three drug-like molecules (PubChem CID_138739497, _70381610, and _140084032) that are suggested as lead compounds for developing effective drugs targeting HTLV-1 integrase enzyme.

About the authors

Mohammad Jalili-Nik

Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Arash Soltani

Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Seyed Isaac Hashemy

Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Houshang Rafatpanah

Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Seyed Abdolrahim Rezaee

Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Ali Gorji

Department of Neurosurgery, Westfälische Wilhelms-Universität

Email: info@benthamscience.net

Renate Griffith

Department of Chemistry, School of Natural Sciences, University of Tasmania

Email: info@benthamscience.net

Baratali Mashkani

Bioinformatics Research Center, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Bhatt, V.; Shi, K.; Salamango, D.J.; Moeller, N.H.; Pandey, K.K.; Bera, S.; Bohl, H.O.; Kurniawan, F.; Orellana, K.; Zhang, W.; Grandgenett, D.P.; Harris, R.S.; Sundborger-Lunna, A.C.; Aihara, H. Structural basis of host protein hijacking in human T-cell leukemia virus integration. Nat. Commun., 2020, 11(1), 3121. doi: 10.1038/s41467-020-16963-6 PMID: 32561747
  2. Kanki, P.J.; Hopper, J.R.; Essex, M. The Origins of HIV-1 and HTLV-4/HIV-2. Ann. N. Y. Acad. Sci., 1987, 511(1), 370-375. doi: 10.1111/j.1749-6632.1987.tb36265.x PMID: 2894192
  3. Gallo, R.C. History of the discoveries of the first human retroviruses: HTLV-1 and HTLV-2. Oncogene, 2005, 24(39), 5926-5930. doi: 10.1038/sj.onc.1208980 PMID: 16155599
  4. Eusebio-Ponce, E.; Anguita, E.; Paulino-Ramirez, R.; Candel, F.J. HTLV-1 infection: An emerging risk. Pathogenesis, epidemiology, diagnosis and associated diseases. Rev. Esp. Quimioter., 2019, 32(6), 485-496. PMID: 31648512
  5. Rosadas, C.; Assone, T.; Yamashita, M.; Adonis, A.; Puccioni-Sohler, M.; Santos, M.; Paiva, A.; Casseb, J.; Oliveira, A.C.P.; Taylor, G.P. Health state utility values in people living with HTLV-1 and in patients with HAM/TSP: The impact of a neglected disease on the quality of life. PLoS Negl. Trop. Dis., 2020, 14(10), e0008761. doi: 10.1371/journal.pntd.0008761 PMID: 33064742
  6. Marino-Merlo, F.; Mastino, A.; Grelli, S.; Hermine, O.; Bazarbachi, A.; Macchi, B. Future perspectives on drug targeting in adult T cell leukemia-lymphoma. Front. Microbiol., 2018, 9, 925. doi: 10.3389/fmicb.2018.00925 PMID: 29867836
  7. Watanabe, T.; Tobinai, K.; Shibata, T.; Tsukasaki, K.; Morishima, Y.; Maseki, N.; Kinoshita, T.; Suzuki, T.; Yamaguchi, M.; Ando, K.; Ogura, M.; Taniwaki, M.; Uike, N.; Takeuchi, K.; Nawano, S.; Terauchi, T.; Hotta, T. Phase II/III study of R-CHOP-21 versus R-CHOP-14 for untreated indolent B-cell non-Hodgkin’s lymphoma: JCOG 0203 trial. J. Clin. Oncol., 2011, 29(30), 3990-3998. doi: 10.1200/JCO.2011.34.8508 PMID: 21931035
  8. Jalili-Nik, M.; Soltani, A.; Mashkani, B.; Rafatpanah, H.; Hashemy, S.I. PD-1 and PD-L1 inhibitors foster the progression of adult T-cell Leukemia/Lymphoma. Int. Immunopharmacol., 2021, 98, 107870. doi: 10.1016/j.intimp.2021.107870 PMID: 34153661
  9. Laydon, D.J.; Sunkara, V.; Boelen, L.; Bangham, C.R.M.; Asquith, B. The relative contributions of infectious and mitotic spread to HTLV-1 persistence. PLOS Comput. Biol., 2020, 16(9), e1007470. doi: 10.1371/journal.pcbi.1007470 PMID: 32941445
  10. Carneiro-Proietti, A.B.; Amaranto-Damasio, M.S.; Leal-Horiguchi, C.F.; Bastos, R.H.; Seabra-Freitas, G.; Borowiak, D.R.; Ribeiro, M.A.; Proietti, F.A.; Ferreira, A.S.; Martins, M.L. Mother-to-child transmission of human T-cell lymphotropic viruses-1/2: What we know, and what are the gaps in understanding and preventing this route of infection. J. Pediatric Infect. Dis. Soc., 2014, 3(S1), 24-29.
  11. Marino-Merlo, F.; Balestrieri, E.; Matteucci, C.; Mastino, A.; Grelli, S.; Macchi, B. Antiretroviral therapy in HTLV-1 infection: An updated overview. Pathogens, 2020, 9(5), 342. doi: 10.3390/pathogens9050342 PMID: 32369988
  12. Komal, D.; Khushboo, J.; Aaftaab, S.; Lakshmi, S.; Mallika, A. Targeting Integrase Enzyme: A therapeutic approach to combat HIV resistance. Mini Rev. Med. Chem., 2020, 20(3), 219-238. doi: 10.2174/1389557519666191015124932 PMID: 31613727
  13. Brooks, K.M.; Sherman, E.M.; Egelund, E.F.; Brotherton, A.; Durham, S.; Badowski, M.E.; Cluck, D.B. Integrase inhibitors: after 10 years of experience, is the best yet to come? Pharmacotherapy, 2019, 39(5), 576-598. doi: 10.1002/phar.2246 PMID: 30860610
  14. Barski, M.S.; Minnell, J.J.; Maertens, G.N. Inhibition of HTLV-1 infection by HIV-1 first and second-generation integrase strand transfer inhibitors. Front. Microbiol., 2019, 10, 1877. doi: 10.3389/fmicb.2019.01877 PMID: 31474960
  15. Lockbaum, G.J.; Henes, M.; Talledge, N.; Rusere, L.N.; Kosovrasti, K.; Nalivaika, E.A.; Somasundaran, M.; Ali, A.; Mansky, L.M.; Kurt Yilmaz, N.; Schiffer, C.A. Inhibiting HTLV-1 Protease: A viable antiviral target. ACS Chem. Biol., 2021, 16(3), 529-538. doi: 10.1021/acschembio.0c00975 PMID: 33619959
  16. Jorgensen, W.L. Computer-aided discovery of anti-HIV agents. Bioorg. Med. Chem., 2016, 24(20), 4768-4778. doi: 10.1016/j.bmc.2016.07.039 PMID: 27485603
  17. Vyas, V.K.; Ukawala, R.D.; Chintha, C.; Ghate, M. Homology modeling a fast tool for drug discovery: Current perspectives. Indian J. Pharm. Sci., 2012, 74(1), 1-17. doi: 10.4103/0250-474X.102537 PMID: 23204616
  18. Muhammed, M.T.; Aki-Yalcin, E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem. Biol. Drug Des., 2019, 93(1), 12-20. doi: 10.1111/cbdd.13388 PMID: 30187647
  19. Barski, M.S.; Vanzo, T.; Zhao, X.Z.; Smith, S.J.; Ballandras-Colas, A.; Cronin, N.B.; Pye, V.E.; Hughes, S.H.; Burke, T.R., Jr; Cherepanov, P.; Maertens, G.N. Structural basis for the inhibition of HTLV-1 integration inferred from cryo-EM deltaretroviral intasome structures. Nat. Commun., 2021, 12(1), 4996. doi: 10.1038/s41467-021-25284-1 PMID: 34404793
  20. Burley, S.K.; Berman, H.M.; Kleywegt, G.J.; Markley, J.L.; Nakamura, H.; Velankar, S. Protein data bank (PDB): The single global macromolecular structure archive. Methods Mol. Biol., 2017, 1607, 627-641. doi: 10.1007/978-1-4939-7000-1_26 PMID: 28573592
  21. Šali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol., 1993, 234(3), 779-815. doi: 10.1006/jmbi.1993.1626 PMID: 8254673
  22. Bhattacharya, D.; Nowotny, J.; Cao, R.; Cheng, J. 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res., 2016, 44(W1), W406-W409. doi: 10.1093/nar/gkw336 PMID: 27131371
  23. Emsley, P.; Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(12), 2126-2132. doi: 10.1107/S0907444904019158
  24. Morris, A.L.; MacArthur, M.W.; Hutchinson, E.G.; Thornton, J.M. Stereochemical quality of protein structure coordinates. Proteins, 1992, 12(4), 345-364. doi: 10.1002/prot.340120407 PMID: 1579569
  25. Joy, S.; Nair, P.S.; Hariharan, R.; Pillai, M.R. Detailed comparison of the protein-ligand docking efficiencies of GOLD, a commercial package and ArgusLab, a licensable freeware. In Silico Biol., 2006, 6(6), 601-605. PMID: 17518767
  26. Nurisso, A.; Bravo, J.; Carrupt, P.A.; Daina, A. Molecular docking using the molecular lipophilicity potential as hydrophobic descriptor: Impact on GOLD docking performance. J. Chem. Inf. Model., 2012, 52(5), 1319-1327. doi: 10.1021/ci200515g PMID: 22462609
  27. Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213. doi: 10.1093/nar/gkv951 PMID: 26400175
  28. Böhm, H.J. The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J. Comput. Aided Mol. Des., 1992, 6(1), 61-78. doi: 10.1007/BF00124387 PMID: 1583540
  29. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395. doi: 10.1093/nar/gkaa971 PMID: 33151290
  30. Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Veij, M.; Félix, E.; Magariños, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka, M.; Gordillo-Marañón, M.; Hunter, F.; Junco, L.; Mugumbate, G.; Rodriguez-Lopez, M.; Atkinson, F.; Bosc, N.; Radoux, C.J.; Segura-Cabrera, A.; Hersey, A.; Leach, A.R. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res., 2019, 47(D1), D930-D940. doi: 10.1093/nar/gky1075 PMID: 30398643
  31. Sterling, T.; Irwin, J.J. ZINC 15 - Ligand discovery for everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337. doi: 10.1021/acs.jcim.5b00559 PMID: 26479676
  32. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
  33. Abdelrheem, D.A.; Ahmed, S.A.; Abd El-Mageed, H.R.; Mohamed, H.S.; Rahman, A.A.; Elsayed, K.N.M.; Ahmed, S.A. The inhibitory effect of some natural bioactive compounds against SARS-CoV-2 main protease: insights from molecular docking analysis and molecular dynamic simulation. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 2020, 55(11), 1373-1386. doi: 10.1080/10934529.2020.1826192 PMID: 32998618
  34. Zhu, B.T.; Wang, P.; Nagai, M.; Wen, Y.; Bai, H.W. Inhibition of human catechol-O-methyltransferase (COMT)-mediated O-methylation of catechol estrogens by major polyphenolic components present in coffee. J. Steroid Biochem. Mol. Biol., 2009, 113(1-2), 65-74. doi: 10.1016/j.jsbmb.2008.11.011 PMID: 19095062
  35. Cava, C.; Bertoli, G.; Castiglioni, I. Potential drugs against COVID-19 revealed by gene expression profile, molecular docking and molecular dynamic simulation. Future Virol., 2021, 16(8), 527-542. doi: 10.2217/fvl-2020-0392 PMID: 34306168
  36. Krishnan, L.; Li, X.; Naraharisetty, H.L.; Hare, S.; Cherepanov, P.; Engelman, A. Structure-based modeling of the functional HIV-1 intasome and its inhibition. Proc. Natl. Acad. Sci. USA, 2010, 107(36), 15910-15915. doi: 10.1073/pnas.1002346107 PMID: 20733078
  37. Passos, D.O.; Li, M.; Jóźwik, I.K.; Zhao, X.Z.; Santos-Martins, D.; Yang, R.; Smith, S.J.; Jeon, Y.; Forli, S.; Hughes, S.H.; Burke, T.R. Jr; Craigie, R.; Lyumkis, D. Structural basis for strand-transfer inhibitor binding to HIV intasomes. Science, 2020, 367(6479), 810-814. doi: 10.1126/science.aay8015 PMID: 32001521
  38. Cook, N.J.; Li, W.; Berta, D.; Badaoui, M.; Ballandras-Colas, A.; Nans, A.; Kotecha, A.; Rosta, E.; Engelman, A.N.; Cherepanov, P. Structural basis of second-generation HIV integrase inhibitor action and viral resistance. Science, 2020, 367(6479), 806-810. doi: 10.1126/science.aay4919 PMID: 32001525
  39. Miri, L.; Bouvier, G.; Kettani, A.; Mikou, A.; Wakrim, L.; Nilges, M.; Malliavin, T.E. Stabilization of the integrase-DNA complex by Mg 2+ ions and prediction of key residues for binding HIV-1 integrase inhibitors. Proteins, 2014, 82(3), 466-478. doi: 10.1002/prot.24412 PMID: 24038133
  40. Van Drie, J.H.; Tong, L. Cryo-EM as a powerful tool for drug discovery. Bioorg. Med. Chem. Lett., 2020, 30(22), 127524. doi: 10.1016/j.bmcl.2020.127524 PMID: 32890683
  41. Subramaniam, S.; Earl, L.A.; Falconieri, V.; Milne, J.L.S.; Egelman, E.H. Resolution advances in cryo-EM enable application to drug discovery. Curr. Opin. Struct. Biol., 2016, 41, 194-202. doi: 10.1016/j.sbi.2016.07.009 PMID: 27552081
  42. Eldridge, M.D.; Murray, C.W.; Auton, T.R.; Paolini, G.V.; Mee, R.P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. Des., 1997, 11(5), 425-445. doi: 10.1023/A:1007996124545 PMID: 9385547
  43. Murray, C.W.; Auton, T.R.; Eldridge, M.D. Empirical scoring functions. II. The testing of an empirical scoring function for the prediction of ligand-receptor binding affinities and the use of Bayesian regression to improve the quality of the model. J. Comput. Aided Mol. Des., 1998, 12(5), 503-519. doi: 10.1023/A:1008040323669 PMID: 9834910
  44. Schulz-Gasch, T.; Stahl, M. Binding site characteristics in structure-based virtual screening: evaluation of current docking tools. J. Mol. Model., 2003, 9(1), 47-57. doi: 10.1007/s00894-002-0112-y PMID: 12638011
  45. Fong, P.; Wong, H.K. Evaluation of scoring function performance on DNA-ligand complexes. Open Med. Chem. J., 2019, 13(1), 40-49. doi: 10.2174/1874104501913010040
  46. Bar-Magen, T.; Sloan, R.D.; Donahue, D.A.; Kuhl, B.D.; Zabeida, A.; Xu, H.; Oliveira, M.; Hazuda, D.J.; Wainberg, M.A. Identification of novel mutations responsible for resistance to MK-2048, a second-generation HIV-1 integrase inhibitor. J. Virol., 2010, 84(18), 9210-9216. doi: 10.1128/JVI.01164-10 PMID: 20610719
  47. Temesgen, Z.; Siraj, D.S. Raltegravir: First in class HIV integrase inhibitor. Ther. Clin. Risk Manag., 2008, 4(2), 493-500. doi: 10.2147/TCRM.S2268 PMID: 18728839
  48. Underwood, M.R.; Johns, B.A.; Sato, A.; Martin, J.N.; Deeks, S.G.; Fujiwara, T. The activity of the integrase inhibitor dolutegravir against HIV-1 variants isolated from raltegravir-treated adults. J. Acquir. Immune Defic. Syndr., 2012, 61(3), 297-301. doi: 10.1097/QAI.0b013e31826bfd02 PMID: 22878423
  49. Smith, S.J.; Zhao, X.Z.; Burke, T.R., Jr; Hughes, S.H. HIV-1 Integrase inhibitors that are broadly effective against drug-resistant mutants. Antimicrob. Agents Chemother., 2018, 62(9), e01035-e18. doi: 10.1128/AAC.01035-18 PMID: 29987149
  50. Chen, D.; Oezguen, N.; Urvil, P.; Ferguson, C.; Dann, S.M.; Savidge, T.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci. Adv., 2016, 2(3), e1501240. doi: 10.1126/sciadv.1501240 PMID: 27051863
  51. Kuck, D.; Singh, N.; Lyko, F.; Medina-Franco, J.L. Novel and selective DNA methyltransferase inhibitors: Docking-based virtual screening and experimental evaluation. Bioorg. Med. Chem., 2010, 18(2), 822-829. doi: 10.1016/j.bmc.2009.11.050 PMID: 20006515
  52. Pierri, C.L.; Parisi, G.; Porcelli, V. Computational approaches for protein function prediction: A combined strategy from multiple sequence alignment to molecular docking-based virtual screening. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(9), 1695-1712. doi: 10.1016/j.bbapap.2010.04.008 PMID: 20433957
  53. Jenwitheesuk, E.; Samudrala, R. Virtual screening of HIV-1 protease inhibitors against human cytomegalovirus protease using docking and molecular dynamics. AIDS, 2005, 19(5), 529-531. doi: 10.1097/01.aids.0000162343.96674.4c PMID: 15764860
  54. Ripphausen, P.; Nisius, B.; Bajorath, J. State-of-the-art in ligand-based virtual screening. Drug Discov. Today, 2011, 16(9-10), 372-376. doi: 10.1016/j.drudis.2011.02.011 PMID: 21349346
  55. Zhang, M.Q.; Wilkinson, B. Drug discovery beyond the ‘rule-of-five’. Curr. Opin. Biotechnol., 2007, 18(6), 478-488. doi: 10.1016/j.copbio.2007.10.005 PMID: 18035532
  56. Collier, T.A.; Piggot, T.J.; Allison, J.R. Molecular dynamics simulation of proteins.Protein Nanotechnology: Protocols, Instrumentation, and Applications; Gerrard, J.A.; Domigan, L.J., Eds.; Springer US: New York, NY, 2020, pp. 311-327. doi: 10.1007/978-1-4939-9869-2_17
  57. Sargsyan, K.; Grauffel, C.; Lim, C. How molecular size impacts RMSD applications in molecular dynamics simulations. J. Chem. Theory Comput., 2017, 13(4), 1518-1524. doi: 10.1021/acs.jctc.7b00028 PMID: 28267328

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers