Network Pharmacology Study to Reveal the Mechanism of Zuogui Pill for Treating Osteoporosis
- 作者: Wang G.1, Li H.2, Zhao H.2, Liu D.2, Chu S.2, Lee M.2, Fang Z.3
-
隶属关系:
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital
- Department of Endocrinology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine
- 期: 卷 20, 编号 1 (2024)
- 页面: 2-15
- 栏目: Chemistry
- URL: https://rjeid.com/1573-4099/article/view/643862
- DOI: https://doi.org/10.2174/1573409919666230302111951
- ID: 643862
如何引用文章
全文:
详细
Background:To our knowledge, there is still a lack of scientific reports on the pharmacological mechanism of the Zuogui Pill (ZGP) for treating osteoporosis (OP).
Aims:This study aimed to explore it via network pharmacology and molecular docking.
Methods:We identified active compounds and associated targets in ZGP via two drug databases. Disease targets of OP were obtained utilizing five disease databases. Networks were established and analyzed through the Cytoscape software and STRING databases. Enrichment analyses were performed using the DAVID online tools. Molecular docking was performed using Maestro, PyMOL, and Discovery Studio software.
Results:89 drug active compounds, 365 drug targets, 2514 disease targets, and 163 drug-disease common targets were obtained. Quercetin, kaempferol, phenylalanine, isorhamnetin, betavulgarin, and glycitein may be the crucial compounds of ZGP in treating OP. AKT1, MAPK14, RELA, TNF, and JUN may be the most important therapeutic targets. Osteoclast differentiation, TNF, MAPK, and thyroid hormone signaling pathways may be the critical therapeutic signaling pathways. The potential therapeutic mechanism mainly relates to osteoblastic or osteoclastic differentiation, oxidative stress, and osteoclastic apoptosis.
Conclusion:This study has revealed the anti-OP mechanism of ZGP, which offers objective evidence for relevant clinical application and further basic research.
作者简介
Gaoxiang Wang
Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine
Email: info@benthamscience.net
Huilin Li
Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital
编辑信件的主要联系方式.
Email: info@benthamscience.net
Hengxia Zhao
Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital
Email: info@benthamscience.net
Deliang Liu
Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital
Email: info@benthamscience.net
Shufang Chu
Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital
Email: info@benthamscience.net
Maosheng Lee
Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital
Email: info@benthamscience.net
Zebin Fang
Department of Endocrinology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine
Email: info@benthamscience.net
参考
- Pagnotti, G.M.; Styner, M.; Uzer, G.; Patel, V.S.; Wright, L.E.; Ness, K.K.; Guise, T.A.; Rubin, J.; Rubin, C.T. Combating osteoporosis and obesity with exercise: Leveraging cell mechanosensitivity. Nat. Rev. Endocrinol., 2019, 15(6), 339-355. doi: 10.1038/s41574-019-0170-1 PMID: 30814687
- Bellavia, D.; Dimarco, E.; Costa, V.; Carina, V.; De Luca, A.; Raimondi, L.; Fini, M.; Gentile, C.; Caradonna, F.; Giavaresi, G. Flavonoids in bone erosive diseases: Perspectives in osteoporosis treatment. Trends Endocrinol. Metab., 2021, 32(2), 76-94. doi: 10.1016/j.tem.2020.11.007 PMID: 33288387
- Cummings, S.R.; Melton, L.J. Epidemiology and outcomes of osteoporotic fractures. Lancet, 2002, 359(9319), 1761-1767. doi: 10.1016/S0140-6736(02)08657-9 PMID: 12049882
- Lancet, D. Endocrinology, osteoporosis: Overlooked in men for too long. Lancet Diabetes Endocrinol., 2021, 9(1), 1. doi: 10.1016/S2213-8587(20)30408-3
- Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet, 2019, 393(10169), 364-376. doi: 10.1016/S0140-6736(18)32112-3 PMID: 30696576
- Langdahl, B.L. Overview of treatment approaches to osteoporosis. Br. J. Pharmacol., 2021, 178(9), 1891-1906. doi: 10.1111/bph.15024 PMID: 32060897
- Ensrud, K.E. Bisphosphonates for postmenopausal osteoporosis. JAMA, 2021, 325(1), 96. doi: 10.1001/jama.2020.2923 PMID: 33399841
- Mullard, A. FDA approves first-in-class osteoporosis drug. Nat. Rev. Drug Discov., 2019, 18(6), 411. PMID: 31160772
- Estell, E.G.; Rosen, C.J. Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis. Nat. Rev. Endocrinol., 2021, 17(1), 31-46. doi: 10.1038/s41574-020-00426-5 PMID: 33149262
- Zhang, M.; Moalin, M.; Haenen, G.R.M.M. Connecting West and East. Int. J. Mol. Sci., 2019, 20(9), 2333. doi: 10.3390/ijms20092333 PMID: 31083489
- Li, J.; Sun, K.; Qi, B.; Feng, G.; Wang, W.; Sun, Q.; Zheng, C.; Wei, X.; Jia, Y. An evaluation of the effects and safety of Zuogui pill for treating osteoporosis: Current evidence for an ancient Chinese herbal formula. Phytother. Res., 2021, 35(4), 1754-1767. doi: 10.1002/ptr.6908 PMID: 33089589
- Yin, H.; Wang, S.; Zhang, Y.; Wu, M.; Wang, J.; Ma, Y. Zuogui Pill improves the dexamethasone-induced osteoporosis progression in zebrafish larvae. Biomed. Pharmacother., 2018, 97, 995-999. doi: 10.1016/j.biopha.2017.11.029 PMID: 29136778
- Li, Y.H.; Yu, C.Y.; Li, X.X.; Zhang, P.; Tang, J.; Yang, Q.; Fu, T.; Zhang, X.; Cui, X.; Tu, G.; Zhang, Y.; Li, S.; Yang, F.; Sun, Q.; Qin, C.; Zeng, X.; Chen, Z.; Chen, Y.Z.; Zhu, F. Therapeutic target database update 2018: Enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res., 2018, 46(D1), D1121-D1127. doi: 10.1093/nar/gkx1076 PMID: 29140520
- Wenxiong, L.; Kuaiqiang, Z.; Zhu, L.; Li, L.; Yan, C.; Jichao, Y.; Yindi, S.; Feng, Y.; Yin, J.; Sun, Y. Effect of zuogui pill and yougui pill on osteoporosis: A randomized controlled trial. J. Tradit. Chin. Med., 2018, 38(1), 33-42. doi: 10.1016/j.jtcm.2018.01.005 PMID: 32185949
- Liu, S.H.; Chuang, W.C.; Lam, W.; Jiang, Z.; Cheng, Y.C. Safety surveillance of traditional Chinese medicine: Current and future. Drug Saf., 2015, 38(2), 117-128. doi: 10.1007/s40264-014-0250-z PMID: 25647717
- Zhang, L.; Han, L.; Wang, X.; Wei, Y.; Zheng, J.; Zhao, L.; Tong, X. Exploring the mechanisms underlying the therapeutic effect of Salvia miltiorrhiza in diabetic nephropathy using network pharmacology and molecular docking. Biosci. Rep., 2021, 41(6), BSR20203520. doi: 10.1042/BSR20203520 PMID: 33634308
- Hopkins, A.L. Network pharmacology. Nat. Biotechnol., 2007, 25(10), 1110-1111. doi: 10.1038/nbt1007-1110 PMID: 17921993
- Ning, K.; Zhao, X.; Poetsch, A.; Chen, W.H.; Yang, J. Computational molecular networks and network pharmacology. BioMed Res. Int., 2017, 2017, 1. doi: 10.1155/2017/7573904 PMID: 29250548
- Boezio, B.; Audouze, K.; Ducrot, P.; Taboureau, O. Network-based approaches in pharmacology. Mol. Inform., 2017, 36(10), 1700048. doi: 10.1002/minf.201700048 PMID: 28692140
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
- Liu, Z.; Guo, F.; Wang, Y.; Li, C.; Zhang, X.; Li, H.; Diao, L.; Gu, J.; Wang, W.; Li, D.; He, F. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional chinese medicine. Sci. Rep., 2016, 6(1), 21146. doi: 10.1038/srep21146 PMID: 26879404
- Huang, J.; Cheung, F.; Tan, H.Y.; Hong, M.; Wang, N.; Yang, J.; Feng, Y.; Zheng, Q. Identification of the active compounds and significant pathways of yinchenhao decoction based on network pharmacology. Mol. Med. Rep., 2017, 16(4), 4583-4592. doi: 10.3892/mmr.2017.7149 PMID: 28791364
- Qin, X.; Niu, Z.; Han, X.; Yang, Y.; Wei, Q.; Gao, X.; An, R.; Han, L.; Yang, W.; Chai, L.; Liu, E.; Gao, X.; Mao, H. Anti-perimenopausal osteoporosis effects of Erzhi formula via regulation of bone resorption through osteoclast differentiation: A network pharmacology-integrated experimental study. J. Ethnopharmacol., 2021, 270, 113815. doi: 10.1016/j.jep.2021.113815 PMID: 33444724
- The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2018, 46(5), 2699. doi: 10.1093/nar/gky092 PMID: 29425356
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2020, 48(D1), D845-D855. doi: 10.1093/nar/gkz1021 PMID: 31680165
- Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; Sirota-Madi, A.; Olender, T.; Golan, Y.; Stelzer, G.; Harel, A.; Lancet, D. GeneCards version 3: The human gene integrator. Database, 2010, 2010, baq020. doi: 10.1093/database/baq020 PMID: 20689021
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082. doi: 10.1093/nar/gkx1037 PMID: 29126136
- Amberger, J.S.; Hamosh, A. Searching online mendelian inheritance in man (OMIM): A knowledgebase of human genes and genetic phenotypes. Curr Protoc Bioinformatics, 2017, 58(1), 1-2. doi: 10.1002/cpbi.27 PMID: 28654725
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive venn diagram viewer. BMC Bioinformatics, 2014, 15(1), 293. doi: 10.1186/1471-2105-15-293 PMID: 25176396
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504. doi: 10.1101/gr.1239303 PMID: 14597658
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Proteinprotein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613. doi: 10.1093/nar/gky1131 PMID: 30476243
- Tang, Y.; Li, M.; Wang, J.; Pan, Y.; Wu, F.X. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems, 2015, 127, 67-72. doi: 10.1016/j.biosystems.2014.11.005 PMID: 25451770
- Jiao, X.; Sherman, B.T.; Huang, D.W.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. DAVID-WS: A stateful web service to facilitate gene/protein list analysis. Bioinformatics, 2012, 28(13), 1805-1806. doi: 10.1093/bioinformatics/bts251 PMID: 22543366
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395. doi: 10.1093/nar/gkaa971 PMID: 33151290
- Kouranov, A.; Xie, L.; de la Cruz, J.; Chen, L.; Westbrook, J.; Bourne, P.E.; Berman, H.M. The RCSB PDB information portal for structural genomics. Nucleic Acids Res., 2006, 34(90001), D302-D305. doi: 10.1093/nar/gkj120 PMID: 16381872
- Miyauchi, Y.; Sato, Y.; Kobayashi, T.; Yoshida, S.; Mori, T.; Kanagawa, H.; Katsuyama, E.; Fujie, A.; Hao, W.; Miyamoto, K.; Tando, T.; Morioka, H.; Matsumoto, M.; Chambon, P.; Johnson, R.S.; Kato, S.; Toyama, Y.; Miyamoto, T. HIF1α is required for osteoclast activation by estrogen deficiency in postmenopausal osteoporosis. Proc. Natl. Acad. Sci. USA, 2013, 110(41), 16568-16573. doi: 10.1073/pnas.1308755110 PMID: 24023068
- Cole, H.A.; Ohba, T.; Nyman, J.S.; Hirotaka, H.; Cates, J.M.M.; Flick, M.J.; Degen, J.L.; Schoenecker, J.G. Fibrin accumulation secondary to loss of plasmin-mediated fibrinolysis drives inflammatory osteoporosis in mice. Arthritis Rheumatol., 2014, 66(8), 2222-2233. doi: 10.1002/art.38639 PMID: 24664548
- Li, C.; Du, X.; Liu, Y.; Liu, Q.Q.; Zhi, W.B.; Wang, C.L.; Zhou, J.; Li, Y.; Zhang, H. A systems pharmacology approach for identifying the multiple mechanisms of action for the rougui-fuzi herb pair in the treatment of cardiocerebral vascular diseases. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-17. doi: 10.1155/2020/5196302 PMID: 32025235
- Fuggle, N.R.; Curtis, E.M.; Ward, K.A.; Harvey, N.C.; Dennison, E.M.; Cooper, C. Fracture prediction, imaging and screening in osteoporosis. Nat. Rev. Endocrinol., 2019, 15(9), 535-547. doi: 10.1038/s41574-019-0220-8 PMID: 31189982
- Chen, G.; Zhang, Z.; Liu, Y.; Lu, J.; Qi, X.; Fang, C.; Zhou, C. Efficacy and safety of Zuogui Pill in treating osteoporosis. Medicine, 2019, 98(8), e13936. doi: 10.1097/MD.0000000000013936 PMID: 30813123
- Liu, M.; Li, Y.; Pan, J.; Liu, H.; Wang, S.; Teng, J.; Zhao, H.; Ju, D. Effects of zuogui pill (see text) on Wnt singal transduction in rats with glucocorticoid-induced osteoporosis. J. Tradit. Chin. Med., 2011, 31(2), 98-102. doi: 10.1016/S0254-6272(11)60020-4 PMID: 21977807
- Yang, A.; Yu, C.; You, F.; He, C.; Li, Z. Mechanisms of zuogui pill in treating osteoporosis: Perspective from bone marrow mesenchymal stem cells. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-8. doi: 10.1155/2018/3717391 PMID: 30327678
- Liu, F-X.; Tan, F.; Fan, Q-L.; Tong, W-W.; Teng, Z-L.; Ye, S-M.; Li, X.; Zhang, M-Y.; Chai, Y.; Mai, C-Y. Zuogui Wan improves trabecular bone microarchitecture in ovariectomy-induced osteoporosis rats by regulating orexin-A and orexin receptor. J. Tradit. Chin. Med., 2021, 41(6), 927-934. doi: 10.19852/j.cnki.jtcm.20210903.001 PMID: 34939389
- Zhou, W.; Wang, Y.; Lu, A.; Zhang, G. Systems pharmacology in small molecular drug discovery. Int. J. Mol. Sci., 2016, 17(2), 246. doi: 10.3390/ijms17020246 PMID: 26901192
- Wang, N.; Wang, L.; Yang, J.; Wang, Z.; Cheng, L. Quercetin promotes osteogenic differentiation and antioxidant responses of mouse bone mesenchymal stem cells through activation of the AMPK/SIRT1 signaling pathway. Phytother. Res., 2021, 35(5), 2639-2650. doi: 10.1002/ptr.7010 PMID: 33421256
- Pandit, A.P.; Omase, S.B.; Mute, V.M. A chitosan film containing quercetin-loaded transfersomes for treatment of secondary osteoporosis. Drug Deliv. Transl. Res., 2020, 10(5), 1495-1506. doi: 10.1007/s13346-020-00708-5 PMID: 31942700
- Vakili, S.; Zal, F.; Mostafavi-pour, Z.; Savardashtaki, A.; Koohpeyma, F. Quercetin and vitamin E alleviate ovariectomy‐induced osteoporosis by modulating autophagy and apoptosis in rat bone cells. J. Cell. Physiol., 2021, 236(5), 3495-3509. doi: 10.1002/jcp.30087 PMID: 33030247
- Liu, H.; Yi, X.; Tu, S.; Cheng, C.; Luo, J. Kaempferol promotes BMSC osteogenic differentiation and improves osteoporosis by downregulating miR-10a-3p and upregulating CXCL12. Mol. Cell. Endocrinol., 2021, 520, 111074. doi: 10.1016/j.mce.2020.111074 PMID: 33157164
- Wong, S.K.; Chin, K.Y.; Ima-Nirwana, S. The osteoprotective effects of kaempferol: The evidence from in vivo and in vitro studies. Drug Des. Devel. Ther., 2019, 13, 3497-3514. doi: 10.2147/DDDT.S227738 PMID: 31631974
- Koura, H.M.; Ismail, N.A.; Kamel, A.F.; Ahmed, A.M.; Saad-Hussein, A.; Effat, L.K. A long-term study of bone mineral density in patients with phenylketonuria under diet therapy. Arch. Med. Sci., 2011, 3(3), 493-500. doi: 10.5114/aoms.2011.23417 PMID: 22295034
- Messer, J.G.; Hopkins, R.G.; Kipp, D.E. Quercetin metabolites up-regulate the antioxidant response in osteoblasts isolated from fetal rat calvaria. J. Cell. Biochem., 2015, 116(9), 1857-1866. doi: 10.1002/jcb.25141 PMID: 25716194
- Kříová, L.; Dadáková, K.; Kaparovská, J.; Kaparovský, T. Isoflavones. Molecules, 2019, 24(6), 1076. doi: 10.3390/molecules24061076 PMID: 30893792
- He, Q.; Yang, J.; Zhang, G.; Chen, D.; Zhang, M.; Pan, Z.; Wang, Z.; Su, L.; Zeng, J.; Wang, B.; Wang, H.; Chen, P. Sanhuang Jiangtang tablet protects type 2 diabetes osteoporosis via AKT-GSK3β-NFATc1 signaling pathway by integrating bioinformatics analysis and experimental validation. J. Ethnopharmacol., 2021, 273, 113946. doi: 10.1016/j.jep.2021.113946 PMID: 33647426
- Zhang, Y.; Wang, N.; Ma, J.; Chen, X.C.; Li, Z.; Zhao, W. Expression profile analysis of new candidate genes for the therapy of primary osteoporosis. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(3), 433-440. PMID: 26914116
- Jia, X.; Yang, M.; Hu, W.; Cai, S. Overexpression of miRNA-22-3p attenuates osteoporosis by targeting MAPK14. Exp. Ther. Med., 2021, 22(1), 692. doi: 10.3892/etm.2021.10124 PMID: 33986857
- Li, J.; Ayoub, A.; Xiu, Y.; Yin, X.; Sanders, J.O.; Mesfin, A.; Xing, L.; Yao, Z.; Boyce, B.F. TGFβ-induced degradation of TRAF3 in mesenchymal progenitor cells causes age-related osteoporosis. Nat. Commun., 2019, 10(1), 2795. doi: 10.1038/s41467-019-10677-0 PMID: 31243287
- Neugebauer, J.; Heilig, J.; Hosseinibarkooie, S.; Ross, B.C.; Mendoza-Ferreira, N.; Nolte, F.; Peters, M.; Hölker, I.; Hupperich, K.; Tschanz, T.; Grysko, V.; Zaucke, F.; Niehoff, A.; Wirth, B. Plastin 3 influences bone homeostasis through regulation of osteoclast activity. Hum. Mol. Genet., 2018, 27(24), 4249-4262. doi: 10.1093/hmg/ddy318 PMID: 30204862
- Liu, Z.; Li, C.; Huang, P.; Hu, F.; Jiang, M.; Xu, X.; Li, B.; Deng, L.; Ye, T.; Guo, L. CircHmbox1 targeting mirna-1247-5p is involved in the regulation of bone metabolism by tnf-α in postmenopausal osteoporosis. Front. Cell Dev. Biol., 2020, 8, 594785. doi: 10.3389/fcell.2020.594785 PMID: 33425899
- Yang, F.; Jia, Y.; Sun, Q.; Zheng, C.; Liu, C.; Wang, W.; Du, L.; Kang, S.; Niu, X.; Li, J. Raloxifene improves TNF α induced osteogenic differentiation inhibition of bone marrow mesenchymal stem cells and alleviates osteoporosis. Exp. Ther. Med., 2020, 20(1), 309-314. doi: 10.3892/etm.2020.8689 PMID: 32550885
- Lerbs, T.; Cui, L.; Muscat, C.; Saleem, A.; van Neste, C.; Domizi, P.; Chan, C.; Wernig, G. Expansion of bone precursors through jun as a novel treatment for osteoporosis-associated fractures. Stem Cell Reports, 2020, 14(4), 603-613. doi: 10.1016/j.stemcr.2020.02.009 PMID: 32197115
- Chen, S.; Li, Y.; Zhi, S.; Ding, Z.; Huang, Y.; Wang, W.; Zheng, R.; Yu, H.; Wang, J.; Hu, M.; Miao, J.; Li, J. lncRNA xist regulates osteoblast differentiation by sponging mir-19a-3p in aging-induced osteoporosis. Aging Dis., 2020, 11(5), 1058-1068. doi: 10.14336/AD.2019.0724 PMID: 33014522
- Mazurek, A.H.; Szeleszczuk, Ł.; Simonson, T.; Pisklak, D.M. Application of various molecular modelling methods in the study of estrogens and xenoestrogens. Int. J. Mol. Sci., 2020, 21(17), 6411. doi: 10.3390/ijms21176411 PMID: 32899216
- Cao, B.; Chai, C.; Zhao, S. Protective effect of Edaravone against hypoxia-induced cytotoxicity in osteoblasts MC3T3-E1 cells. IUBMB Life, 2015, 67(12), 928-933. doi: 10.1002/iub.1436 PMID: 26596678
- Beringer, A.; Gouriou, Y.; Lavocat, F.; Ovize, M.; Miossec, P. Blockade of store-operated calcium entry reduces il-17/tnf cytokine-induced inflammatory response in human myoblasts. Front. Immunol., 2019, 9, 3170. doi: 10.3389/fimmu.2018.03170 PMID: 30693003
- Wu, L.; Luo, Z.; Liu, Y.; Jia, L.; Jiang, Y.; Du, J.; Guo, L.; Bai, Y.; Liu, Y. Aspirin inhibits RANKL-induced osteoclast differentiation in dendritic cells by suppressing NF-κB and NFATc1 activation. Stem Cell Res. Ther., 2019, 10(1), 375. doi: 10.1186/s13287-019-1500-x PMID: 31805984
- Al Mamun, M.A.; Asim, M.M.H.; Sahin, M.A.Z.; Al-Bari, M.A.A. Flavonoids compounds from Tridax procumbens inhibit osteoclast differentiation by down‐regulating c‐Fos activation. J. Cell. Mol. Med., 2020, 24(4), 2542-2551. doi: 10.1111/jcmm.14948 PMID: 31919976
- Jeong, Y.H.; Hur, H.J.; Lee, A.S.; Lee, S.H.; Sung, M.J. Amaranthus mangostanus inhibits the differentiation of osteoclasts and prevents ovariectomy-induced bone loss. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-11. doi: 10.1155/2020/1927017 PMID: 32089716
- Wu, D.; Zhang, X.; Liu, L.; Guo, Y. Key CMM combinations in prescriptions for treating mastitis and working mechanism analysis based on network pharmacology. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-11. doi: 10.1155/2019/8245071 PMID: 30911319
- Zha, J.; Wang, X.; Di, J. MiR-920 promotes osteogenic differentiation of human bone mesenchymal stem cells by targeting HOXA7. J. Orthop. Surg. Res., 2020, 15(1), 254. doi: 10.1186/s13018-020-01775-7 PMID: 32650806
- Wu, H.; Hu, B.; Zhou, X.; Zhou, C.; Meng, J.; Yang, Y.; Zhao, X.; Shi, Z.; Yan, S. Artemether attenuates LPS-induced inflammatory bone loss by inhibiting osteoclastogenesis and bone resorption via suppression of MAPK signaling pathway. Cell Death Dis., 2018, 9(5), 498. doi: 10.1038/s41419-018-0540-y PMID: 29703893
- Zantut-Wittmann, D.E.; Quintino-Moro, A.; dos Santos, P.N.S.; Melhado-Kimura, V.; Bahamondes, L.; Fernandes, A. Lack of influence of thyroid hormone on bone mineral density and body composition in healthy euthyroid women. Front. Endocrinol., 2020, 10, 890. doi: 10.3389/fendo.2019.00890 PMID: 31998231
- Delitala, A.P.; Scuteri, A.; Doria, C. Thyroid hormone diseases and osteoporosis. J. Clin. Med., 2020, 9(4), 1034. doi: 10.3390/jcm9041034 PMID: 32268542
补充文件
