The Development of Stress Reactivity and Regulation in Children and Adolescents


Cite item

Full Text

Abstract

Adversity experienced in early life can have detrimental effects on physical and mental health. One pathway in which these effects occur is through the hypothalamic-pituitary-adrenal (HPA) axis, a key physiological stress-mediating system. In this review, we discuss the theoretical perspectives that guide stress reactivity and regulation research, the anatomy and physiology of the axis, developmental changes in the axis and its regulation, brain systems regulating stress, the role of genetic and epigenetics variation in axis development, sensitive periods in stress system calibration, the social regulation of stress (i.e., social buffering), and emerging research areas in the study of stress physiology and development. Understanding the development of stress reactivity and regulation is crucial for uncovering how early adverse experiences influence mental and physical health.

About the authors

Clarissa Filetti

Institute of Child Development, University of Minnesota

Author for correspondence.
Email: info@benthamscience.net

Finola Kane-Grade

Institute of Child Development, University of Minnesota

Author for correspondence.
Email: info@benthamscience.net

Megan Gunnar

Institute of Child Development, University of Minnesota

Email: info@benthamscience.net

References

  1. Koss, K.J.; Gunnar, M.R. Annual Research Review: Early adversity, the hypothalamic-pituitary-adrenocortical axis, and child psychopathology. J. Child Psychol. Psychiatry, 2018, 59(4), 327-346. doi: 10.1111/jcpp.12784 PMID: 28714126
  2. McLaughlin, K.A.; Sheridan, M.A. Beyond cumulative risk. Curr. Dir. Psychol. Sci., 2016, 25(4), 239-245. doi: 10.1177/0963721416655883 PMID: 27773969
  3. McEwen, B.S.; Stellar, E. Stress and the individual. Arch. Intern. Med., 1993, 153(18), 2093-2101. doi: 10.1001/archinte.1993.00410180039004 PMID: 8379800
  4. McEwen, B.S. Allostasis and the epigenetics of brain and body health over the life course. JAMA Psychiatry, 2017, 74(6), 551-552. doi: 10.1001/jamapsychiatry.2017.0270 PMID: 28445556
  5. Seeman, T.E.; Singer, B.H.; Rowe, J.W.; Horwitz, R.I.; McEwen, B.S. Price of adaptation-allostatic load and its health consequences. MacArthur studies of successful aging. Arch. Intern. Med., 1997, 157(19), 2259-2268. doi: 10.1001/archinte.1997.00440400111013 PMID: 9343003
  6. Boyce, W.T.; Ellis, B.J. Biological sensitivity to context: I. An evolutionary-developmental theory of the origins and functions of stress reactivity. Dev. Psychopathol., 2005, 17(2), 271-301. doi: 10.1017/S0954579405050145 PMID: 16761546
  7. Belsky, J.; Pluess, M. Beyond diathesis stress: Differential susceptibility to environmental influences. Psychol. Bull., 2009, 135(6), 885-908. doi: 10.1037/a0017376 PMID: 19883141
  8. Del Giudice, M.; Ellis, B.J.; Shirtcliff, E.A. The adaptive calibration model of stress responsivity. Neurosci. Biobehav. Rev., 2011, 35(7), 1562-1592. doi: 10.1016/j.neubiorev.2010.11.007 PMID: 21145350
  9. McLaughlin, K.A.; Sheridan, M.A.; Tibu, F.; Fox, N.A.; Zeanah, C.H.; Nelson, C.A., III Causal effects of the early caregiving environment on development of stress response systems in children. Proc. Natl. Acad. Sci. USA, 2015, 112(18), 5637-5642. doi: 10.1073/pnas.1423363112 PMID: 25902515
  10. Gunnar, M.R.; DePasquale, C.E.; Reid, B.M.; Donzella, B.; Miller, B.S. Pubertal stress recalibration reverses the effects of early life stress in postinstitutionalized children. Proc. Natl. Acad. Sci. USA, 2019, 116(48), 23984-23988. doi: 10.1073/pnas.1909699116 PMID: 31712449
  11. Daskalakis, N.P.; Bagot, R.C.; Parker, K.J.; Vinkers, C.H.; de Kloet, E.R. The three-hit concept of vulnerability and resilience: Toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology, 2013, 38(9), 1858-1873. doi: 10.1016/j.psyneuen.2013.06.008 PMID: 23838101
  12. Ulrich-Lai, Y.M.; Herman, J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci., 2009, 10(6), 397-409. doi: 10.1038/nrn2647 PMID: 19469025
  13. Gunnar, M.R.; Vasquez, D.M. Stress neurobiology and development psychopathology. In: Developmental Psychopathology, 2nd edition,; , 2006; 2, pp. 533-577.
  14. Jirikowski, G.F.; Rodewald, A.; Sivukhina, E.; Caldwell, J. Corticosteroid binding globulin; Reference Module in Neuroscience and Biobehavioral Psychology, 2017. doi: 10.1016/B978-0-12-809324-5.03222-3
  15. Zhang, J.; Li, J.; Xu, Y.; Yang, J.; Chen, Z.; Deng, H. Characteristics of novel hair-based biomarker for the activity assessment of 11β-hydroxysteroid dehydrogenase. Clin. Chim. Acta, 2013, 426, 25-32. doi: 10.1016/j.cca.2013.08.022 PMID: 24001694
  16. Raul, J.S.; Cirimele, V.; Ludes, B.; Kintz, P. Detection of physiological concentrations of cortisol and cortisone in human hair. Clin. Biochem., 2004, 37(12), 1105-1111. doi: 10.1016/j.clinbiochem.2004.02.010 PMID: 15589817
  17. Gomez-Sanchez, E.; Gomez-Sanchez, C.E. The multifaceted mineralocorticoid receptor. Compr. Physiol., 2014, 4(3), 965-994. doi: 10.1002/cphy.c130044 PMID: 24944027
  18. Joëls, M.; de Kloet, E.R. 30 years of the mineralocorticoid receptor: The brain mineralocorticoid receptor: A saga in three episodes. J. Endocrinol., 2017, 234(1), T49-T66. doi: 10.1530/JOE-16-0660 PMID: 28634266
  19. McEwen, B.S. Glucocorticoids and hippocampus: Receptors in search of a function. Adrenal actions on brain; Springer, 1982, pp. 1-22. doi: 10.1007/978-3-642-68336-7_1
  20. Madalena, K.M.; Lerch, J.K. The effect of glucocorticoid and glucocorticoid receptor interactions on brain, spinal cord, and glial cell plasticity. Neural Plasticity., 2017, 2017, 8640970.
  21. Fries, E.; Hesse, J.; Hellhammer, J.; Hellhammer, D.H. A new view on hypocortisolism. Psychoneuroendocrinology, 2005, 30(10), 1010-1016. doi: 10.1016/j.psyneuen.2005.04.006 PMID: 15950390
  22. Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci., 2009, 10(6), 434-445. doi: 10.1038/nrn2639 PMID: 19401723
  23. Rosen, J.B.; Schulkin, J. From normal fear to pathological anxiety. Psychol. Rev., 1998, 105(2), 325-350. doi: 10.1037/0033-295X.105.2.325 PMID: 9577241
  24. Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev., 2000, 21(1), 55-89. PMID: 10696570
  25. Kirschbaum, C.; Hellhammer, D.H. Salivary cortisol in psychoneuroendocrine research: Recent developments and applications. Psychoneuroendocrinology, 1994, 19(4), 313-333. doi: 10.1016/0306-4530(94)90013-2 PMID: 8047637
  26. Adam, E.K.; Quinn, M.E.; Tavernier, R.; McQuillan, M.T.; Dahlke, K.A.; Gilbert, K.E. Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology, 2017, 83(83), 25-41. doi: 10.1016/j.psyneuen.2017.05.018 PMID: 28578301
  27. Shirtcliff, E.A.; Allison, A.L.; Armstrong, J.M.; Slattery, M.J.; Kalin, N.H.; Essex, M.J. Longitudinal stability and developmental properties of salivary cortisol levels and circadian rhythms from childhood to adolescence. Dev. Psychobiol., 2012, 54(5), 493-502. doi: 10.1002/dev.20607 PMID: 21953537
  28. Russell, G.; Lightman, S. The human stress response. Nat. Rev. Endocrinol., 2019, 15(9), 525-534. doi: 10.1038/s41574-019-0228-0 PMID: 31249398
  29. Ishimoto, H.; Jaffe, R.B. Development and function of the human fetal adrenal cortex: A key component in the feto-placental unit. Endocr. Rev., 2011, 32(3), 317-355. doi: 10.1210/er.2010-0001 PMID: 21051591
  30. Rosenfeld, P.; van Eekelen, J.A.M.; Levine, S.; de Kloet, E.R. Ontogeny of corticosteroid receptors in the brain. Cell. Mol. Neurobiol., 1993, 13(4), 295-319. doi: 10.1007/BF00711575 PMID: 8252605
  31. Noroña, A.N.; Doom, J.R.; Davis, E.P.; Gunnar, M.R. The effects of stress on early brain and behavioral development. Neural Circuit and Cognitive Development; Elsevier: Amsterdam, 2020, pp. 561-584. doi: 10.1016/B978-0-12-814411-4.00026-3
  32. O’Donnell, K.J.; Meaney, M.J. Epigenetics, Development, and Psychopathology. Annu. Rev. Clin. Psychol., 2020, 16(1), 327-350. doi: 10.1146/annurev-clinpsy-050718-095530 PMID: 32084320
  33. Leneman, K.B.; Gunnar, M.R. 25 Developmental timing of stress effects on the brain. The Oxford Handbook of Stress and Mental Health; Oxford university press: Oxford, England, 2018.
  34. Gunnar, M.R. The psychobiology of stress and coping in the human. Stress and Coping, 1985, 1, 179.
  35. Gunnar, M.R.; Talge, N.M.; Herrera, A. Stressor paradigms in developmental studies: What does and does not work to produce mean increases in salivary cortisol. Psychoneuroendocrinology, 2009, 34(7), 953-967. doi: 10.1016/j.psyneuen.2009.02.010 PMID: 19321267
  36. Gunnar, M.R.; Donzella, B. Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology, 2002, 27(1-2), 199-220. doi: 10.1016/S0306-4530(01)00045-2 PMID: 11750779
  37. Lashansky, G.; Saenger, P.; Fishman, K.; Gautier, T.; Mayes, D.; Berg, G.; Martino-nardi, J.D.; Reiter, E. Normative data for adrenal steroidogenesis in a healthy pediatric population: Age-and sex-related changes after adrenocorticotropin stimulation. J. Clin. Endocrinol. Metab., 1991, 73(3), 674-686. doi: 10.1210/jcem-73-3-674 PMID: 1651957
  38. Klug, I.; Dressendörfer, R.; Strasburger, C.; Kühl, G.P.; Reiter, H.L.; Reich, A.; Müller, G.; Meyer, K.; Kratzsch, J.; Kiess, W. Cortisol and 17-hydroxyprogesterone levels in saliva of healthy neonates: Normative data and relation to body mass index, arterial cord blood ph and time of sampling after birth. Neonatology, 2000, 78(1), 22-26. doi: 10.1159/000014242 PMID: 10878418
  39. Mesas, A.E.; Sánchez-López, M.; Pozuelo-Carrascosa, D.P.; Sequí-Domínguez, I.; Jiménez-López, E.; Martínez-Vizcaíno, V. The role of daytime napping on salivary cortisol in children aged 0–5 years: A systematic review and meta-analysis. Eur. J. Pediatr., 2022, 181(4), 1437-1448. doi: 10.1007/s00431-021-04371-x PMID: 35028729
  40. Vermeer, H.J.; van IJzendoorn, M.H. Children’s elevated cortisol levels at daycare: A review and meta-analysis. Early Child. Res. Q., 2006, 21(3), 390-401. doi: 10.1016/j.ecresq.2006.07.004
  41. Gunnar, M.R.; Kryzer, E.; Van Ryzin, M.J.; Phillips, D.A. The rise in cortisol in family day care: Associations with aspects of care quality, child behavior, and child sex. Child Dev., 2010, 81(3), 851-869. doi: 10.1111/j.1467-8624.2010.01438.x PMID: 20573109
  42. Nystad, K.; Drugli, M.B.; Lydersen, S.; Lekhal, R.; Buøen, E.S. Change in toddlers’ cortisol activity during a year in childcare. Associations with childcare quality, child temperament, well-being and maternal education. Stress, 2022, 25(1), 156-165. doi: 10.1080/10253890.2022.2048371 PMID: 35389301
  43. Sumner, M.M.; Bernard, K.; Dozier, M. Young children’s full-day patterns of cortisol production on child care days. Arch. Pediatr. Adolesc. Med., 2010, 164(6), 567-571. doi: 10.1001/archpediatrics.2010.85 PMID: 20530308
  44. Gunnar, M.R.; Kryzer, E.; Van Ryzin, M.J.; Phillips, D.A. The import of the cortisol rise in child care differs as a function of behavioral inhibition. Dev. Psychol., 2011, 47(3), 792-803. doi: 10.1037/a0021902 PMID: 21171752
  45. Berry, D.; Blair, C.; Ursache, A.; Willoughby, M.; Garrett-Peters, P.; Vernon-Feagans, L.; Bratsch-Hines, M.; Mills-Koonce, W.R.; Granger, D.A. Child care and cortisol across early childhood: Context matters. Dev. Psychol., 2014, 50(2), 514-525. doi: 10.1037/a0033379 PMID: 23772818
  46. Quinn, T.; Greaves, R.; Badoer, E.; Walker, D. DHEA in prenatal and postnatal life: implications for brain and behavior. Vitam. Horm., 2018, 108, 145-174. doi: 10.1016/bs.vh.2018.03.001 PMID: 30029725
  47. Grumbach, M.M. The neuroendocrinology of human puberty revisited. Horm. Res. Paediatr., 2002, 57(Suppl. 2), 2-14. doi: 10.1159/000058094 PMID: 12065920
  48. Klimes-Dougan, B.; Hastings, P.D.; Granger, D.A.; Usher, B.A.; Zahn-Waxler, C. Adrenocortical activity in at-risk and normally developing adolescents: Individual differences in salivary cortisol basal levels, diurnal variation, and responses to social challenges. Dev. Psychopathol., 2001, 13(3), 695-719. doi: 10.1017/S0954579401003157 PMID: 11523855
  49. Sumter, S.R.; Bokhorst, C.L.; Miers, A.C.; Van Pelt, J.; Westenberg, P.M. Age and puberty differences in stress responses during a public speaking task: Do adolescents grow more sensitive to social evaluation? Psychoneuroendocrinology, 2010, 35(10), 1510-1516. doi: 10.1016/j.psyneuen.2010.05.004 PMID: 20541871
  50. Kudielka, B.M.; Kirschbaum, C. Sex differences in HPA axis responses to stress: A review. Biol. Psychol., 2005, 69(1), 113-132. doi: 10.1016/j.biopsycho.2004.11.009 PMID: 15740829
  51. Smith, S.M.; Vale, W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci., 2022. PMID: 17290797
  52. Sawchenko, P.E.; Li, H.Y.; Ericsson, A. Circuits and mechanisms governing hypothalamic responses to stress: A tale of two paradigms. Prog. Brain Res., 2000, 122, 61-78. doi: 10.1016/S0079-6123(08)62131-7 PMID: 10737051
  53. Herman, J.P. Regulation of hypothalamo-pituitary-adrenocortical responses to stressors by the nucleus of the solitary tract/dorsal vagal complex. Cell. Mol. Neurobiol., 2018, 38(1), 25-35. doi: 10.1007/s10571-017-0543-8 PMID: 28895001
  54. Herman, J.P. The neuroendocrinology of stress: Glucocorticoid signaling mechanisms. Psychoneuroendocrinology, 2022, 137, 105641. doi: 10.1016/j.psyneuen.2021.105641 PMID: 34954409
  55. Chen, P.B.; Hu, R.K.; Wu, Y.E.; Pan, L.; Huang, S.; Micevych, P.E.; Hong, W. Sexually dimorphic control of parenting behavior by the medial amygdala. Cell, 2019, 176(5), 1206-1221.e18. doi: 10.1016/j.cell.2019.01.024 PMID: 30773317
  56. Haller, J. The role of central and medial amygdala in normal and abnormal aggression: A review of classical approaches. Neurosci. Biobehav. Rev., 2018, 85, 34-43. doi: 10.1016/j.neubiorev.2017.09.017 PMID: 28918358
  57. Browning, K.N.; Travagli, R.A. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol., 2014, 4(4), 1339-1368. doi: 10.1002/cphy.c130055 PMID: 25428846
  58. Sah, P.; Faber, E.S.L.; Lopez De Armentia, M.; Power, J. The amygdaloid complex: Anatomy and physiology. Physiol. Rev., 2003, 83(3), 803-834. doi: 10.1152/physrev.00002.2003 PMID: 12843409
  59. Shepard, J.D.; Barron, K.W.; Myers, D.A. Stereotaxic localization of corticosterone to the amygdala enhances hypothalamo-pituitary–adrenal responses to behavioral stress. Brain Res., 2003, 963(1-2), 203-213. doi: 10.1016/S0006-8993(02)03978-1 PMID: 12560126
  60. Magarin˜os, A.M.; McEwen, B.S. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: Involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience, 1995, 69(1), 89-98. doi: 10.1016/0306-4522(95)00259-L PMID: 8637636
  61. Buss, C.; Davis, E.P.; Shahbaba, B.; Pruessner, J.C.; Head, K.; Sandman, C.A. Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proc. Natl. Acad. Sci. USA, 2012, 109(20), E1312-E1319. doi: 10.1073/pnas.1201295109 PMID: 22529357
  62. Fowler, C.H.; Bogdan, R.; Gaffrey, M.S. Stress-induced cortisol response is associated with right amygdala volume in early childhood. Neurobiol. Stress, 2021, 14, 100329. doi: 10.1016/j.ynstr.2021.100329 PMID: 33997154
  63. Pagliaccio, D.; Luby, J.L.; Bogdan, R.; Agrawal, A.; Gaffrey, M.S.; Belden, A.C.; Botteron, K.N.; Harms, M.P.; Barch, D.M. Stress-system genes and life stress predict cortisol levels and amygdala and hippocampal volumes in children. Neuropsychopharmacology, 2014, 39(5), 1245-1253. doi: 10.1038/npp.2013.327 PMID: 24304824
  64. Vyas, A.; Mitra, R.; Shankaranarayana Rao, B.S.; Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci., 2002, 22(15), 6810-6818. doi: 10.1523/JNEUROSCI.22-15-06810.2002 PMID: 12151561
  65. Chareyron, L.J.; Lavenex, P.B.; Amaral, D.G.; Lavenex, P. Postnatal development of the amygdala: A stereological study in macaque monkeys. J. Comp. Neurol., 2012, 520(9), 1965-1984. doi: 10.1002/cne.23023 PMID: 22173686
  66. Guadagno, A.; Belliveau, C.; Mechawar, N.; Walker, C.D. Effects of early life stress on the developing basolateral amygdala-prefrontal cortex circuit: the emerging role of local inhibition and perineuronal nets. Front. Hum. Neurosci., 2021, 15, 669120. doi: 10.3389/fnhum.2021.669120 PMID: 34512291
  67. de Campo, D.M.; Cameron, J.L.; Miano, J.M.; Lewis, D.A.; Mirnics, K.; Fudge, J.L. Maternal deprivation alters expression of neural maturation gene tbr1 in the amygdala paralaminar nucleus in infant female macaques. Dev. Psychobiol., 2017, 59(2), 235-249. doi: 10.1002/dev.21493 PMID: 27917473
  68. Gee, D.G.; Gabard-Durnam, L.J.; Flannery, J.; Goff, B.; Humphreys, K.L.; Telzer, E.H.; Hare, T.A.; Bookheimer, S.Y.; Tottenham, N. Early developmental emergence of human amygdala–prefrontal connectivity after maternal deprivation. Proc. Natl. Acad. Sci. USA, 2013, 110(39), 15638-15643. doi: 10.1073/pnas.1307893110 PMID: 24019460
  69. Herman, J.P.; Figueiredo, H.; Mueller, N.K.; Ulrich-Lai, Y.; Ostrander, M.M.; Choi, D.C.; Cullinan, W.E. Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness. Front. Neuroendocrinol., 2003, 24(3), 151-180. doi: 10.1016/j.yfrne.2003.07.001 PMID: 14596810
  70. Herman, J.P.; Schäfer, M.K.; Young, E.A.; Thompson, R.; Douglass, J.; Akil, H.; Watson, S.J. Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis. J. Neurosci., 1989, 9(9), 3072-3082. doi: 10.1523/JNEUROSCI.09-09-03072.1989 PMID: 2795152
  71. Herman, J.P.; Chen, K.C.; Booze, R.; Landfield, P.W. Up-regulation of α1D Ca2+ channel subunit mRNA expression in the hippocampus of aged F344 rats. Neurobiol. Aging, 1998, 19(6), 581-587. doi: 10.1016/S0197-4580(98)00099-2 PMID: 10192218
  72. Cullinan, W.E.; Herman, J.P.; Watson, S.J. Ventral subicular interaction with the hypothalamic paraventricular nucleus: Evidence for a relay in the bed nucleus of the stria terminalis. J. Comp. Neurol., 1993, 332(1), 1-20. doi: 10.1002/cne.903320102 PMID: 7685778
  73. Cullinan, W.E.; Herman, J.P.; Battaglia, D.F.; Akil, H.; Watson, S.J. Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience, 1995, 64(2), 477-505. doi: 10.1016/0306-4522(94)00355-9 PMID: 7700534
  74. Myers, B.; Carvalho-Netto, E.; Wick-Carlson, D.; Wu, C.; Naser, S.; Solomon, M.B.; Ulrich-Lai, Y.M.; Herman, J.P. GABAergic signaling within a limbic-hypothalamic circuit integrates social and anxiety-like behavior with stress reactivity. Neuropsychopharmacology, 2016, 41(6), 1530-1539. doi: 10.1038/npp.2015.311 PMID: 26442601
  75. Blankenship, S.L.; Chad-Friedman, E.; Riggins, T.; Dougherty, L.R. Early parenting predicts hippocampal subregion volume via stress reactivity in childhood. Dev. Psychobiol., 2019, 61(1), 125-140. doi: 10.1002/dev.21788 PMID: 30288730
  76. Merz, E.C.; Desai, P.M.; Maskus, E.A.; Melvin, S.A.; Rehman, R.; Torres, S.D.; Meyer, J.; He, X.; Noble, K.G. Socioeconomic disparities in chronic physiologic stress are associated with brain structure in children. Biol. Psychiatry, 2019, 86(12), 921-929. doi: 10.1016/j.biopsych.2019.05.024 PMID: 31409452
  77. Jabès, A.; Lavenex, P.B.; Amaral, D.G.; Lavenex, P. Postnatal development of the hippocampal formation: A stereological study in macaque monkeys. J. Comp. Neurol., 2011, 519(6), 1051-1070. doi: 10.1002/cne.22549 PMID: 21344402
  78. Diorio, D.; Viau, V.; Meaney, M.J. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J. Neurosci., 1993, 13(9), 3839-3847. doi: 10.1523/JNEUROSCI.13-09-03839.1993 PMID: 8396170
  79. Figueiredo, H.F.; Bruestle, A.; Bodie, B.; Dolgas, C.M.; Herman, J.P. The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. Eur. J. Neurosci., 2003, 18(8), 2357-2364. doi: 10.1046/j.1460-9568.2003.02932.x PMID: 14622198
  80. Sullivan, R.M.; Gratton, A. Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats. J. Neurosci., 1999, 19(7), 2834-2840. doi: 10.1523/JNEUROSCI.19-07-02834.1999 PMID: 10087094
  81. Tottenham, N. Early adversity and the neotenous human brain. Biol. Psychiatry, 2020, 87(4), 350-358. doi: 10.1016/j.biopsych.2019.06.018 PMID: 31399257
  82. Gee, D.G.; Gabard-Durnam, L.; Telzer, E.H.; Humphreys, K.L.; Goff, B.; Shapiro, M.; Flannery, J.; Lumian, D.S.; Fareri, D.S.; Caldera, C.; Tottenham, N. Maternal buffering of human amygdala-prefrontal circuitry during childhood but not during adolescence. Psychol. Sci., 2014, 25(11), 2067-2078. doi: 10.1177/0956797614550878 PMID: 25280904
  83. Vertes, R.P.; Linley, S.B.; Hoover, W.B. Limbic circuitry of the midline thalamus. Neurosci. Biobehav. Rev., 2015, 54, 89-107. doi: 10.1016/j.neubiorev.2015.01.014 PMID: 25616182
  84. Bhatnagar, S.; Huber, R.; Nowak, N.; Trotter, P. Lesions of the posterior paraventricular thalamus block habituation of hypothalamic-pituitary-adrenal responses to repeated restraint. J. Neuroendocrinol., 2002, 14(5), 403-410. doi: 10.1046/j.0007-1331.2002.00792.x PMID: 12000546
  85. Jaferi, A.; Nowak, N.; Bhatnagar, S. Negative feedback functions in chronically stressed rats: role of the posterior paraventricular thalamus. Physiol. Behav., 2003, 78(3), 365-373. doi: 10.1016/S0031-9384(03)00014-3 PMID: 12676271
  86. McEwen, B.S.; Nasca, C.; Gray, J.D. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology, 2016, 41(1), 3-23. doi: 10.1038/npp.2015.171 PMID: 26076834
  87. Sanchez, M.M.; Mccormack, K.; Grand, A.P.; Fulks, R.; Graff, A.; Maestripieri, D. Effects of sex and early maternal abuse on adrenocorticotropin hormone and cortisol responses to the corticotropin-releasing hormone challenge during the first 3 years of life in group-living rhesus monkeys. Dev. Psychopathol., 2010, 22(1), 45-53. doi: 10.1017/S0954579409990253 PMID: 20102646
  88. Giedd, J.N.; Blumenthal, J.; Jeffries, N.O.; Castellanos, F.X.; Liu, H.; Zijdenbos, A.; Paus, T.; Evans, A.C.; Rapoport, J.L. Brain development during childhood and adolescence: A longitudinal MRI study. Nat. Neurosci., 1999, 2(10), 861-863. doi: 10.1038/13158 PMID: 10491603
  89. Meaney, M.J.; Szyf, M.; Seckl, J.R. Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol. Med., 2007, 13(7), 269-277. doi: 10.1016/j.molmed.2007.05.003 PMID: 17544850
  90. Bunea, I.M. Szentágotai-Tătar, A.; Miu, A.C. Early-life adversity and cortisol response to social stress: A meta-analysis. Transl. Psychiatry, 2017, 7(12), 1274. doi: 10.1038/s41398-017-0032-3 PMID: 29225338
  91. Capitanio, J.P.; Mendoza, S.P.; Mason, W.A.; Maninger, N. Rearing environment and hypothalamic-pituitary-adrenal regulation in young rhesus monkeys (Macaca mulatta). Dev. Psychobiol., 2005, 46(4), 318-330. doi: 10.1002/dev.20067 PMID: 15832323
  92. VanTieghem, M.; Korom, M.; Flannery, J.; Choy, T.; Caldera, C.; Humphreys, K.L.; Gabard-Durnam, L.; Goff, B.; Gee, D.G.; Telzer, E.H.; Shapiro, M.; Louie, J.Y.; Fareri, D.S.; Bolger, N.; Tottenham, N. Longitudinal changes in amygdala, hippocampus and cortisol development following early caregiving adversity. Dev. Cogn. Neurosci., 2021, 48, 100916. doi: 10.1016/j.dcn.2021.100916 PMID: 33517107
  93. Gaffrey, M.S.; Barch, D.M.; Bogdan, R.; Farris, K.; Petersen, S.E.; Luby, J.L. Amygdala reward reactivity mediates the association between preschool stress response and depression severity. Biol. Psychiatry, 2018, 83(2), 128-136. doi: 10.1016/j.biopsych.2017.08.020 PMID: 29102026
  94. Koss, K.J.; Mliner, S.B.; Donzella, B.; Gunnar, M.R. Early adversity, hypocortisolism, and behavior problems at school entry: A study of internationally adopted children. Psychoneuroendocrinology, 2016, 66, 31-38. doi: 10.1016/j.psyneuen.2015.12.018 PMID: 26773398
  95. Barch, D.M.; Tillman, R.; Kelly, D.; Whalen, D.; Gilbert, K.; Luby, J.L. Hippocampal volume and depression among young children. Psychiatry Res. Neuroimaging, 2019, 288, 21-28. doi: 10.1016/j.pscychresns.2019.04.012 PMID: 31071541
  96. Tottenham, N.; Hare, T.A.; Quinn, B.T.; McCarry, T.W.; Nurse, M.; Gilhooly, T.; Millner, A.; Galvan, A.; Davidson, M.C.; Eigsti, I.M.; Thomas, K.M.; Freed, P.J.; Booma, E.S.; Gunnar, M.R.; Altemus, M.; Aronson, J.; Casey, B.J. Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Dev. Sci., 2010, 13(1), 46-61. doi: 10.1111/j.1467-7687.2009.00852.x PMID: 20121862
  97. Sousa, N.; Madeira, M.D.; Paula-Barbosa, M.M. Effects of corticosterone treatment and rehabilitation on the hippocampal formation of neonatal and adult rats. An unbiased stereological study. Brain Res., 1998, 794(2), 199-210. doi: 10.1016/S0006-8993(98)00218-2 PMID: 9622630
  98. Monroe, S.M.; Simons, A.D. Diathesis-stress theories in the context of life stress research: Implications for the depressive disorders. Psychol. Bull., 1991, 110(3), 406-425. doi: 10.1037/0033-2909.110.3.406 PMID: 1758917
  99. Bartels, M.; Van den Berg, M.; Sluyter, F.; Boomsma, D.I.; de Geus, E.J.C. Heritability of cortisol levels: review and simultaneous analysis of twin studies. Psychoneuroendocrinology, 2003, 28(2), 121-137. doi: 10.1016/S0306-4530(02)00003-3 PMID: 12510008
  100. Raffington, L.; Malanchini, M.; Grotzinger, A.D.; Madole, J.W.; Engelhardt, L.E.; Sabhlok, A.; Youn, C.; Patterson, M.W.; Harden, K.P.; Tucker-Drob, E.M. An in-laboratory stressor reveals unique genetic variation in child cortisol output. Dev. Psychol., 2022, 58(10), 1832-1848. doi: 10.1037/dev0001393 PMID: 35771497
  101. Argentieri, M.A.; Nagarajan, S.; Seddighzadeh, B.; Baccarelli, A.A.; Shields, A.E. Epigenetic pathways in human disease: The impact of DNA methylation on stress-related pathogenesis and current challenges in biomarker development. EBioMedicine, 2017, 18, 327-350. doi: 10.1016/j.ebiom.2017.03.044 PMID: 28434943
  102. Zannas, A.S.; Wiechmann, T.; Gassen, N.C.; Binder, E.B. Gene-stress-epigenetic regulation of FKBP5: clinical and translational implications. Neuropsychopharmacology, 2016, 41(1), 261-274. doi: 10.1038/npp.2015.235 PMID: 26250598
  103. Binder, E.B.; Salyakina, D.; Lichtner, P.; Wochnik, G.M.; Ising, M.; Pütz, B.; Papiol, S.; Seaman, S.; Lucae, S.; Kohli, M.A.; Nickel, T.; Künzel, H.E.; Fuchs, B.; Majer, M.; Pfennig, A.; Kern, N.; Brunner, J.; Modell, S.; Baghai, T.; Deiml, T.; Zill, P.; Bondy, B.; Rupprecht, R.; Messer, T.; Köhnlein, O.; Dabitz, H.; Brückl, T.; Müller, N.; Pfister, H.; Lieb, R.; Mueller, J.C.; Lõhmussaar, E.; Strom, T.M.; Bettecken, T.; Meitinger, T.; Uhr, M.; Rein, T.; Holsboer, F.; Muller-Myhsok, B. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat. Genet., 2004, 36(12), 1319-1325. doi: 10.1038/ng1479 PMID: 15565110
  104. Szyf, M.; Weaver, I.C.G.; Champagne, F.A.; Diorio, J.; Meaney, M.J. Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Front. Neuroendocrinol., 2005, 26(3-4), 139-162. doi: 10.1016/j.yfrne.2005.10.002 PMID: 16303171
  105. Klengel, T.; Mehta, D.; Anacker, C.; Rex-Haffner, M.; Pruessner, J.C.; Pariante, C.M.; Pace, T.W.W.; Mercer, K.B.; Mayberg, H.S.; Bradley, B.; Nemeroff, C.B.; Holsboer, F.; Heim, C.M.; Ressler, K.J.; Rein, T.; Binder, E.B. Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions. Nat. Neurosci., 2013, 16(1), 33-41. doi: 10.1038/nn.3275 PMID: 23201972
  106. Vitellius, G.; Trabado, S.; Bouligand, J.; Delemer, B.; Lombès, M. Pathophysiology of glucocorticoid signaling. Annales d’endocrinologie; Elsevier: Amsterdam, 2018, Vol. 79, pp. 98-106.
  107. Levine, S. Infantile experience and resistance to physiological stress. Science, 1957, 126(3270), 405-405. doi: 10.1126/science.126.3270.405.a PMID: 13467220
  108. Sarrieau, A.; Sharma, S.; Meaney, M.J. Postnatal development and environmental regulation of hippocampal glucocorticoid and mineralocorticoid receptors. Brain Res. Dev. Brain Res., 1988, 43(1), 158-162. doi: 10.1016/0165-3806(88)90162-9 PMID: 2851372
  109. Weaver, I.C.G.; Cervoni, N.; Diorio, J.; Szyf, M.; Meaney, M.J. Maternal behavior in infancy regulates methylation of the hippocampal glucocorticoid receptor promoter. Soc. Neurosci.Abstr., 2001, 27.
  110. McGowan, P.O.; Sasaki, A.; D’Alessio, A.C.; Dymov, S.; Labonté, B.; Szyf, M.; Turecki, G.; Meaney, M.J. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci., 2009, 12(3), 342-348. doi: 10.1038/nn.2270 PMID: 19234457
  111. Parade, S.H.; Huffhines, L.; Daniels, T.E.; Stroud, L.R.; Nugent, N.R.; Tyrka, A.R. A systematic review of childhood maltreatment and DNA methylation: Candidate gene and epigenome-wide approaches. Transl. Psychiatry, 2021, 11(1), 134. doi: 10.1038/s41398-021-01207-y PMID: 33608499
  112. Gerritsen, L.; Milaneschi, Y.; Vinkers, C.H.; van Hemert, A.M.; van Velzen, L.; Schmaal, L.; Penninx, B.W.J.H. HPA axis genes, and their interaction with childhood maltreatment, are related to cortisol levels and stress-related phenotypes. Neuropsychopharmacology, 2017, 42(12), 2446-2455. doi: 10.1038/npp.2017.118 PMID: 28589964
  113. Bolton, J.L.; Hayward, C.; Direk, N.; Lewis, J.G.; Hammond, G.L.; Hill, L.A.; Anderson, A.; Huffman, J.; Wilson, J.F.; Campbell, H.; Rudan, I.; Wright, A.; Hastie, N.; Wild, S.H.; Velders, F.P.; Hofman, A.; Uitterlinden, A.G.; Lahti, J.; Räikkönen, K.; Kajantie, E.; Widen, E.; Palotie, A.; Eriksson, J.G.; Kaakinen, M.; Järvelin, M.R.; Timpson, N.J.; Davey Smith, G.; Ring, S.M.; Evans, D.M.; St Pourcain, B.; Tanaka, T.; Milaneschi, Y.; Bandinelli, S.; Ferrucci, L.; van der Harst, P.; Rosmalen, J.G.M.; Bakker, S.J.L.; Verweij, N.; Dullaart, R.P.F.; Mahajan, A.; Lindgren, C.M.; Morris, A.; Lind, L.; Ingelsson, E.; Anderson, L.N.; Pennell, C.E.; Lye, S.J.; Matthews, S.G.; Eriksson, J.; Mellstrom, D.; Ohlsson, C.; Price, J.F.; Strachan, M.W.J.; Reynolds, R.M.; Tiemeier, H.; Walker, B.R. Genome wide association identifies common variants at the SERPINA6/SERPINA1 locus influencing plasma cortisol and corticosteroid binding globulin. PLoS Genet., 2014, 10(7), e1004474. doi: 10.1371/journal.pgen.1004474 PMID: 25010111
  114. Crawford, A.A.; Bankier, S.; Altmaier, E.; Barnes, C.L.K.; Clark, D.W.; Ermel, R.; Friedrich, N.; van der Harst, P.; Joshi, P.K.; Karhunen, V.; Lahti, J.; Mahajan, A.; Mangino, M.; Nethander, M.; Neumann, A.; Pietzner, M.; Sukhavasi, K.; Wang, C.A.; Bakker, S.J.L.; Bjorkegren, J.L.M.; Campbell, H.; Eriksson, J.; Gieger, C.; Hayward, C.; Jarvelin, M.R.; McLachlan, S.; Morris, A.P.; Ohlsson, C.; Pennell, C.E.; Price, J.; Rudan, I.; Ruusalepp, A.; Spector, T.; Tiemeier, H.; Völzke, H.; Wilson, J.F.; Michoel, T.; Timpson, N.J.; Smith, G.D.; Walker, B.R.; Mellström, D. Variation in the SERPINA6/SERPINA1 locus alters morning plasma cortisol, hepatic corticosteroid binding globulin expression, gene expression in peripheral tissues, and risk of cardiovascular disease. J. Hum. Genet., 2021, 66(6), 625-636. doi: 10.1038/s10038-020-00895-6 PMID: 33469137
  115. Velders, F.P.; Kuningas, M.; Kumari, M.; Dekker, M.J.; Uitterlinden, A.G.; Kirschbaum, C.; Hek, K.; Hofman, A.; Verhulst, F.C.; Kivimaki, M.; Van Duijn, C.M.; Walker, B.R.; Tiemeier, H. Genetics of cortisol secretion and depressive symptoms: A candidate gene and genome wide association approach. Psychoneuroendocrinology, 2011, 36(7), 1053-1061. doi: 10.1016/j.psyneuen.2011.01.003 PMID: 21316860
  116. Rietschel, L.; Streit, F.; Zhu, G.; McAloney, K.; Frank, J.; Couvy-Duchesne, B.; Witt, S.H.; Binz, T.M.; Bolton, J.L.; Hayward, C.; Direk, N.; Anderson, A.; Huffman, J.; Wilson, J.F.; Campbell, H.; Rudan, I.; Wright, A.; Hastie, N.; Wild, S.H.; Velders, F.P.; Hofman, A.; Uitterlinden, A.G.; Lahti, J.; Räikkönen, K.; Kajantie, E.; Widen, E.; Palotie, A.; Eriksson, J.G.; Kaakinen, M.; Järvelin, M-R.; Timpson, N.J.; Davey Smith, G.; Ring, S.M.; Evans, D.M.; St Pourcain, B.; Tanaka, T.; Milaneschi, Y.; Bandinelli, S.; Ferrucci, L.; van der Harst, P.; Rosmalen, J.G.M.; Bakker, S.J.L.; Verweij, N.; Dullaart, R.P.F.; Mahajan, A.; Lindgren, C.M.; Morris, A.; Lind, L.; Ingelsson, E.; Anderson, L.N.; Pennell, C.E.; Lye, S.J.; Matthews, S.G.; Eriksson, J.; Mellstrom, D.; Ohlsson, C.; Price, J.F.; Strachan, M.W.J.; Reynolds, R.M.; Tiemeier, H.; Ripke, S.; Mattheisen, M.; Abdellaoui, A.; Adams, M.J.; Agerbo, E.; Air, T.M.; Andlauer, T.F.M.; Bacanu, S-A.; Bækvad-Hansen, M.; Beekman, A.T.F.; Bennett, D.A.; Berger, K.; Bigdeli, T.B.; Bybjerg-Grauholm, J.; Byrne, E.M.; Cai, N.; Castelao, E.; Clarke, T-K.; Coleman, J.R.I.; Consortium, C.; Craddock, N.; Dannlowski, U.; Davies, G.; Davies, G.; de Geus, E.J.C.; De Jager, P.; Deary, I.J.; Degenhardt, F.; Dunn, E.C.; Ehli, E.A.; Eley, T.C.; Escott-Price, V.; Esko, T.; Finucane, H.K.; Gill, M.; Gordon, S.D.; Grove, J.; Hall, L.S.; Hansen, T.F.; Søholm Hansen, C.; Hansen, T.F.; Heath, A.C.; Henders, A.K.; Herms, S.; Hoffmann, P.; Homuth, G.; Horn, C.; Hottenga, J-J.; Hougaard, D.; Huang, H.; Ising, M.; Jansen, R.; Jorgenson, E.; Kloiber, S.; Knowles, J.A.; Kretzschmar, W.W.; Krogh, J.; Kutalik, Z.; Lang, M.; Lewis, G.; Li, Y.; MacIntyre, D.J.; Madden, P.A.F.; Marchine, J.; Mbarek, H.; McGuffin, P.; Mehta, D.; Metspalu, A.; Middeldorp, C.M.; Mihailov, E.; Milani, L.; Montgomery, G.W.; Mostafavi, S.; Mullins, N.; Nauck, M.; Ng, B.; Nordentoft, M.; Nyholt, D.R.; O’Donovan, M.C.; O’Reilly, P.F.; Oskarsson, H.; Owen, M.J.; Paciga, S.A.; Pedersen, C.B.; Pedersen, M.G.; Pedersen, N.L.; Pergadia, M.L.; Peterson, R.E.; Pettersson, E.; Peyrot, W.J.; Porteous, D.J.; Posthuma, D.; Potash, J.B.; Quiroz, J.A.; Rice, J.P.; Riley, B.P.; Rivera, M.; Ruderfer, D.M.; Saeed Mirza, S.; Schoevers, R.; Shen, L.; Shi, J.; Sigurdsson, E.; Sinnamon, G.C.B.; Smit, J.H.; Smith, D.J.; Smoller, J.W.; Stephansson, H.; Steinberg, S.; Strohmaier, J.; Tansey, K.E.; Teumer, A.; Thompson, W.; Thomson, P.A.; Thorgeirsson, T.E.; Treutlein, J.; Trzaskowski, M.; Umbricht, D.; van der Auwera, S.; van Grootheest, G.; van Hemert, A.M.; Viktorin, A.; Völzke, H.; Wang, Y.; Webb, B.T.; Weissman, M.M.; Wellmann, J.; Willemsen, G.; Xi, H.S.; Baune, B.T.; Blackwood, D.H.R.; Boomsma, D.I.; Børglum, A.D.; Buttenschøn, H.N.; Cichon, S.; Domenici, E.; Flint, J.; Grabe, H.J.; Hamilton, S.P.; Kendler, K.S.; Li, Q.S.; Lucae, S.; Magnusson, P.K.; McIntosh, A.M.; Mors, O.; Bo Mortensen, P.; Müller-Myhsok, B.; Penninx, B.W.J.H.; Perlis, R.H.; Preisig, M.; Schaefer, C.; Smoller, J.W.; Stephansson, K.; Tiemeier, H.; Uher, R.; Werge, T.; Winslow, A.R.; Breen, G.; Levinson, D.F.; Lewis, C.M.; Wray, N.R.; Sullivan, P.F.; McGrath, J.; Hickie, I.B.; Hansell, N.K.; Wright, M.J.; Gillespie, N.A.; Forstner, A.J.; Schulze, T.G.; Wüst, S.; Nöthen, M.M.; Baumgartner, M.R.; Walker, B.R.; Crawford, A.A.; Colodro-Conde, L.; Medland, S.E.; Martin, N.G.; Rietschel, M. Hair cortisol in twins: heritability and genetic overlap with psychological variables and stress-system genes. Sci. Rep., 2017, 7(1), 15351. doi: 10.1038/s41598-017-11852-3 PMID: 29127340
  117. Pagliaccio, D.; Luby, J.L.; Bogdan, R.; Agrawal, A.; Gaffrey, M.S.; Belden, A.C.; Botteron, K.N.; Harms, M.P.; Barch, D.M. Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation. J. Abnorm. Psychol., 2015, 124(4), 817-833. doi: 10.1037/abn0000094 PMID: 26595470
  118. Starr, L.R.; Stroud, C.B.; Shaw, Z.A.; Vrshek-Schallhorn, S. Stress sensitization to depression following childhood adversity: Moderation by HPA axis and serotonergic multilocus profile scores. Dev.Psychopathol., 2021, 33(4), 1264-1278. doi: 10.1017/S0954579420000474 PMID: 32684200
  119. Utge, S.; Räikkönen, K.; Kajantie, E.; Lipsanen, J.; Andersson, S.; Strandberg, T.; Reynolds, R.M.; Eriksson, J.G.; Lahti, J. Polygenic risk score of SERPINA6/SERPINA1 associates with diurnal and stress-induced HPA axis activity in children. Psychoneuroendocrinology, 2018, 93, 1-7. doi: 10.1016/j.psyneuen.2018.04.009 PMID: 29679879
  120. Houtepen, L.C.; Vinkers, C.H.; Carrillo-Roa, T.; Hiemstra, M.; van Lier, P.A.; Meeus, W.; Branje, S.; Heim, C.M.; Nemeroff, C.B.; Mill, J.; Schalkwyk, L.C.; Creyghton, M.P.; Kahn, R.S.; Joëls, M.; Binder, E.B.; Boks, M.P.M. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans. Nat. Commun., 2016, 7(1), 10967. doi: 10.1038/ncomms10967 PMID: 26997371
  121. Reh, R.K.; Dias, B.G.; Nelson, C.A., III; Kaufer, D.; Werker, J.F.; Kolb, B.; Levine, J.D.; Hensch, T.K. Critical period regulation across multiple timescales. Proc. Natl. Acad. Sci. USA, 2020, 117(38), 23242-23251. doi: 10.1073/pnas.1820836117 PMID: 32503914
  122. Kann, R.B.; Romeo, R.D. Pubertal changes in the pituitary and adrenal glands of male and female rats: Relevance to stress reactivity. Neurobiol. Stress, 2022, 18, 100457. doi: 10.1016/j.ynstr.2022.100457 PMID: 35592027
  123. Monk, C.; Georgieff, M.K.; Osterholm, E.A. Research Review: Maternal prenatal distress and poor nutrition - mutually influencing risk factors affecting infant neurocognitive development. J. Child Psychol. Psychiatry, 2013, 54(2), 115-130. doi: 10.1111/jcpp.12000 PMID: 23039359
  124. O’Donnell, K.J.; Meaney, M.J. Fetal origins of mental health: the developmental origins of health and disease hypothesis. Am. J. Psychiatry, 2017, 174(4), 319-328. doi: 10.1176/appi.ajp.2016.16020138 PMID: 27838934
  125. Barker, D.; Osmond, C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet, 1986, 327(8489), 1077-1081. doi: 10.1016/S0140-6736(86)91340-1 PMID: 2871345
  126. Kajantie, E.; Phillips, D.I.W.; Andersson, S.; Barker, D.J.P.; Dunkel, L.; Forsén, T.; Osmond, C.; Tuominen, J.; Wood, P.J.; Eriksson, J. Size at birth, gestational age and cortisol secretion in adult life: Foetal programming of both hyper- and hypocortisolism? Clin. Endocrinol., 2002, 57(5), 635-641. doi: 10.1046/j.1365-2265.2002.01659.x PMID: 12390338
  127. Carpenter, T.; Grecian, S.M.; Reynolds, R.M. Sex differences in early-life programming of the hypothalamic–pituitary–adrenal axis in humans suggest increased vulnerability in females: A systematic review. J. Dev. Orig. Health Dis., 2017, 8(2), 244-255. doi: 10.1017/S204017441600074X PMID: 28103963
  128. Clifton, V.L. Review: Sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta, 2010, 31(Suppl.), S33-S39. doi: 10.1016/j.placenta.2009.11.010 PMID: 20004469
  129. Sandman, C.A.; Glynn, L.M.; Davis, E.P. Is there a viability–vulnerability tradeoff? Sex differences in fetal programming. J. Psychosom. Res., 2013, 75(4), 327-335. doi: 10.1016/j.jpsychores.2013.07.009 PMID: 24119938
  130. Uno, H.; Lohmiller, L.; Thieme, C.; Kemnitz, J.W.; Engle, M.J.; Roecker, E.B.; Farrell, P.M. Brain damage induced by prenatal exposure to dexamethasone in fetal rhesus macaques. I. Hippocampus. Brain Res. Dev. Brain Res., 1990, 53(2), 157-167. doi: 10.1016/0165-3806(90)90002-G PMID: 2357788
  131. Nazzari, S.; Fearon, P.; Rice, F.; Dottori, N.; Ciceri, F.; Molteni, M.; Frigerio, A. Beyond the HPA-axis: Exploring maternal prenatal influences on birth outcomes and stress reactivity. Psychoneuroendocrinology, 2019, 101(101), 253-262. doi: 10.1016/j.psyneuen.2018.11.018 PMID: 30497017
  132. Correia-Branco, A.; Keating, E.; Martel, F. Maternal undernutrition and fetal developmental programming of obesity: The glucocorticoid connection. Reprod. Sci., 2015, 22(2), 138-145. doi: 10.1177/1933719114542012 PMID: 25001018
  133. Pearson, J.; Tarabulsy, G.M.; Bussières, E.L. Foetal programming and cortisol secretion in early childhood: A meta-analysis of different programming variables. Infant Behav. Dev., 2015, 40, 204-215. doi: 10.1016/j.infbeh.2015.04.004 PMID: 26209745
  134. Grimm, J.; Stemmler, M.; Golub, Y.; Schwenke, E.; Goecke, T.W.; Fasching, P.A.; Beckmann, M.W.; Kratz, O.; Moll, G.H.; Kornhuber, J.; Eichler, A. The association between prenatal alcohol consumption and preschool child stress system disturbance. Dev. Psychobiol., 2021, 63(4), 687-697. doi: 10.1002/dev.22038 PMID: 33012000
  135. Ong, S.X.; Chng, K.; Meaney, M.J.; Buschdorf, J.P. Decreased hippocampal mineralocorticoid:glucocorticoid receptor ratio is associated with low birth weight in female cynomolgus macaque neonates. J. Mol. Endocrinol., 2013, 51(1), 59-67. doi: 10.1530/JME-12-0218 PMID: 23592886
  136. Howell, B.R.; McCormack, K.M.; Grand, A.P.; Sawyer, N.T.; Zhang, X.; Maestripieri, D.; Hu, X.; Sanchez, M.M. Brain white matter microstructure alterations in adolescent rhesus monkeys exposed to early life stress: Associations with high cortisol during infancy. Biol. Mood Anxiety Disord., 2013, 3(1), 21. doi: 10.1186/2045-5380-3-21 PMID: 24289263
  137. Howell, B.R.; Grand, A.P.; McCormack, K.M.; Shi, Y.; LaPrarie, J.L.; Maestripieri, D.; Styner, M.A.; Sanchez, M.M. Early adverse experience increases emotional reactivity in juvenile rhesus macaques: Relation to amygdala volume. Dev. Psychobiol., 2014, 56(8), 1735-1746. doi: 10.1002/dev.21237 PMID: 25196846
  138. Hanson, J.L.; Nacewicz, B.M.; Sutterer, M.J.; Cayo, A.A.; Schaefer, S.M.; Rudolph, K.D.; Shirtcliff, E.A.; Pollak, S.D.; Davidson, R.J. Behavioral problems after early life stress: Contributions of the hippocampus and amygdala. Biol. Psychiatry, 2015, 77(4), 314-323. doi: 10.1016/j.biopsych.2014.04.020 PMID: 24993057
  139. Kuhlman, K.R.; Vargas, I.; Geiss, E.G.; Lopez-Duran, N.L. Age of trauma onset and HPA axis dysregulation among trauma-exposed youth. J. Trauma. Stress, 2015, 28(6), 572-579. doi: 10.1002/jts.22054 PMID: 26556544
  140. Cicchetti, D.; Rogosch, F.A.; Gunnar, M.R.; Toth, S.L. The differential impacts of early physical and sexual abuse and internalizing problems on daytime cortisol rhythm in school-aged children. Child Dev., 2010, 81(1), 252-269. doi: 10.1111/j.1467-8624.2009.01393.x PMID: 20331666
  141. Essex, M.J.; Klein, M.H.; Cho, E.; Kalin, N.H. Maternal stress beginning in infancy may sensitize children to later stress exposure: Effects on cortisol and behavior. Biol. Psychiatry, 2002, 52(8), 776-784. doi: 10.1016/S0006-3223(02)01553-6 PMID: 12372649
  142. Dougherty, L.R.; Tolep, M.R.; Smith, V.C.; Rose, S. Early exposure to parental depression and parenting: Associations with young offspring’s stress physiology and oppositional behavior. J. Abnorm. Child Psychol., 2013, 41(8), 1299-1310. doi: 10.1007/s10802-013-9763-7 PMID: 23722864
  143. van IJzendoorn, M.H.; Palacios, J.; Sonuga-Barke, E.J.S.; Gunnar, M.R.; Vorria, P.; McCall, R.B.; Le Mare, L.; Bakermans-Kranenburg, M.J.; Dobrova-Krol, N.A.; Juffer, F. Children in institutional care: Delayed development and resilience. Monogr. Soc. Res. Child Dev., 2011, 76(4), 8-30. doi: 10.1111/j.1540-5834.2011.00626.x PMID: 25125707
  144. Carlson, M.; Earls, F. Psychological and neuroendocrinological sequelae of early social deprivation in institutionalized children in Romania. Ann. N. Y. Acad. Sci., 1997, 807, 419-428. doi: 10.1111/j.1749-6632.1997.tb51936.x
  145. Dobrova-Krol, N.A.; van IJzendoorn, M.H.; Bakermans-Kranenburg, M.J.; Cyr, C.; Juffer, F. Physical growth delays and stress dysregulation in stunted and non-stunted Ukrainian institution-reared children. Infant Behav. Dev., 2008, 31(3), 539-553. doi: 10.1016/j.infbeh.2008.04.001 PMID: 18511123
  146. Van IJzendoorn, M.H.; Juffer, F. The Emanuel Miller Memorial Lecture 2006: Adoption as intervention. Meta-analytic evidence for massive catch-up and plasticity in physical, socio-emotional, and cognitive development. J. Child Psychol. Psychiatry, 2006, 47(12), 1228-1245. doi: 10.1111/j.1469-7610.2006.01675.x PMID: 17176378
  147. Gunnar, M.R.; Morison, S.J.; Chisholm, K.; Schuder, M. Salivary cortisol levels in children adopted from Romanian orphanages. Dev. Psychopathol., 2001, 13(3), 611-628. doi: 10.1017/S095457940100311X PMID: 11523851
  148. Kumsta, R.; Schlotz, W.; Golm, D.; Moser, D.; Kennedy, M.; Knights, N.; Kreppner, J.; Maughan, B.; Rutter, M.; Sonuga-Barke, E. HPA axis dysregulation in adult adoptees twenty years after severe institutional deprivation in childhood. Psychoneuroendocrinology, 2017, 86, 196-202. doi: 10.1016/j.psyneuen.2017.09.021 PMID: 28982048
  149. Leneman, K.B.; Donzella, B.; Desjardins, C.D.; Miller, B.S.; Gunnar, M.R. The slope of cortisol from awakening to 30 min post-wake in post-institutionalized children and early adolescents. Psychoneuroendocrinology, 2018, 96, 93-99. doi: 10.1016/j.psyneuen.2018.06.011 PMID: 29920425
  150. Sánchez, M.M.; Ladd, C.O.; Plotsky, P.M. Early adverse experience as a developmental risk factor for later psychopathology: Evidence from rodent and primate models. Dev. Psychopathol, 2001, 13(3), 419-449. doi: 10.1017/S0954579401003029 PMID: 11523842
  151. Galván, A. Insights about adolescent behavior, plasticity, and policy from neuroscience research. Neuron, 2014, 83(2), 262-265. doi: 10.1016/j.neuron.2014.06.027 PMID: 25033176
  152. Blakemore, S.J.; Burnett, S.; Dahl, R.E. The role of puberty in the developing adolescent brain. Hum. Brain Mapp., 2010, 31(6), 926-933. doi: 10.1002/hbm.21052 PMID: 20496383
  153. Hare, T.A.; Tottenham, N.; Galvan, A.; Voss, H.U.; Glover, G.H.; Casey, B.J. Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task. Biol. Psychiatry, 2008, 63(10), 927-934. doi: 10.1016/j.biopsych.2008.03.015 PMID: 18452757
  154. Gunnar, M.R.; Wewerka, S.; Frenn, K.; Long, J.D.; Griggs, C. Developmental changes in hypothalamus–pituitary–adrenal activity over the transition to adolescence: Normative changes and associations with puberty. Dev. Psychopathol., 2009, 21(1), 69-85. doi: 10.1017/S0954579409000054 PMID: 19144223
  155. Stroud, L.R.; Foster, E.; Papandonatos, G.D.; Handwerger, K.; Granger, D.A.; Kivlighan, K.T.; Niaura, R. Stress response and the adolescent transition: Performance versus peer rejection stressors. Dev. Psychopathol., 2009, 21(1), 47-68. doi: 10.1017/S0954579409000042 PMID: 19144222
  156. Gee, D.G.; Casey, B.J. The impact of developmental timing for stress and recovery. Neurobiol. Stress, 2015, 1, 184-194. doi: 10.1016/j.ynstr.2015.02.001 PMID: 25798454
  157. Kirschbaum, C.; Kudielka, B.M.; Gaab, J.; Schommer, N.C.; Hellhammer, D.H. Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamus-pituitary-adrenal axis. Psychosom. Med., 1999, 61(2), 154-162. doi: 10.1097/00006842-199903000-00006 PMID: 10204967
  158. Romeo, R.D. Pubertal maturation and programming of hypothalamic–pituitary–adrenal reactivity. Front. Neuroendocrinol., 2010, 31(2), 232-240. doi: 10.1016/j.yfrne.2010.02.004 PMID: 20193707
  159. Eiland, L.; Romeo, R.D. Stress and the developing adolescent brain. Neuroscience, 2013, 249(212), 162-171. doi: 10.1016/j.neuroscience.2012.10.048 PMID: 23123920
  160. Romeo, R.D. The impact of stress on the structure of the adolescentbrain: Implications for adolescent mental health. Brain Res., 2017, 1654((Pt B)), 185-191. doi: 10.1016/j.brainres.2016.03.021 PMID: 27021951
  161. DePasquale, C.E.; Donzella, B.; Gunnar, M.R. Pubertal recalibration of cortisol reactivity following early life stress: A cross-sectional analysis. J. Child Psychol. Psychiatry, 2019, 60(5), 566-575. doi: 10.1111/jcpp.12992 PMID: 30357830
  162. Zhang, D.; Fang, J.; Zhang, L.; Yuan, J.; Wan, Y.; Su, P.; Tao, F.; Sun, Y. Pubertal recalibration of cortisol reactivity following early life parent-child separation. J. Affect. Disord., 2021, 278, 320-326. doi: 10.1016/j.jad.2020.09.030 PMID: 32979563
  163. King, L.S.; Colich, N.L.; LeMoult, J.; Humphreys, K.L.; Ordaz, S.J.; Price, A.N.; Gotlib, I.H. The impact of the severity of early life stress on diurnal cortisol: The role of puberty. Psychoneuroendocrinology, 2017, 77, 68-74. doi: 10.1016/j.psyneuen.2016.11.024 PMID: 28024271
  164. Howland, M.A.; Donzella, B.; Miller, B.S.; Gunnar, M.R. Pubertal recalibration of cortisol-DHEA coupling in previously-institutionalized children. Horm. Behav., 2020, 125, 104816. doi: 10.1016/j.yhbeh.2020.104816 PMID: 32649929
  165. King, L.S.; Graber, M.G.; Colich, N.L.; Gotlib, I.H. Associations of waking cortisol with DHEA and testosterone across the pubertal transition: Effects of threat-related early life stress. Psychoneuroendocrinology, 2020, 115, 104651. doi: 10.1016/j.psyneuen.2020.104651 PMID: 32199287
  166. Gunnar, M.; Quevedo, K. The neurobiology of stress and development. Annu. Rev. Psychol., 2007, 58(1), 145-173. doi: 10.1146/annurev.psych.58.110405.085605 PMID: 16903808
  167. Gunnar, M.R.; Gonzalez, C.A.; Goodlin, B.L.; Levine, S. Behavioral and pituitary - adrenal responses during a prolonged separation period in infant rhesus macaques. Psychoneuroendocrinology, 1981, 6(1), 65-75. doi: 10.1016/0306-4530(81)90049-4 PMID: 7195597
  168. Gunnar, M.R. Social Buffering of Stress in Development: A Career Perspective. Perspect. Psychol. Sci., 2017, 12(3), 355-373. doi: 10.1177/1745691616680612 PMID: 28544861
  169. Thompson, R.A. Emotion and emotion regulation: two sides of the developing coin. Emot. Rev., 2011, 3(1), 53-61. doi: 10.1177/1754073910380969
  170. Hennessy, M.B.; Kaiser, S.; Sachser, N. Social buffering of the stress response: Diversity, mechanisms, and functions. Front. Neuroendocrinol., 2009, 30(4), 470-482. doi: 10.1016/j.yfrne.2009.06.001 PMID: 19545584
  171. Hostinar, C.E.; Sullivan, R.M.; Gunnar, M.R. Psychobiological mechanisms underlying the social buffering of the hypothalamic–pituitary–adrenocortical axis: A review of animal models and human studies across development. Psychol. Bull., 2014, 140(1), 256-282. doi: 10.1037/a0032671 PMID: 23607429
  172. Gunnar, M.; Gonzalez, C.; Levine, S. The role of peers in modifying behavioral distress and pituitary-adrenal response to a novel environment in year-old rhesus monkeys. Physiol. Behav., 1980, 25(5), 795-798. doi: 10.1016/0031-9384(80)90387-X PMID: 7192415
  173. Bowlby, J. Attachment and Loss v. 3 (Vol. 1); Basic books: New York, 1969, Vol. 3, .
  174. Nachmias, M.; Gunnar, M.; Mangelsdorf, S.; Parritz, R.H.; Buss, K. Behavioral inhibition and stress reactivity: The moderating role of attachment security. Child Dev., 1996, 67(2), 508-522. doi: 10.2307/1131829 PMID: 8625725
  175. Fearon, R.M.P.; Tomlinson, M.; Kumsta, R.; Skeen, S.; Murray, L.; Cooper, P.J.; Morgan, B. Poverty, early care, and stress reactivity in adolescence: Findings from a prospective, longitudinal study in South Africa. Dev. Psychopathol, 2017, 29(2), 449-464. doi: 10.1017/S0954579417000104 PMID: 28401838
  176. Ahnert, L.; Gunnar, M.R.; Lamb, M.E.; Barthel, M. Transition to child care: Associations with infant-mother attachment, infant negative emotion, and cortisol elevations. Child Dev., 2004, 75(3), 639-650. doi: 10.1111/j.1467-8624.2004.00698.x PMID: 15144478
  177. Johnson, A.B.; Mliner, S.B.; Depasquale, C.E.; Troy, M.; Gunnar, M.R. Attachment security buffers the HPA axis of toddlers growing up in poverty or near poverty: Assessment during pediatric well-child exams with inoculations. Psychoneuroendocrinology, 2018, 95, 120-127. doi: 10.1016/j.psyneuen.2018.05.030 PMID: 29852405
  178. Seltzer, L.J.; Ziegler, T.E.; Pollak, S.D. Social vocalizations can release oxytocin in humans. Proc. Biol. Sci., 2010, 277(1694), 2661-2666. doi: 10.1098/rspb.2010.0567 PMID: 20462908
  179. Yirmiya, K.; Motsan, S.; Zagoory-Sharon, O.; Feldman, R. Human attachment triggers different social buffering mechanisms under high and low early life stress rearing. Int. J. Psychophysiol., 2020, 152, 72-80. doi: 10.1016/j.ijpsycho.2020.04.001 PMID: 32272126
  180. Doom, J.R.; Hostinar, C.E.; VanZomeren-Dohm, A.A.; Gunnar, M.R. The roles of puberty and age in explaining the diminished effectiveness of parental buffering of HPA reactivity and recovery in adolescence. Psychoneuroendocrinology, 2015, 59, 102-111. doi: 10.1016/j.psyneuen.2015.04.024 PMID: 26047719
  181. Doom, J.R.; Doyle, C.M.; Gunnar, M.R. Social stress buffering by friends in childhood and adolescence: Effects on HPA and oxytocin activity. Soc. Neurosci., 2017, 12(1), 8-21. doi: 10.1080/17470919.2016.1149095 PMID: 26899419
  182. Ditzen, B.; Neumann, I.D.; Bodenmann, G.; von Dawans, B.; Turner, R.A.; Ehlert, U.; Heinrichs, M. Effects of different kinds of couple interaction on cortisol and heart rate responses to stress in women. Psychoneuroendocrinology, 2007, 32(5), 565-574. doi: 10.1016/j.psyneuen.2007.03.011 PMID: 17499441
  183. Ditzen, B.; Heinrichs, M. Psychobiology of social support: The social dimension of stress buffering. Restor. Neurol. Neurosci., 2014, 32(1), 149-162. doi: 10.3233/RNN-139008 PMID: 23603443
  184. Umaña-Taylor, A.J. A Post-racial society in which ethnic-racial discrimination still exists and has significant consequences for Youths’ adjustment. Curr. Dir. Psychol. Sci., 2016, 25(2), 111-118. doi: 10.1177/0963721415627858
  185. Burris, H.H.; Hacker, M.R. Birth outcome racial disparities: a result of intersecting social and environmental factors. Seminars in perinatology; Elsevier, 2017, Vol. 41, pp. 360-366. doi: 10.1053/j.semperi.2017.07.002
  186. Spears Brown, C.; Bigler, R.S. Children’s perceptions of discrimination: A developmental model. Child Dev., 2005, 76(3), 533-553. doi: 10.1111/j.1467-8624.2005.00862.x PMID: 15892777
  187. Benner, A.D.; Wang, Y.; Shen, Y.; Boyle, A.E.; Polk, R.; Cheng, Y.P. Racial/ethnic discrimination and well-being during adolescence: A meta-analytic review. Am. Psychol., 2018, 73(7), 855-883. doi: 10.1037/amp0000204 PMID: 30024216
  188. Sanders-Phillips, K.; Settles-Reaves, B.; Walker, D.; Brownlow, J. Social inequality and racial discrimination: risk factors for health disparities in children of color. Pediatrics, 2009, 124(Suppl. 3), S176-S186. doi: 10.1542/peds.2009-1100E PMID: 19861468
  189. Dismukes, A.; Shirtcliff, E.; Jones, C.W.; Zeanah, C.; Theall, K.; Drury, S. The development of the cortisol response to dyadic stressors in Black and White infants. Dev. Psychopathol., 2018, 30(5), 1995-2008. doi: 10.1017/S0954579418001232 PMID: 30328402
  190. Bates, R.A.; Singletary, B.; Yacques, A.; Justice, L. Sleep and stress in mother–toddler dyads living in low‐income homes. Dev. Psychobiol., 2021, 63(5), 1635-1643. doi: 10.1002/dev.22077 PMID: 33368168
  191. Gunnar, M.R.; Haapala, J.; French, S.A.; Sherwood, N.E.; Seburg, E.M.; Crain, A.L.; Kunin-Batson, A.S. Race/ethnicity and age associations with hair cortisol concentrations among children studied longitudinally from early through middle childhood. Psychoneuroendocrinology, 2022, 144, 105892. doi: 10.1016/j.psyneuen.2022.105892 PMID: 35985241
  192. Martin, C.G.; Bruce, J.; Fisher, P.A. Racial and ethnic differences in diurnal cortisol rhythms in preadolescents: The role of parental psychosocial risk and monitoring. Horm. Behav., 2012, 61(5), 661-668. doi: 10.1016/j.yhbeh.2012.02.025 PMID: 22414445
  193. Deer, L.K.; Shields, G.S.; Ivory, S.L.; Hostinar, C.E.; Telzer, E.H. Racial/ethnic disparities in cortisol diurnal patterns and affect in adolescence. Dev. Psychopathol, 2018, 30(5), 1977-1993. doi: 10.1017/S0954579418001098 PMID: 30309395
  194. Hittner, E.F.; Adam, E.K. Emotional pathways to the biological embodiment of racial discrimination experiences. Psychosom. Med., 2020, 82(4), 420-431. doi: 10.1097/PSY.0000000000000792 PMID: 32108742
  195. Tackett, J.L.; Herzhoff, K.; Smack, A.J.; Reardon, K.W.; Adam, E.K. Does socioeconomic status mediate racial differences in the cortisol response in middle childhood? Health Psychol., 2017, 36(7), 662-672. doi: 10.1037/hea0000480 PMID: 28277700
  196. Wosu, A.C.; Gelaye, B.; Valdimarsdóttir, U.; Kirschbaum, C.; Stalder, T.; Shields, A.E.; Williams, M.A. Hair cortisol in relation to sociodemographic and lifestyle characteristics in a multiethnic US sample. Ann. Epidemiol., 2015, 25(2), 90-95. e2, 95.e1-95.e2. doi: 10.1016/j.annepidem.2014.11.022 PMID: 25534254
  197. Busse, D.; Yim, I.S.; Campos, B.; Marshburn, C.K. Discrimination and the HPA axis: Current evidence and future directions. J. Behav. Med., 2017, 40(4), 539-552. doi: 10.1007/s10865-017-9830-6 PMID: 28155003
  198. Korous, K.M.; Causadias, J.M.; Casper, D.M. Racial discrimination and cortisol output: A meta-analysis. Soc. Sci. Med., 2017, 193, 90-100. doi: 10.1016/j.socscimed.2017.09.042 PMID: 29028560
  199. Meerlo, P.; Koehl, M.; Van Der Borght, K.; Turek, F.W. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress. J. Neuroendocrinol., 2002, 14(5), 397-402. doi: 10.1046/j.0007-1331.2002.00790.x PMID: 12000545
  200. Hairston, I.S.; Ruby, N.F.; Brooke, S.; Peyron, C.; Denning, D.P.; Heller, H.C.; Sapolsky, R.M. Sleep deprivation elevates plasma corticosterone levels in neonatal rats. Neurosci. Lett., 2001, 315(1-2), 29-32. doi: 10.1016/S0304-3940(01)02309-6 PMID: 11711207
  201. Steiger, A. Sleep and the hypothalamo–pituitary–adrenocortical system. Sleep Med. Rev., 2002, 6(2), 125-138. doi: 10.1053/smrv.2001.0159 PMID: 12531148
  202. Vgontzas, A.N.; Zoumakis, M.; Bixler, E.O.; Lin, H.M.; Prolo, P.; Vela-Bueno, A.; Kales, A.; Chrousos, G.P. Impaired nighttime sleep in healthy old versus young adults is associated with elevated plasma interleukin-6 and cortisol levels: physiologic and therapeutic implications. J. Clin. Endocrinol. Metab., 2003, 88(5), 2087-2095. doi: 10.1210/jc.2002-021176 PMID: 12727959
  203. Gribbin, C.E.; Watamura, S.E.; Cairns, A.; Harsh, J.R.; LeBourgeois, M.K. The cortisol awakening response (CAR) in 2- to 4-year-old children: Effects of acute nighttime sleep restriction, wake time, and daytime napping. Dev. Psychobiol., 2012, 54(4), 412-422. doi: 10.1002/dev.20599 PMID: 21953381
  204. Vargas, I.; Lopez-Duran, N. Dissecting the impact of sleep and stress on the cortisol awakening response in young adults. Psychoneuroendocrinology, 2014, 40, 10-16. doi: 10.1016/j.psyneuen.2013.10.009 PMID: 24485471
  205. Zeiders, K.H.; Doane, L.D.; Adam, E.K. Reciprocal relations between objectively measured sleep patterns and diurnal cortisol rhythms in late adolescence. J. Adolesc. Health, 2011, 48(6), 566-571. doi: 10.1016/j.jadohealth.2010.08.012 PMID: 21575815
  206. El-Sheikh, M.; Buckhalt, J.A.; Keller, P.S.; Granger, D.A. Children’s objective and subjective sleep disruptions: Links with afternoon cortisol levels. Health Psychol., 2008, 27(1), 26-33. doi: 10.1037/0278-6133.27.1.26 PMID: 18230010
  207. Räikkönen, K.; Matthews, K.A.; Pesonen, A.K.; Pyhälä, R.; Paavonen, E.J.; Feldt, K.; Jones, A.; Phillips, D.I.W.; Seckl, J.R.; Heinonen, K.; Lahti, J.; Komsi, N.; Järvenpää, A.L.; Eriksson, J.G.; Strandberg, T.E.; Kajantie, E. Poor sleep and altered hypothalamic-pituitary-adrenocortical and sympatho-adrenal-medullary system activity in children. J. Clin. Endocrinol. Metab., 2010, 95(5), 2254-2261. doi: 10.1210/jc.2009-0943 PMID: 20194713
  208. Buckley, T.M.; Schatzberg, A.F. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J. Clin. Endocrinol. Metab., 2005, 90(5), 3106-3114. doi: 10.1210/jc.2004-1056 PMID: 15728214
  209. Brand, S.; Furlano, R.; Sidler, M.; Schulz, J.; Holsboer-Trachsler, E. ‘Oh, baby, please don’t cry!’: In infants suffering from infantile colic hypothalamic-pituitary-adrenocortical axis activity is related to poor sleep and increased crying intensity. Neuropsychobiology, 2011, 64(1), 15-23. doi: 10.1159/000322456 PMID: 21577009
  210. Flom, M.; St John, A.M.; Meyer, J.S.; Tarullo, A.R. Infant hair cortisol: Associations with salivary cortisol and environmental context. Dev. Psychobiol., 2017, 59(1), 26-38. doi: 10.1002/dev.21449 PMID: 27472986
  211. Scher, A.; Hall, W.A.; Zaidman-Zait, A.; Weinberg, J. Sleep quality, cortisol levels, and behavioral regulation in toddlers. Dev. Psychobiol., 2010, 52(1), 44-53. PMID: 19921708
  212. Kajantie, E.; Räikkönen, K. Early life predictors of the physiological stress response later in life. Neurosci. Biobehav. Rev., 2010, 35(1), 23-32. doi: 10.1016/j.neubiorev.2009.11.013 PMID: 19931557
  213. Maurer, N.; Perkinson-Gloor, N.; Stalder, T.; Hagmann-von Arx, P.; Brand, S.; Holsboer-Trachsler, E.; Wellmann, S.; Grob, A.; Weber, P.; Lemola, S. Salivary and hair glucocorticoids and sleep in very preterm children during school age. Psychoneuroendocrinology, 2016, 72, 166-174. doi: 10.1016/j.psyneuen.2016.07.003 PMID: 27434634
  214. Hatzinger, M.; Brand, S.; Perren, S.; Stadelmann, S.; Wyl, A.; Klitzing, K.; Holsboer-Trachsler, E. Sleep actigraphy pattern and behavioral/emotional difficulties in kindergarten children: Association with hypothalamic-pituitary-adrenocortical (HPA) activity. J. Psychiatr. Res., 2010, 44(4), 253-261. doi: 10.1016/j.jpsychires.2009.08.012 PMID: 19762039
  215. Fallone, G.; Owens, J.A.; Deane, J. Sleepiness in children and adolescents: Clinical implications. Sleep Med. Rev., 2002, 6(4), 287-306. doi: 10.1053/smrv.2001.0192 PMID: 12531133
  216. Johnson, E.O.; Roth, T.; Schultz, L.; Breslau, N. Epidemiology of DSM-IV insomnia in adolescence: lifetime prevalence, chronicity, and an emergent gender difference. Pediatrics, 2006, 117(2), e247-e256. doi: 10.1542/peds.2004-2629 PMID: 16452333
  217. Thapar, A.; Collishaw, S.; Pine, D.S.; Thapar, A.K. Depression in adolescence. Lancet, 2012, 379(9820), 1056-1067. doi: 10.1016/S0140-6736(11)60871-4 PMID: 22305766
  218. Carskadon, M.A. Sleep in adolescents: The perfect storm. Pediatr. Clin. North Am., 2011, 58(3), 637-647. doi: 10.1016/j.pcl.2011.03.003 PMID: 21600346
  219. Tu, K.M.; Erath, S.A.; El-Sheikh, M. Peer victimization and adolescent adjustment: the moderating role of sleep. J. Abnorm. Child Psychol., 2015, 43(8), 1447-1457. doi: 10.1007/s10802-015-0035-6 PMID: 26002848
  220. El-Sheikh, M.; Tu, K.M.; Saini, E.K.; Fuller-Rowell, T.E.; Buckhalt, J.A. Perceived discrimination and youths’ adjustment: Sleep as a moderator. J. Sleep Res., 2016, 25(1), 70-77. doi: 10.1111/jsr.12333 PMID: 26260026
  221. Yip, T. The effects of ethnic/racial discrimination and sleep quality on depressive symptoms and self-esteem trajectories among diverse adolescents. J. Youth Adolesc., 2015, 44(2), 419-430. doi: 10.1007/s10964-014-0123-x PMID: 24682960
  222. Chiang, J.J.; Tsai, K.M.; Park, H.; Bower, J.E.; Almeida, D.M.; Dahl, R.E.; Irwin, M.R.; Seeman, T.E.; Fuligni, A.J. Daily family stress and HPA axis functioning during adolescence: The moderating role of sleep. Psychoneuroendocrinology, 2016, 71, 43-53. doi: 10.1016/j.psyneuen.2016.05.009 PMID: 27235639

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers