Development of Potential Inhibitors for Human T-lymphotropic Virus Type I Integrase Enzyme: A Molecular Modeling Approach
- Authors: Jalili-Nik M.1, Soltani A.1, Hashemy S.I.1, Rafatpanah H.2, Rezaee S.A.2, Gorji A.3, Griffith R.4, Mashkani B.5
-
Affiliations:
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences
- Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences
- Department of Neurosurgery, Westfälische Wilhelms-Universität
- Department of Chemistry, School of Natural Sciences, University of Tasmania
- Bioinformatics Research Center, Mashhad University of Medical Sciences
- Issue: Vol 20, No 1 (2024)
- Pages: 72-86
- Section: Chemistry
- URL: https://rjeid.com/1573-4099/article/view/643898
- DOI: https://doi.org/10.2174/1573409919666230419082839
- ID: 643898
Cite item
Full Text
Abstract
Introduction:Integration of viral DNA into the host cell genome, carried out by the HTLV-1 integrase enzyme, is a crucial step in the Human T-lymphotropic virus type I (HTLV-1) life cycle. Thus, HTLV-1 integrase is considered an attractive therapeutic target; however, no clinically effective inhibitors are available to treat HTLV-1 infection.
Objective:The main objective was to identify potential drug-like compounds capable of effectively inhibiting HTLV-1 integrase activity.
Methods:In this study, a model of HTLV-1 integrase structure and three integrase inhibitors (dolutegravir, raltegravir, and elvitegravir as scaffolds) were used for designing new inhibitors. Designed molecules were used as templates for virtual screening to retrieve new inhibitors from PubChem, ZINC15, and ChEMBL databases. Drug-likeness and docked energy of the molecules were investigated using the SWISS-ADME portal and GOLD software. Stability and binding energy of the complexes were further investigated using molecular dynamic (MD) simulation.
Results:Four novel potential inhibitors were developed using a structure-based design protocol and three compounds from virtual screening. They formed hydrogen bonding interactions with critical residues Asp69, Asp12, Tyr96, Tyr143, Gln146, Ile13, and Glu105. In addition, π stacking, halogen, and hydrogen bond interactions were seen between compounds (especially halogenated benzyl moieties) and viral DNA similar to those seen in parent molecules. MD simulation confirmed higher stability of the receptor-ligand complex than the ligand-free enzyme.
Conclusion:Combing structure-based design and virtual screening resulted in identifying three drug-like molecules (PubChem CID_138739497, _70381610, and _140084032) that are suggested as lead compounds for developing effective drugs targeting HTLV-1 integrase enzyme.
About the authors
Mohammad Jalili-Nik
Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Arash Soltani
Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Seyed Isaac Hashemy
Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Houshang Rafatpanah
Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Seyed Abdolrahim Rezaee
Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Ali Gorji
Department of Neurosurgery, Westfälische Wilhelms-Universität
Email: info@benthamscience.net
Renate Griffith
Department of Chemistry, School of Natural Sciences, University of Tasmania
Email: info@benthamscience.net
Baratali Mashkani
Bioinformatics Research Center, Mashhad University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Bhatt, V.; Shi, K.; Salamango, D.J.; Moeller, N.H.; Pandey, K.K.; Bera, S.; Bohl, H.O.; Kurniawan, F.; Orellana, K.; Zhang, W.; Grandgenett, D.P.; Harris, R.S.; Sundborger-Lunna, A.C.; Aihara, H. Structural basis of host protein hijacking in human T-cell leukemia virus integration. Nat. Commun., 2020, 11(1), 3121. doi: 10.1038/s41467-020-16963-6 PMID: 32561747
- Kanki, P.J.; Hopper, J.R.; Essex, M. The Origins of HIV-1 and HTLV-4/HIV-2. Ann. N. Y. Acad. Sci., 1987, 511(1), 370-375. doi: 10.1111/j.1749-6632.1987.tb36265.x PMID: 2894192
- Gallo, R.C. History of the discoveries of the first human retroviruses: HTLV-1 and HTLV-2. Oncogene, 2005, 24(39), 5926-5930. doi: 10.1038/sj.onc.1208980 PMID: 16155599
- Eusebio-Ponce, E.; Anguita, E.; Paulino-Ramirez, R.; Candel, F.J. HTLV-1 infection: An emerging risk. Pathogenesis, epidemiology, diagnosis and associated diseases. Rev. Esp. Quimioter., 2019, 32(6), 485-496. PMID: 31648512
- Rosadas, C.; Assone, T.; Yamashita, M.; Adonis, A.; Puccioni-Sohler, M.; Santos, M.; Paiva, A.; Casseb, J.; Oliveira, A.C.P.; Taylor, G.P. Health state utility values in people living with HTLV-1 and in patients with HAM/TSP: The impact of a neglected disease on the quality of life. PLoS Negl. Trop. Dis., 2020, 14(10), e0008761. doi: 10.1371/journal.pntd.0008761 PMID: 33064742
- Marino-Merlo, F.; Mastino, A.; Grelli, S.; Hermine, O.; Bazarbachi, A.; Macchi, B. Future perspectives on drug targeting in adult T cell leukemia-lymphoma. Front. Microbiol., 2018, 9, 925. doi: 10.3389/fmicb.2018.00925 PMID: 29867836
- Watanabe, T.; Tobinai, K.; Shibata, T.; Tsukasaki, K.; Morishima, Y.; Maseki, N.; Kinoshita, T.; Suzuki, T.; Yamaguchi, M.; Ando, K.; Ogura, M.; Taniwaki, M.; Uike, N.; Takeuchi, K.; Nawano, S.; Terauchi, T.; Hotta, T. Phase II/III study of R-CHOP-21 versus R-CHOP-14 for untreated indolent B-cell non-Hodgkins lymphoma: JCOG 0203 trial. J. Clin. Oncol., 2011, 29(30), 3990-3998. doi: 10.1200/JCO.2011.34.8508 PMID: 21931035
- Jalili-Nik, M.; Soltani, A.; Mashkani, B.; Rafatpanah, H.; Hashemy, S.I. PD-1 and PD-L1 inhibitors foster the progression of adult T-cell Leukemia/Lymphoma. Int. Immunopharmacol., 2021, 98, 107870. doi: 10.1016/j.intimp.2021.107870 PMID: 34153661
- Laydon, D.J.; Sunkara, V.; Boelen, L.; Bangham, C.R.M.; Asquith, B. The relative contributions of infectious and mitotic spread to HTLV-1 persistence. PLOS Comput. Biol., 2020, 16(9), e1007470. doi: 10.1371/journal.pcbi.1007470 PMID: 32941445
- Carneiro-Proietti, A.B.; Amaranto-Damasio, M.S.; Leal-Horiguchi, C.F.; Bastos, R.H.; Seabra-Freitas, G.; Borowiak, D.R.; Ribeiro, M.A.; Proietti, F.A.; Ferreira, A.S.; Martins, M.L. Mother-to-child transmission of human T-cell lymphotropic viruses-1/2: What we know, and what are the gaps in understanding and preventing this route of infection. J. Pediatric Infect. Dis. Soc., 2014, 3(S1), 24-29.
- Marino-Merlo, F.; Balestrieri, E.; Matteucci, C.; Mastino, A.; Grelli, S.; Macchi, B. Antiretroviral therapy in HTLV-1 infection: An updated overview. Pathogens, 2020, 9(5), 342. doi: 10.3390/pathogens9050342 PMID: 32369988
- Komal, D.; Khushboo, J.; Aaftaab, S.; Lakshmi, S.; Mallika, A. Targeting Integrase Enzyme: A therapeutic approach to combat HIV resistance. Mini Rev. Med. Chem., 2020, 20(3), 219-238. doi: 10.2174/1389557519666191015124932 PMID: 31613727
- Brooks, K.M.; Sherman, E.M.; Egelund, E.F.; Brotherton, A.; Durham, S.; Badowski, M.E.; Cluck, D.B. Integrase inhibitors: after 10 years of experience, is the best yet to come? Pharmacotherapy, 2019, 39(5), 576-598. doi: 10.1002/phar.2246 PMID: 30860610
- Barski, M.S.; Minnell, J.J.; Maertens, G.N. Inhibition of HTLV-1 infection by HIV-1 first and second-generation integrase strand transfer inhibitors. Front. Microbiol., 2019, 10, 1877. doi: 10.3389/fmicb.2019.01877 PMID: 31474960
- Lockbaum, G.J.; Henes, M.; Talledge, N.; Rusere, L.N.; Kosovrasti, K.; Nalivaika, E.A.; Somasundaran, M.; Ali, A.; Mansky, L.M.; Kurt Yilmaz, N.; Schiffer, C.A. Inhibiting HTLV-1 Protease: A viable antiviral target. ACS Chem. Biol., 2021, 16(3), 529-538. doi: 10.1021/acschembio.0c00975 PMID: 33619959
- Jorgensen, W.L. Computer-aided discovery of anti-HIV agents. Bioorg. Med. Chem., 2016, 24(20), 4768-4778. doi: 10.1016/j.bmc.2016.07.039 PMID: 27485603
- Vyas, V.K.; Ukawala, R.D.; Chintha, C.; Ghate, M. Homology modeling a fast tool for drug discovery: Current perspectives. Indian J. Pharm. Sci., 2012, 74(1), 1-17. doi: 10.4103/0250-474X.102537 PMID: 23204616
- Muhammed, M.T.; Aki-Yalcin, E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem. Biol. Drug Des., 2019, 93(1), 12-20. doi: 10.1111/cbdd.13388 PMID: 30187647
- Barski, M.S.; Vanzo, T.; Zhao, X.Z.; Smith, S.J.; Ballandras-Colas, A.; Cronin, N.B.; Pye, V.E.; Hughes, S.H.; Burke, T.R., Jr; Cherepanov, P.; Maertens, G.N. Structural basis for the inhibition of HTLV-1 integration inferred from cryo-EM deltaretroviral intasome structures. Nat. Commun., 2021, 12(1), 4996. doi: 10.1038/s41467-021-25284-1 PMID: 34404793
- Burley, S.K.; Berman, H.M.; Kleywegt, G.J.; Markley, J.L.; Nakamura, H.; Velankar, S. Protein data bank (PDB): The single global macromolecular structure archive. Methods Mol. Biol., 2017, 1607, 627-641. doi: 10.1007/978-1-4939-7000-1_26 PMID: 28573592
- ali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol., 1993, 234(3), 779-815. doi: 10.1006/jmbi.1993.1626 PMID: 8254673
- Bhattacharya, D.; Nowotny, J.; Cao, R.; Cheng, J. 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res., 2016, 44(W1), W406-W409. doi: 10.1093/nar/gkw336 PMID: 27131371
- Emsley, P.; Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(12), 2126-2132. doi: 10.1107/S0907444904019158
- Morris, A.L.; MacArthur, M.W.; Hutchinson, E.G.; Thornton, J.M. Stereochemical quality of protein structure coordinates. Proteins, 1992, 12(4), 345-364. doi: 10.1002/prot.340120407 PMID: 1579569
- Joy, S.; Nair, P.S.; Hariharan, R.; Pillai, M.R. Detailed comparison of the protein-ligand docking efficiencies of GOLD, a commercial package and ArgusLab, a licensable freeware. In Silico Biol., 2006, 6(6), 601-605. PMID: 17518767
- Nurisso, A.; Bravo, J.; Carrupt, P.A.; Daina, A. Molecular docking using the molecular lipophilicity potential as hydrophobic descriptor: Impact on GOLD docking performance. J. Chem. Inf. Model., 2012, 52(5), 1319-1327. doi: 10.1021/ci200515g PMID: 22462609
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213. doi: 10.1093/nar/gkv951 PMID: 26400175
- Böhm, H.J. The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J. Comput. Aided Mol. Des., 1992, 6(1), 61-78. doi: 10.1007/BF00124387 PMID: 1583540
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395. doi: 10.1093/nar/gkaa971 PMID: 33151290
- Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Veij, M.; Félix, E.; Magariños, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka, M.; Gordillo-Marañón, M.; Hunter, F.; Junco, L.; Mugumbate, G.; Rodriguez-Lopez, M.; Atkinson, F.; Bosc, N.; Radoux, C.J.; Segura-Cabrera, A.; Hersey, A.; Leach, A.R. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res., 2019, 47(D1), D930-D940. doi: 10.1093/nar/gky1075 PMID: 30398643
- Sterling, T.; Irwin, J.J. ZINC 15 - Ligand discovery for everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337. doi: 10.1021/acs.jcim.5b00559 PMID: 26479676
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
- Abdelrheem, D.A.; Ahmed, S.A.; Abd El-Mageed, H.R.; Mohamed, H.S.; Rahman, A.A.; Elsayed, K.N.M.; Ahmed, S.A. The inhibitory effect of some natural bioactive compounds against SARS-CoV-2 main protease: insights from molecular docking analysis and molecular dynamic simulation. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 2020, 55(11), 1373-1386. doi: 10.1080/10934529.2020.1826192 PMID: 32998618
- Zhu, B.T.; Wang, P.; Nagai, M.; Wen, Y.; Bai, H.W. Inhibition of human catechol-O-methyltransferase (COMT)-mediated O-methylation of catechol estrogens by major polyphenolic components present in coffee. J. Steroid Biochem. Mol. Biol., 2009, 113(1-2), 65-74. doi: 10.1016/j.jsbmb.2008.11.011 PMID: 19095062
- Cava, C.; Bertoli, G.; Castiglioni, I. Potential drugs against COVID-19 revealed by gene expression profile, molecular docking and molecular dynamic simulation. Future Virol., 2021, 16(8), 527-542. doi: 10.2217/fvl-2020-0392 PMID: 34306168
- Krishnan, L.; Li, X.; Naraharisetty, H.L.; Hare, S.; Cherepanov, P.; Engelman, A. Structure-based modeling of the functional HIV-1 intasome and its inhibition. Proc. Natl. Acad. Sci. USA, 2010, 107(36), 15910-15915. doi: 10.1073/pnas.1002346107 PMID: 20733078
- Passos, D.O.; Li, M.; Jóźwik, I.K.; Zhao, X.Z.; Santos-Martins, D.; Yang, R.; Smith, S.J.; Jeon, Y.; Forli, S.; Hughes, S.H.; Burke, T.R. Jr; Craigie, R.; Lyumkis, D. Structural basis for strand-transfer inhibitor binding to HIV intasomes. Science, 2020, 367(6479), 810-814. doi: 10.1126/science.aay8015 PMID: 32001521
- Cook, N.J.; Li, W.; Berta, D.; Badaoui, M.; Ballandras-Colas, A.; Nans, A.; Kotecha, A.; Rosta, E.; Engelman, A.N.; Cherepanov, P. Structural basis of second-generation HIV integrase inhibitor action and viral resistance. Science, 2020, 367(6479), 806-810. doi: 10.1126/science.aay4919 PMID: 32001525
- Miri, L.; Bouvier, G.; Kettani, A.; Mikou, A.; Wakrim, L.; Nilges, M.; Malliavin, T.E. Stabilization of the integrase-DNA complex by Mg 2+ ions and prediction of key residues for binding HIV-1 integrase inhibitors. Proteins, 2014, 82(3), 466-478. doi: 10.1002/prot.24412 PMID: 24038133
- Van Drie, J.H.; Tong, L. Cryo-EM as a powerful tool for drug discovery. Bioorg. Med. Chem. Lett., 2020, 30(22), 127524. doi: 10.1016/j.bmcl.2020.127524 PMID: 32890683
- Subramaniam, S.; Earl, L.A.; Falconieri, V.; Milne, J.L.S.; Egelman, E.H. Resolution advances in cryo-EM enable application to drug discovery. Curr. Opin. Struct. Biol., 2016, 41, 194-202. doi: 10.1016/j.sbi.2016.07.009 PMID: 27552081
- Eldridge, M.D.; Murray, C.W.; Auton, T.R.; Paolini, G.V.; Mee, R.P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. Des., 1997, 11(5), 425-445. doi: 10.1023/A:1007996124545 PMID: 9385547
- Murray, C.W.; Auton, T.R.; Eldridge, M.D. Empirical scoring functions. II. The testing of an empirical scoring function for the prediction of ligand-receptor binding affinities and the use of Bayesian regression to improve the quality of the model. J. Comput. Aided Mol. Des., 1998, 12(5), 503-519. doi: 10.1023/A:1008040323669 PMID: 9834910
- Schulz-Gasch, T.; Stahl, M. Binding site characteristics in structure-based virtual screening: evaluation of current docking tools. J. Mol. Model., 2003, 9(1), 47-57. doi: 10.1007/s00894-002-0112-y PMID: 12638011
- Fong, P.; Wong, H.K. Evaluation of scoring function performance on DNA-ligand complexes. Open Med. Chem. J., 2019, 13(1), 40-49. doi: 10.2174/1874104501913010040
- Bar-Magen, T.; Sloan, R.D.; Donahue, D.A.; Kuhl, B.D.; Zabeida, A.; Xu, H.; Oliveira, M.; Hazuda, D.J.; Wainberg, M.A. Identification of novel mutations responsible for resistance to MK-2048, a second-generation HIV-1 integrase inhibitor. J. Virol., 2010, 84(18), 9210-9216. doi: 10.1128/JVI.01164-10 PMID: 20610719
- Temesgen, Z.; Siraj, D.S. Raltegravir: First in class HIV integrase inhibitor. Ther. Clin. Risk Manag., 2008, 4(2), 493-500. doi: 10.2147/TCRM.S2268 PMID: 18728839
- Underwood, M.R.; Johns, B.A.; Sato, A.; Martin, J.N.; Deeks, S.G.; Fujiwara, T. The activity of the integrase inhibitor dolutegravir against HIV-1 variants isolated from raltegravir-treated adults. J. Acquir. Immune Defic. Syndr., 2012, 61(3), 297-301. doi: 10.1097/QAI.0b013e31826bfd02 PMID: 22878423
- Smith, S.J.; Zhao, X.Z.; Burke, T.R., Jr; Hughes, S.H. HIV-1 Integrase inhibitors that are broadly effective against drug-resistant mutants. Antimicrob. Agents Chemother., 2018, 62(9), e01035-e18. doi: 10.1128/AAC.01035-18 PMID: 29987149
- Chen, D.; Oezguen, N.; Urvil, P.; Ferguson, C.; Dann, S.M.; Savidge, T.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci. Adv., 2016, 2(3), e1501240. doi: 10.1126/sciadv.1501240 PMID: 27051863
- Kuck, D.; Singh, N.; Lyko, F.; Medina-Franco, J.L. Novel and selective DNA methyltransferase inhibitors: Docking-based virtual screening and experimental evaluation. Bioorg. Med. Chem., 2010, 18(2), 822-829. doi: 10.1016/j.bmc.2009.11.050 PMID: 20006515
- Pierri, C.L.; Parisi, G.; Porcelli, V. Computational approaches for protein function prediction: A combined strategy from multiple sequence alignment to molecular docking-based virtual screening. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(9), 1695-1712. doi: 10.1016/j.bbapap.2010.04.008 PMID: 20433957
- Jenwitheesuk, E.; Samudrala, R. Virtual screening of HIV-1 protease inhibitors against human cytomegalovirus protease using docking and molecular dynamics. AIDS, 2005, 19(5), 529-531. doi: 10.1097/01.aids.0000162343.96674.4c PMID: 15764860
- Ripphausen, P.; Nisius, B.; Bajorath, J. State-of-the-art in ligand-based virtual screening. Drug Discov. Today, 2011, 16(9-10), 372-376. doi: 10.1016/j.drudis.2011.02.011 PMID: 21349346
- Zhang, M.Q.; Wilkinson, B. Drug discovery beyond the rule-of-five. Curr. Opin. Biotechnol., 2007, 18(6), 478-488. doi: 10.1016/j.copbio.2007.10.005 PMID: 18035532
- Collier, T.A.; Piggot, T.J.; Allison, J.R. Molecular dynamics simulation of proteins.Protein Nanotechnology: Protocols, Instrumentation, and Applications; Gerrard, J.A.; Domigan, L.J., Eds.; Springer US: New York, NY, 2020, pp. 311-327. doi: 10.1007/978-1-4939-9869-2_17
- Sargsyan, K.; Grauffel, C.; Lim, C. How molecular size impacts RMSD applications in molecular dynamics simulations. J. Chem. Theory Comput., 2017, 13(4), 1518-1524. doi: 10.1021/acs.jctc.7b00028 PMID: 28267328
Supplementary files
