Redox Modulation of Meniere Disease by Coriolus versicolor Treatment, a Nutritional Mushroom Approach with Neuroprotective Potential


Cite item

Full Text

Abstract

Background:Meniere's disease (MD) is a cochlear neurodegenerative disease. Hearing loss appears to be triggered by oxidative stress in the ganglion neurons of the inner ear.

Objective:Here, we confirm the variation of markers of oxidative stress and inflammation in patients with Meniere and hypothesize that chronic treatment with Coriolus mushroom helps in the response to oxidative stress and acts on α-synuclein and on NF-kB-mediated inflammatory processes.

Methods:Markers of oxidative stress and inflammation were evaluated in MD patients with or without Coriolus treatment for 3 or 6 months.

Results:MD patients had a small increase in Nrf2, HO-1, γ-GC, Hsp70, Trx and sirtuin-1, which were further increased by Coriolus treatment, especially after 6 months. Increased markers of oxidative damage, such as protein carbonyls, HNE, and ultraweak chemiluminescence, associated with a decrease in plasma GSH/GSSG ratio, were also observed in lymphocytes from MD patients. These parameters were restored to values similar to the baseline in patients treated with Coriolus for both 3 and 6 months. Furthermore, treated MD subjects showed decreased expression of α-synuclein, GFAP and Iba-1 proteins and modulation of the NF-kB pathway, which were impaired in MD patients. These changes were greatest in subjects taking supplements for 6 months.

Conclusions:Our study suggests MD as a model of cochlear neurodegenerative disease for the identification of potent inducers of the Nrf2-vitagene pathway, able to reduce the deleterious consequences associated with neurodegenerative damage, probably by indirectly acting on a-synuclein expression and on inflammatory processes NF-kB-mediated.

About the authors

Rosanna Paola

Department of Veterinary Science, University of Messina

Email: info@benthamscience.net

Rosalba Siracusa

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina

Email: info@benthamscience.net

Roberta Fusco

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina

Email: info@benthamscience.net

Marialaura Ontario

Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia", University of Catania

Email: info@benthamscience.net

Gaetano Cammilleri

Food Department, Istituto Zooprofilattico Sperimentale della Sicilia

Email: info@benthamscience.net

Licia Pantano

Food Department, Istituto Zooprofilattico Sperimentale della Sicilia

Email: info@benthamscience.net

Maria Scuto

Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia", University of Catania

Email: info@benthamscience.net

Mario Tomasello

Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia",, University of Catania

Email: info@benthamscience.net

Sestina Spanò

Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia",, University of Catania

Email: info@benthamscience.net

Angela Salinaro

Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia", University of Catania

Email: info@benthamscience.net

Ali Abdelhameed

Department of Pharmaceutical Chemistr, College of Pharmacy, King Saud University

Email: info@benthamscience.net

Vincenzo Ferrantelli

Food Department, Istituto Zooprofilattico Sperimentale della Sicilia

Email: info@benthamscience.net

Antonio Arcidiacono

Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia", University of Catania

Email: info@benthamscience.net

Tilman Fritsch

, NAM Institute

Email: info@benthamscience.net

Gabriella Lupo

Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia",, University of Catania

Author for correspondence.
Email: info@benthamscience.net

Anna Signorile

Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro

Author for correspondence.
Email: info@benthamscience.net

Luigi Maiolino

Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia",, University of Catania

Email: info@benthamscience.net

Salvatore Cuzzocrea

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messin

Email: info@benthamscience.net

Vittorio Calabrese

Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia", University of Catania

Email: info@benthamscience.net

References

  1. Harris, J.P.; Alexander, T.H. Current-day prevalence of Ménière’s syndrome. Audiol. Neurotol., 2010, 15(5), 318-322. doi: 10.1159/000286213 PMID: 20173319
  2. Celestino, D.; Ralli, G. Incidence of Menière’s disease in Italy. Am. J. Otol., 1991, 12(2), 135-138. PMID: 2053606
  3. Bixenstine, P.J.; Maniglia, M.P.; Vasanji, A.; Alagramam, K.N.; Megerian, C.A. Spiral ganglion degeneration patterns in endolymphatic hydrops. Laryngoscope, 2008, 118(7), 1217-1223. doi: 10.1097/MLG.0b013e31816ba9cd PMID: 18364591
  4. Nadol, J.B., Jr Degeneration of cochlear neurons as seen in the spiral ganglion of man. Hear. Res., 1990, 49(1-3), 141-154. doi: 10.1016/0378-5955(90)90101-T PMID: 2292494
  5. Trovato, S.A.; Pennisi, M.; Di Paola, R.; Scuto, M.; Crupi, R.; Cambria, M.T.; Ontario, M.L.; Tomasello, M.; Uva, M.; Maiolino, L.; Calabrese, E.J.; Cuzzocrea, S.; Calabrese, V. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer’s disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms. Immun. Ageing, 2018, 15(1), 8. doi: 10.1186/s12979-017-0108-1 PMID: 29456585
  6. Yokota, Y.; Kitahara, T.; Sakagami, M.; Ito, T.; Kimura, T.; Okayasu, T.; Yamashita, A.; Yamanaka, T. Surgical results and psychological status in patients with intractable Ménière’s disease. Auris Nasus Larynx, 2016, 43(3), 287-291. doi: 10.1016/j.anl.2015.10.007 PMID: 26559747
  7. De Berardis, D.; Campanella, D.; Gambi, F.; La Rovere, R.; Carano, A.; Conti, C.M.; Silvestrini, C.; Serroni, N.; Piersanti, D.; Di Giuseppe, B.; Moschetta, F.S.; Cotellessa, C.; Fulcheri, M.; Salerno, R.M.; Ferro, F.M. The role of C-reactive protein in mood disorders. Int. J. Immunopathol. Pharmacol., 2006, 19(4), 721-725. doi: 10.1177/039463200601900402 PMID: 17166394
  8. Orsolini, L.; Sarchione, F.; Vellante, F.; Fornaro, M.; Matarazzo, I.; Martinotti, G.; Valchera, A.; Di Nicola, M.; Carano, A.; Di Giannantonio, M.; Perna, G.; Olivieri, L.; De Berardis, D. Protein-C Reactive as Biomarker Predictor of Schizophrenia Phases of Illness? A Systematic Review. Curr. Neuropharmacol., 2018, 16(5), 583-606. doi: 10.2174/1570159X16666180119144538 PMID: 29357805
  9. Calabrese, V.; Cornelius, C.; Trovato-Salinaro, A.; Cambria, M.; Locascio, M.; Rienzo, L.; Condorelli, D.; Mancuso, C.; De Lorenzo, A.; Calabrese, E. The hormetic role of dietary antioxidants in free radical-related diseases. Curr. Pharm. Des., 2010, 16(7), 877-883. doi: 10.2174/138161210790883615 PMID: 20388101
  10. Calabrese, V.; Giordano, J.; Crupi, R.; Di Paola, R.; Ruggieri, M.; Bianchini, R.; Ontario, M.L.; Cuzzocrea, S.; Calabrese, E.J. Hormesis, cellular stress response and neuroinflammation in schizophrenia: Early onset versus late onset state. J. Neurosci. Res., 2017, 95(5), 1182-1193. doi: 10.1002/jnr.23967 PMID: 27898171
  11. Xia, Y.; Wang, D.; Li, J.; Chen, M.; Wang, D.; Jiang, Z.; Liu, B. Compounds purified from edible fungi fight against chronic inflammation through oxidative stress regulation. Front. Pharmacol., 2022, 13, 974794. doi: 10.3389/fphar.2022.974794 PMID: 36160418
  12. Calabrese, V.; Scapagnini, G.; Davinelli, S.; Koverech, G.; Koverech, A.; De Pasquale, C.; Salinaro, A.T.; Scuto, M.; Calabrese, E.J.; Genazzani, A.R. Sex hormonal regulation and hormesis in aging and longevity: role of vitagenes. J. Cell Commun. Signal., 2014, 8(4), 369-384. doi: 10.1007/s12079-014-0253-7 PMID: 25381162
  13. Trovato Salinaro, A.; Cornelius, C.; Koverech, G.; Koverech, A.; Scuto, M.; Lodato, F.; Fronte, V.; Muccilli, V.; Reibaldi, M.; Longo, A.; Uva, M.G.; Calabrese, V. Cellular stress response, redox status, and vitagenes in glaucoma: a systemic oxidant disorder linked to Alzheimer’s disease. Front. Pharmacol., 2014, 5, 129. doi: 10.3389/fphar.2014.00129 PMID: 24936186
  14. Calabrese, V.; Cornelius, C.; Leso, V.; Trovato-Salinaro, A.; Ventimiglia, B.; Cavallaro, M.; Scuto, M.; Rizza, S.; Zanoli, L.; Neri, S.; Castellino, P. Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(5), 729-736. doi: 10.1016/j.bbadis.2011.12.003 PMID: 22186191
  15. Cornelius, C.; Trovato Salinaro, A.; Scuto, M.; Fronte, V.; Cambria, M.T.; Pennisi, M.; Bella, R.; Milone, P.; Graziano, A.; Crupi, R.; Cuzzocrea, S.; Pennisi, G.; Calabrese, V. Cellular stress response, sirtuins and UCP proteins in Alzheimer disease: role of vitagenes. Immun. Ageing, 2013, 10(1), 41. doi: 10.1186/1742-4933-10-41 PMID: 24498895
  16. Amara, I.; Timoumi, R.; Annabi, E.; Di Rosa, G.; Scuto, M.; Najjar, M.F.; Calabrese, V.; Abid-Essefi, S. Di (2‐ethylhexyl) phthalate targets the thioredoxin system and the oxidative branch of the pentose phosphate pathway in liver of Balb/c mice. Environ. Toxicol., 2020, 35(1), 78-86. doi: 10.1002/tox.22844 PMID: 31486570
  17. Concetta, S.M.; Mancuso, C.; Tomasello, B.; Laura, O.M.; Cavallaro, A.; Frasca, F.; Maiolino, L.; Trovato Salinaro, A.; Calabrese, E.J.; Calabrese, V. Curcumin, hormesis and the nervous system. Nutrients, 2019, 11(10), 2417. doi: 10.3390/nu11102417 PMID: 31658697
  18. Bhambri, A.; Srivastava, M.; Mahale, V.G.; Mahale, S.; Karn, S.K. Mushrooms as potential sources of active metabolites and medicines. Front. Microbiol., 2022, 13837266. doi: 10.3389/fmicb.2022.837266 PMID: 35558110
  19. Muszyńska, B.; Grzywacz-Kisielewska, A.; Kała, K.; Gdula-Argasińska, J. Anti-inflammatory properties of edible mushrooms: A review. Food Chem., 2018, 243, 373-381. doi: 10.1016/j.foodchem.2017.09.149 PMID: 29146352
  20. Paterson, R.R.M.; Lima, N. Biomedical effects of mushrooms with emphasis on pure compounds. Biomed. J., 2014, 37(6), 357-368. doi: 10.4103/2319-4170.143502 PMID: 25355390
  21. Komura, D.L.; Ruthes, A.C.; Carbonero, E.R.; Gorin, P.A.J.; Iacomini, M. Water-soluble polysaccharides from Pleurotus ostreatus var. florida mycelial biomass. Int. J. Biol. Macromol., 2014, 70, 354-359. doi: 10.1016/j.ijbiomac.2014.06.007 PMID: 25008131
  22. Wong, J.H.; Ng, T.B.; Chan, H.H.L.; Liu, Q.; Man, G.C.W.; Zhang, C.Z.; Guan, S.; Ng, C.C.W.; Fang, E.F.; Wang, H.; Liu, F.; Ye, X.; Rolka, K.; Naude, R.; Zhao, S.; Sha, O.; Li, C.; Xia, L. Mushroom extracts and compounds with suppressive action on breast cancer: evidence from studies using cultured cancer cells, tumor-bearing animals, and clinical trials. Appl. Microbiol. Biotechnol., 2020, 104(11), 4675-4703. doi: 10.1007/s00253-020-10476-4 PMID: 32274562
  23. Zhang, X.; Cai, Z.; Mao, H.; Hu, P.; Li, X. Isolation and structure elucidation of polysaccharides from fruiting bodies of mushroom Coriolus versicolor and evaluation of their immunomodulatory effects. Int. J. Biol. Macromol., 2021, 166, 1387-1395. doi: 10.1016/j.ijbiomac.2020.11.018 PMID: 33161080
  24. Liu, X.; Yu, Z.; Jia, W.; Wu, Y.; Wu, D.; Zhang, H.; Liu, Z.; Yang, Y.; Zhang, J.; Liu, Y.; Tang, C.; Wang, W.; Zhu, L. A review on linking the medicinal functions of mushroom prebiotics with gut microbiota. Int. J. Med. Mushrooms, 2020, 22(10), 943-951. doi: 10.1615/IntJMedMushrooms.2020035799 PMID: 33426824
  25. Trovato, A.; Siracusa, R.; Di Paola, R.; Scuto, M.; Ontario, M.L.; Bua, O.; Di Mauro, P.; Toscano, M.A.; Petralia, C.C.T.; Maiolino, L.; Serra, A.; Cuzzocrea, S.; Calabrese, V. Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: relevance to Alzheimer’s disease pathogenesis. Immun. Ageing, 2016, 13(1), 23. doi: 10.1186/s12979-016-0078-8 PMID: 27398086
  26. Fang, X.; Jiang, Y.; Ji, H.; Zhao, L.; Xiao, W.; Wang, Z.; Ding, G. The synergistic beneficial effects of Ginkgo flavonoid and Coriolus versicolor polysaccharide for memory improvements in a mouse model of dementia. Evid. Based Complement. Alternat. Med., 2015, 2015(9), 128394. PMID: 25821476
  27. Bains, A.; Chawla, P.; Kaur, S.; Najda, A.; Fogarasi, M.; Fogarasi, S. Bioactives from mushroom: health attributes and food industry applications. Materials (Basel), 2021, 14(24), 7640. doi: 10.3390/ma14247640 PMID: 34947237
  28. Nagy, M.; Socaci, S.; Tofană, M.; Biris-Dorhoi, E.S.; Țibulcă, D.; Petruț, G.; Salanta, C.L. Chemical composition and bioactive compounds of some wild edible mushrooms. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol., 2017, 74(1), 1-8. doi: 10.15835/buasvmcn-fst:12629
  29. Kim, M.Y.; Seguin, P.; Ahn, J.K.; Kim, J.J.; Chun, S.C.; Kim, E.H.; Seo, S.H.; Kang, E.Y.; Kim, S.L.; Park, Y.J.; Ro, H.M.; Chung, I.M. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J. Agric. Food Chem., 2008, 56(16), 7265-7270. doi: 10.1021/jf8008553 PMID: 18616260
  30. Pawlikowska, M.; Jędrzejewski, T.; Piotrowski, J.; Kozak, W. Fever-range hyperthermia inhibits cells immune response to protein-bound polysaccharides derived from Coriolus versicolor extract. Mol. Immunol., 2016, 80, 50-57. doi: 10.1016/j.molimm.2016.10.013 PMID: 27825050
  31. Li, X.Y.; Wang, J.F.; Zhu, P.P.; Liu, L.; Ge, J.B.; Yang, S.X. Immune enhancement of a polysaccharides peptides isolated from Coriolus versicolor. Chung Kuo Yao Li Hsueh Pao, 1990, 11(6), 542-545. PMID: 1718146
  32. D’Amico, R.; Trovato, S.A.; Fusco, R.; Cordaro, M.; Impellizzeri, D.; Scuto, M.; Ontario, M.L.; Lo Dico, G.; Cuzzocrea, S.; Di Paola, R.; Siracusa, R.; Calabrese, V. Hericium erinaceus and Coriolus versicolor modulate molecular and biochemical changes after traumatic brain injury. Antioxidants, 2021, 10(6), 898. doi: 10.3390/antiox10060898 PMID: 34199629
  33. Ferreiro, E.; Pita, I.R.; Mota, S.I.; Valero, J.; Ferreira, N.R.; Fernandes, T.; Calabrese, V.; Fontes-Ribeiro, C.A.; Pereira, F.C.; Rego, A.C. Coriolus versicolor biomass increases dendritic arborization of newly-generated neurons in mouse hippocampal dentate gyrus. Oncotarget, 2018, 9(68), 32929-32942. doi: 10.18632/oncotarget.25978 PMID: 30250640
  34. Trovato, A.; Siracusa, R.; Di Paola, R.; Scuto, M.; Fronte, V.; Koverech, G.; Luca, M.; Serra, A.; Toscano, M.A.; Petralia, A.; Cuzzocrea, S.; Calabrese, V. Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: Relevance to Alzheimer’s disease pathogenesis. Neurotoxicology, 2016, 53, 350-358. doi: 10.1016/j.neuro.2015.09.012 PMID: 26433056
  35. Scuto, M.; Di Mauro, P.; Ontario, M.L.; Amato, C.; Modafferi, S.; Ciavardelli, D.; Trovato, S.A.; Maiolino, L.; Calabrese, V. Nutritional mushroom treatment in Meniere’s disease with Coriolus versicolor: A rationale for therapeutic intervention in neuroinflammation and antineurodegeneration. Int. J. Mol. Sci., 2019, 21(1), 284. doi: 10.3390/ijms21010284 PMID: 31906226
  36. Monro, J.A. Treatment of cancer with mushroom products. Arch. Environ. Health, 2003, 58(8), 533-537. doi: 10.3200/AEOH.58.8.533-537 PMID: 15259434
  37. Gil-Antuñano, S.P.; Serrano, C.L.; López, D.A.C.; González, R.S.P.; Dexeus, C.D.; Centeno, M.C.; Coronado, M.P.; de la Fuente, V.J.; López, Fernández, J.A.; Vanrell, B.C.; Cortés Bordoy, J. Efficacy of a Coriolusversicolor-based vaginal gel in human papillomavirus-positive women older than 40 years: A sub-analysis of PALOMA study. J. Pers. Med., 2022, 12(10), 1559. doi: 10.3390/jpm12101559 PMID: 36294699
  38. Committee on Hearing and equilibrium guidelines for the diagnosis and evaluation of therapy in Meniere’s disease. Otolaryngol. Head Neck Surg., 1995, 113(3), 181-185. doi: 10.1016/S0194-5998(95)70102-8 PMID: 7675476
  39. Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature, 2014, 510(7503), 92-101. doi: 10.1038/nature13479 PMID: 24899309
  40. Di Paola, R.; Impellizzeri, D.; Fusco, R.; Cordaro, M.; Siracusa, R.; Crupi, R.; Esposito, E.; Cuzzocrea, S. Ultramicronized palmitoylethanolamide (PEA-um®) in the treatment of idiopathic pulmonary fibrosis. Pharmacol. Res., 2016, 111, 405-412. doi: 10.1016/j.phrs.2016.07.010 PMID: 27402190
  41. Fusco, R.; Cordaro, M.; Siracusa, R.; D’Amico, R.; Genovese, T.; Gugliandolo, E.; Peritore, A.F.; Crupi, R.; Impellizzeri, D.; Cuzzocrea, S.; Di Paola, R. Biochemical evaluation of the antioxidant effects of hydroxytyrosol on pancreatitis-associated gut injury. Antioxidants, 2020, 9(9), 781. doi: 10.3390/antiox9090781 PMID: 32842687
  42. Schapira, A.H.V.; Mann, V.M.; Cooper, J.M.; Dexter, D.; Daniel, S.E.; Jenner, P.; Clark, J.B.; Marsden, C.D. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J. Neurochem., 1990, 55(6), 2142-2145. doi: 10.1111/j.1471-4159.1990.tb05809.x PMID: 2121905
  43. Barrientos, A.; Fontanesi, F.; Díaz, F. Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using polarography and spectrophotometric enzyme assays. Curr. Protoc. Hum. Genet., 2009, Chapter 19, Unit19.3. doi: 10.1002/0471142905.hg1903s63 PMID: 19806590
  44. Amara, I.; Ontario, M.L.; Scuto, M.; Lo Dico, G.M.; Sciuto, S.; Greco, V.; Abid-Essefi, S.; Signorile, A.; Salinaro, A.T.; Calabrese, V. Moringa oleifera protects SH-SY5Y cells from DEHP-induced endoplasmic reticulum stress and apoptosis. Antioxidants, 2021, 10(4), 532. doi: 10.3390/antiox10040532 PMID: 33805396
  45. Wolfer, A.M.; Gaudin, M.; Taylor-Robinson, S.D.; Holmes, E.; Nicholson, J.K. Development and validation of a high-throughput ultrahigh-performance liquid chromatography-mass spectrometry approach for screening of oxylipins and their precursors. Anal. Chem., 2015, 87(23), 11721-11731. doi: 10.1021/acs.analchem.5b02794 PMID: 26501362
  46. Merchant, S.N.; Adams, J.C.; Nadol, J.B., Jr. Pathology and pathophysiology of idiopathic sudden sensorineural hearing loss. Otol. Neurotol., 2005, 26(2), 151-160. doi: 10.1097/00129492-200503000-00004 PMID: 15793397
  47. Capaccio, P.; Pignataro, L.; Gaini, L.M.; Sigismund, P.E.; Novembrino, C.; De Giuseppe, R.; Uva, V.; Tripodi, A.; Bamonti, F. Unbalanced oxidative status in idiopathic sudden sensorineural hearing loss. Eur. Arch. Otorhinolaryngol., 2012, 269(2), 449-453. doi: 10.1007/s00405-011-1671-2 PMID: 21706323
  48. Momin, S.R.; Melki, S.J.; Alagramam, K.N.; Megerian, C.A. Spiral ganglion loss outpaces inner hair cell loss in endolymphatic hydrops. Laryngoscope, 2010, 120(1), 159-165. PMID: 19877178
  49. Perez-Carpena, P.; Lopez-Escamez, J.A. Current understanding and clinical management of Meniere’s disease: A systematic review. Semin. Neurol., 2020, 40(1), 138-150. doi: 10.1055/s-0039-3402065 PMID: 31887752
  50. Verdoodt, D.; Van Camp, G.; Ponsaerts, P.; Van Rompaey, V. On the pathophysiology of DFNA9: Effect of pathogenic variants in the COCH gene on inner ear functioning in human and transgenic mice. Hear. Res., 2021, 401, 108162. doi: 10.1016/j.heares.2020.108162 PMID: 33421658
  51. Baruah, P. Cochlin in autoimmune inner ear disease: Is the search for an inner ear autoantigen over? Auris Nasus Larynx, 2014, 41(6), 499-501. doi: 10.1016/j.anl.2014.08.014 PMID: 25199741
  52. Kouhi, A.; Shakeri, S.; Yazdani, N.; Shababi, N.; Mohseni, A.; Mohseni, A.; Sadr, M.; Mohammad, A.M.; Rezaei, A.; Rezaei, N. Association of pro-inflammatory cytokine gene polymorphism with Meniere’s disease in an Iranian sample. Iran. J. Allergy Asthma Immunol., 2021, 20(6), 734-739. doi: 10.18502/ijaai.v20i6.8024 PMID: 34920656
  53. Calabrese, V.; Cornelius, C.; Mancuso, C.; Lentile, R.; Stella, A.G.; Butterfield, D.A. Redox homeostasis and cellular stress response in aging and neurodegeneration; Free Radicals and Antioxidant Protocols, 2010, pp. 285-308. doi: 10.1007/978-1-60327-029-8_17
  54. Calabrese, V.; Cornelius, C.; Maiolino, L.; Luca, M.; Chiaramonte, R.; Toscano, M.A.; Serra, A. Oxidative stress, redox homeostasis and cellular stress response in Ménière’s disease: role of vitagenes. Neurochem. Res., 2010, 35(12), 2208-2217. doi: 10.1007/s11064-010-0304-2 PMID: 21042850
  55. Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol., 2008, 8(5), 349-361. doi: 10.1038/nri2294 PMID: 18437155
  56. Megerian, C.A. Diameter of the cochlear nerve in endolymphatic hydrops: Implications for the etiology of hearing loss in Ménière’s disease. Laryngoscope, 2005, 115(9), 1525-1535. doi: 10.1097/01.mlg.0000167804.82950.9e PMID: 16148690
  57. Jung, J.; Yoo, J.E.; Choe, Y.H.; Park, S.C.; Lee, H.J.; Lee, H.J.; Noh, B.; Kim, S.H.; Kang, G.-Y.; Lee, K.-M.; Yoon, S.S.; Jang, D.S.; Yoon, J.-H.; Hyun, Y.-M.; Choi, J.Y. Cleaved cochlin sequesters pseudomonas aeruginosa and activates innate immunity in the inner ear. Cell Host Microbe., 2019, 25(4), 513-525.e6. doi: 10.1016/j.chom.2019.02.001 PMID: 30905438
  58. Jędrzejewski, T.; Pawlikowska, M.; Piotrowski, J.; Kozak, W. Protein-bound polysaccharides from Coriolus versicolor attenuate LPS-induced synthesis of pro-inflammatory cytokines and stimulate PBMCs proliferation. Immunol. Lett., 2016, 178, 140-147. doi: 10.1016/j.imlet.2016.08.013 PMID: 27594322
  59. Danial-Farran, N.; Chervinsky, E.; Nadar-Ponniah, P.T.; Cohen Barak, E.; Taiber, S.; Khayat, M.; Avraham, K.B.; Shalev, S.A. Homozygote loss-of-function variants in the human COCH gene underlie hearing loss. Eur. J. Hum. Genet., 2021, 29(2), 338-342. doi: 10.1038/s41431-020-00724-6 PMID: 32939038
  60. Ishiyama, G.; Lopez, I.A.; Acuna, D.; Ishiyama, A. Investigations of the microvasculature of the human macula utricle in Meniere’s disease. Front. Cell. Neurosci., 2019, 13, 445. doi: 10.3389/fncel.2019.00445 PMID: 31636542
  61. Wu, S.H.; Liao, P.Y.; Dong, L.; Chen, Z.Q. Signal pathway involved in inhibition by lipoxin A4 of production of interleukins induced in endothelial cells by lipopolysaccharide. Inflamm. Res., 2008, 57(9), 430-437. doi: 10.1007/s00011-008-7147-1 PMID: 18777114
  62. Elsayed, E.A.; El Enshasy, H.; Wadaan, M.A.M.; Aziz, R. Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm., 2014, 2014, 1-15. doi: 10.1155/2014/805841 PMID: 25505823
  63. Calabrese, V.; Santoro, A.; Trovato Salinaro, A.; Modafferi, S.; Scuto, M.; Albouchi, F.; Monti, D.; Giordano, J.; Zappia, M.; Franceschi, C.; Calabrese, E.J. Hormetic approaches to the treatment of Parkinson’s disease: Perspectives and possibilities. J. Neurosci. Res., 2018, 96(10), 1641-1662. doi: 10.1002/jnr.24244 PMID: 30098077
  64. Kawaguchi, S.; Hagiwara, A.; Suzuki, M. Polymorphic analysis of the heat-shock protein 70 gene (HSPA1A) in Ménière’s disease. Acta Otolaryngol., 2008, 128(11), 1173-1177. doi: 10.1080/00016480801901675 PMID: 19241595
  65. Møller, M.N.; Kirkeby, S.; Vikeså, J.; Nielsen, F.C.; Cayé-Thomasen, P. Gene expression demonstrates an immunological capacity of the human endolymphatic sac. Laryngoscope, 2015, 125(8), E269-E275. doi: 10.1002/lary.25242 PMID: 25779626
  66. Requena, T.; Gazquez, I.; Moreno, A.; Batuecas, A.; Aran, I.; Soto-Varela, A.; Santos-Perez, S.; Perez, N.; Perez-Garrigues, H.; Lopez-Nevot, A.; Martin, E.; Sanz, R.; Perez, P.; Trinidad, G.; Alarcon-Riquelme, M.E.; Teggi, R.; Zagato, L.; Lopez-Nevot, M.A.; Lopez-Escamez, J.A. Allelic variants in TLR10 gene may influence bilateral affectation and clinical course of Meniere’s disease. Immunogenetics, 2013, 65(5), 345-355. doi: 10.1007/s00251-013-0683-z PMID: 23370977
  67. Nakanishi, H.; Kawashima, Y.; Kurima, K.; Chae, J.J.; Ross, A.M.; Pinto-Patarroyo, G.; Patel, S.K.; Muskett, J.A.; Ratay, J.S.; Chattaraj, P.; Park, Y.H.; Grevich, S.; Brewer, C.C.; Hoa, M.; Kim, H.J.; Butman, J.A.; Broderick, L.; Hoffman, H.M.; Aksentijevich, I.; Kastner, D.L.; Goldbach-Mansky, R.; Griffith, A.J. NLRP3 mutation and cochlear autoinflammation cause syndromic and nonsyndromic hearing loss DFNA34 responsive to anakinra therapy. Proc. Natl. Acad. Sci. USA, 2017, 114(37), E7766-E7775. doi: 10.1073/pnas.1702946114 PMID: 28847925
  68. Nakanishi, H.; Prakash, P.; Ito, T.; Kim, H.J.; Brewer, C.C.; Harrow, D.; Roux, I.; Hosokawa, S.; Griffith, A.J. Genetic hearing loss associated with autoinflammation. Front. Neurol., 2020, 11, 141. doi: 10.3389/fneur.2020.00141 PMID: 32194497
  69. Frejo, L.; Lopez-Escamez, J.A. Cytokines and inflammation in Meniere disease. Clin. Exp. Otorhinolaryngol., 2022, 15(1), 49-59. doi: 10.21053/ceo.2021.00920 PMID: 35124944
  70. Cabrera, S.; Sanchez, E.; Requena, T.; Martinez-Bueno, M.; Benitez, J.; Perez, N.; Trinidad, G.; Soto-Varela, A.; Santos-Perez, S.; Martin-Sanz, E.; Fraile, J.; Perez, P.; Alarcon-Riquelme, M.E.; Batuecas, A.; Espinosa-Sanchez, J.M.; Aran, I.; Lopez-Escamez, J.A. Intronic variants in the NFKB1 gene may influence hearing forecast in patients with unilateral sensorineural hearing loss in Meniere’s disease. PLoS One, 2014, 9(11), e112171. doi: 10.1371/journal.pone.0112171 PMID: 25397881
  71. Frejo, L.; Requena, T.; Okawa, S.; Gallego-Martinez, A.; Martinez-Bueno, M.; Aran, I.; Batuecas-Caletrio, A.; Benitez-Rosario, J.; Espinosa-Sanchez, J.M.; Fraile-Rodrigo, J.J.; García-Arumi, A.M.; González-Aguado, R.; Marques, P.; Martin-Sanz, E.; Perez-Fernandez, N.; Pérez-Vázquez, P.; Perez-Garrigues, H.; Santos-Perez, S.; Soto-Varela, A.; Tapia, M.C.; Trinidad-Ruiz, G.; del Sol, A.; Alarcon Riquelme, M.E.; Lopez-Escamez, J.A. Regulation of Fn14 receptor and NF-κB underlies inflammation in Meniere’s disease. Front. Immunol., 2017, 8, 1739. doi: 10.3389/fimmu.2017.01739 PMID: 29326686
  72. Shameli, A.; Xiao, W.; Zheng, Y.; Shyu, S.; Sumodi, J.; Meyerson, H.J.; Harding, C.V.; Maitta, R.W. A critical role for alpha-synuclein in development and function of T lymphocytes. Immunobiology, 2016, 221(2), 333-340. doi: 10.1016/j.imbio.2015.10.002 PMID: 26517968
  73. Grozdanov, V.; Danzer, K.M. Intracellular Alpha-Synuclein and Immune Cell Function. Front. Cell Dev. Biol., 2020, 8562692. doi: 10.3389/fcell.2020.562692 PMID: 33178682
  74. Gazquez, I.; Soto-Varela, A.; Aran, I.; Santos, S.; Batuecas, A.; Trinidad, G.; Perez-Garrigues, H.; Gonzalez-Oller, C.; Acosta, L.; Lopez-Escamez, J.A. High prevalence of systemic autoimmune diseases in patients with Menière’s disease. PLoS One, 2011, 6(10), e26759. doi: 10.1371/journal.pone.0026759 PMID: 22053211
  75. Wang, Y.; Ren, D. Mechanism of aseptic inflammation upon the inner ear injury. J. Bio-X Res., 2020, 3(2), 72-77. doi: 10.1097/JBR.0000000000000041
  76. Cordaro, M.; Modafferi, S.; D’Amico, R.; Fusco, R.; Genovese, T.; Peritore, A.F.; Gugliandolo, E.; Crupi, R.; Interdonato, L.; Di Paola, D.; Impellizzeri, D.; Cuzzocrea, S.; Calabrese, V.; Di Paola, R.; Siracusa, R. Natural compounds such as Hericium erinaceus and Coriolus versicolor modulate neuroinflammation, oxidative stress and Lipoxin A4 expression in rotenone-induced Parkinson’s disease in mice. Biomedicines, 2022, 10(10), 2505. doi: 10.3390/biomedicines10102505 PMID: 36289766

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers