Redox Modulation of Meniere Disease by Coriolus versicolor Treatment, a Nutritional Mushroom Approach with Neuroprotective Potential
- Authors: Paola R.1, Siracusa R.2, Fusco R.2, Ontario M.3,4, Cammilleri G.5, Pantano L.5, Scuto M.3,4, Tomasello M.3,6, Spanò S.3,6, Salinaro A.3,4, Abdelhameed A.7, Ferrantelli V.5, Arcidiacono A.3,4, Fritsch T.8, Lupo G.3,6, Signorile A.9, Maiolino L.3,6, Cuzzocrea S.10, Calabrese V.3,4
-
Affiliations:
- Department of Veterinary Science, University of Messina
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina
- Department of Biomedical and Biotechnological Sciences
- Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia", University of Catania
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia
- Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia",, University of Catania
- Department of Pharmaceutical Chemistr, College of Pharmacy, King Saud University
- , NAM Institute
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messin
- Issue: Vol 22, No 12 (2024)
- Pages: 2079-2098
- Section: Neurology
- URL: https://rjeid.com/1570-159X/article/view/644455
- DOI: https://doi.org/10.2174/1570159X22666231206153936
- ID: 644455
Cite item
Full Text
Abstract
Background:Meniere's disease (MD) is a cochlear neurodegenerative disease. Hearing loss appears to be triggered by oxidative stress in the ganglion neurons of the inner ear.
Objective:Here, we confirm the variation of markers of oxidative stress and inflammation in patients with Meniere and hypothesize that chronic treatment with Coriolus mushroom helps in the response to oxidative stress and acts on α-synuclein and on NF-kB-mediated inflammatory processes.
Methods:Markers of oxidative stress and inflammation were evaluated in MD patients with or without Coriolus treatment for 3 or 6 months.
Results:MD patients had a small increase in Nrf2, HO-1, γ-GC, Hsp70, Trx and sirtuin-1, which were further increased by Coriolus treatment, especially after 6 months. Increased markers of oxidative damage, such as protein carbonyls, HNE, and ultraweak chemiluminescence, associated with a decrease in plasma GSH/GSSG ratio, were also observed in lymphocytes from MD patients. These parameters were restored to values similar to the baseline in patients treated with Coriolus for both 3 and 6 months. Furthermore, treated MD subjects showed decreased expression of α-synuclein, GFAP and Iba-1 proteins and modulation of the NF-kB pathway, which were impaired in MD patients. These changes were greatest in subjects taking supplements for 6 months.
Conclusions:Our study suggests MD as a model of cochlear neurodegenerative disease for the identification of potent inducers of the Nrf2-vitagene pathway, able to reduce the deleterious consequences associated with neurodegenerative damage, probably by indirectly acting on a-synuclein expression and on inflammatory processes NF-kB-mediated.
About the authors
Rosanna Paola
Department of Veterinary Science, University of Messina
Email: info@benthamscience.net
Rosalba Siracusa
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina
Email: info@benthamscience.net
Roberta Fusco
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina
Email: info@benthamscience.net
Marialaura Ontario
Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia", University of Catania
Email: info@benthamscience.net
Gaetano Cammilleri
Food Department, Istituto Zooprofilattico Sperimentale della Sicilia
Email: info@benthamscience.net
Licia Pantano
Food Department, Istituto Zooprofilattico Sperimentale della Sicilia
Email: info@benthamscience.net
Maria Scuto
Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia", University of Catania
Email: info@benthamscience.net
Mario Tomasello
Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia",, University of Catania
Email: info@benthamscience.net
Sestina Spanò
Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia",, University of Catania
Email: info@benthamscience.net
Angela Salinaro
Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia", University of Catania
Email: info@benthamscience.net
Ali Abdelhameed
Department of Pharmaceutical Chemistr, College of Pharmacy, King Saud University
Email: info@benthamscience.net
Vincenzo Ferrantelli
Food Department, Istituto Zooprofilattico Sperimentale della Sicilia
Email: info@benthamscience.net
Antonio Arcidiacono
Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia", University of Catania
Email: info@benthamscience.net
Tilman Fritsch
, NAM Institute
Email: info@benthamscience.net
Gabriella Lupo
Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia",, University of Catania
Author for correspondence.
Email: info@benthamscience.net
Anna Signorile
Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro
Author for correspondence.
Email: info@benthamscience.net
Luigi Maiolino
Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia",, University of Catania
Email: info@benthamscience.net
Salvatore Cuzzocrea
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messin
Email: info@benthamscience.net
Vittorio Calabrese
Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies "G.F. Ingrassia", University of Catania
Email: info@benthamscience.net
References
- Harris, J.P.; Alexander, T.H. Current-day prevalence of Ménières syndrome. Audiol. Neurotol., 2010, 15(5), 318-322. doi: 10.1159/000286213 PMID: 20173319
- Celestino, D.; Ralli, G. Incidence of Menières disease in Italy. Am. J. Otol., 1991, 12(2), 135-138. PMID: 2053606
- Bixenstine, P.J.; Maniglia, M.P.; Vasanji, A.; Alagramam, K.N.; Megerian, C.A. Spiral ganglion degeneration patterns in endolymphatic hydrops. Laryngoscope, 2008, 118(7), 1217-1223. doi: 10.1097/MLG.0b013e31816ba9cd PMID: 18364591
- Nadol, J.B., Jr Degeneration of cochlear neurons as seen in the spiral ganglion of man. Hear. Res., 1990, 49(1-3), 141-154. doi: 10.1016/0378-5955(90)90101-T PMID: 2292494
- Trovato, S.A.; Pennisi, M.; Di Paola, R.; Scuto, M.; Crupi, R.; Cambria, M.T.; Ontario, M.L.; Tomasello, M.; Uva, M.; Maiolino, L.; Calabrese, E.J.; Cuzzocrea, S.; Calabrese, V. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimers disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms. Immun. Ageing, 2018, 15(1), 8. doi: 10.1186/s12979-017-0108-1 PMID: 29456585
- Yokota, Y.; Kitahara, T.; Sakagami, M.; Ito, T.; Kimura, T.; Okayasu, T.; Yamashita, A.; Yamanaka, T. Surgical results and psychological status in patients with intractable Ménières disease. Auris Nasus Larynx, 2016, 43(3), 287-291. doi: 10.1016/j.anl.2015.10.007 PMID: 26559747
- De Berardis, D.; Campanella, D.; Gambi, F.; La Rovere, R.; Carano, A.; Conti, C.M.; Silvestrini, C.; Serroni, N.; Piersanti, D.; Di Giuseppe, B.; Moschetta, F.S.; Cotellessa, C.; Fulcheri, M.; Salerno, R.M.; Ferro, F.M. The role of C-reactive protein in mood disorders. Int. J. Immunopathol. Pharmacol., 2006, 19(4), 721-725. doi: 10.1177/039463200601900402 PMID: 17166394
- Orsolini, L.; Sarchione, F.; Vellante, F.; Fornaro, M.; Matarazzo, I.; Martinotti, G.; Valchera, A.; Di Nicola, M.; Carano, A.; Di Giannantonio, M.; Perna, G.; Olivieri, L.; De Berardis, D. Protein-C Reactive as Biomarker Predictor of Schizophrenia Phases of Illness? A Systematic Review. Curr. Neuropharmacol., 2018, 16(5), 583-606. doi: 10.2174/1570159X16666180119144538 PMID: 29357805
- Calabrese, V.; Cornelius, C.; Trovato-Salinaro, A.; Cambria, M.; Locascio, M.; Rienzo, L.; Condorelli, D.; Mancuso, C.; De Lorenzo, A.; Calabrese, E. The hormetic role of dietary antioxidants in free radical-related diseases. Curr. Pharm. Des., 2010, 16(7), 877-883. doi: 10.2174/138161210790883615 PMID: 20388101
- Calabrese, V.; Giordano, J.; Crupi, R.; Di Paola, R.; Ruggieri, M.; Bianchini, R.; Ontario, M.L.; Cuzzocrea, S.; Calabrese, E.J. Hormesis, cellular stress response and neuroinflammation in schizophrenia: Early onset versus late onset state. J. Neurosci. Res., 2017, 95(5), 1182-1193. doi: 10.1002/jnr.23967 PMID: 27898171
- Xia, Y.; Wang, D.; Li, J.; Chen, M.; Wang, D.; Jiang, Z.; Liu, B. Compounds purified from edible fungi fight against chronic inflammation through oxidative stress regulation. Front. Pharmacol., 2022, 13, 974794. doi: 10.3389/fphar.2022.974794 PMID: 36160418
- Calabrese, V.; Scapagnini, G.; Davinelli, S.; Koverech, G.; Koverech, A.; De Pasquale, C.; Salinaro, A.T.; Scuto, M.; Calabrese, E.J.; Genazzani, A.R. Sex hormonal regulation and hormesis in aging and longevity: role of vitagenes. J. Cell Commun. Signal., 2014, 8(4), 369-384. doi: 10.1007/s12079-014-0253-7 PMID: 25381162
- Trovato Salinaro, A.; Cornelius, C.; Koverech, G.; Koverech, A.; Scuto, M.; Lodato, F.; Fronte, V.; Muccilli, V.; Reibaldi, M.; Longo, A.; Uva, M.G.; Calabrese, V. Cellular stress response, redox status, and vitagenes in glaucoma: a systemic oxidant disorder linked to Alzheimers disease. Front. Pharmacol., 2014, 5, 129. doi: 10.3389/fphar.2014.00129 PMID: 24936186
- Calabrese, V.; Cornelius, C.; Leso, V.; Trovato-Salinaro, A.; Ventimiglia, B.; Cavallaro, M.; Scuto, M.; Rizza, S.; Zanoli, L.; Neri, S.; Castellino, P. Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(5), 729-736. doi: 10.1016/j.bbadis.2011.12.003 PMID: 22186191
- Cornelius, C.; Trovato Salinaro, A.; Scuto, M.; Fronte, V.; Cambria, M.T.; Pennisi, M.; Bella, R.; Milone, P.; Graziano, A.; Crupi, R.; Cuzzocrea, S.; Pennisi, G.; Calabrese, V. Cellular stress response, sirtuins and UCP proteins in Alzheimer disease: role of vitagenes. Immun. Ageing, 2013, 10(1), 41. doi: 10.1186/1742-4933-10-41 PMID: 24498895
- Amara, I.; Timoumi, R.; Annabi, E.; Di Rosa, G.; Scuto, M.; Najjar, M.F.; Calabrese, V.; Abid-Essefi, S. Di (2‐ethylhexyl) phthalate targets the thioredoxin system and the oxidative branch of the pentose phosphate pathway in liver of Balb/c mice. Environ. Toxicol., 2020, 35(1), 78-86. doi: 10.1002/tox.22844 PMID: 31486570
- Concetta, S.M.; Mancuso, C.; Tomasello, B.; Laura, O.M.; Cavallaro, A.; Frasca, F.; Maiolino, L.; Trovato Salinaro, A.; Calabrese, E.J.; Calabrese, V. Curcumin, hormesis and the nervous system. Nutrients, 2019, 11(10), 2417. doi: 10.3390/nu11102417 PMID: 31658697
- Bhambri, A.; Srivastava, M.; Mahale, V.G.; Mahale, S.; Karn, S.K. Mushrooms as potential sources of active metabolites and medicines. Front. Microbiol., 2022, 13837266. doi: 10.3389/fmicb.2022.837266 PMID: 35558110
- Muszyńska, B.; Grzywacz-Kisielewska, A.; Kała, K.; Gdula-Argasińska, J. Anti-inflammatory properties of edible mushrooms: A review. Food Chem., 2018, 243, 373-381. doi: 10.1016/j.foodchem.2017.09.149 PMID: 29146352
- Paterson, R.R.M.; Lima, N. Biomedical effects of mushrooms with emphasis on pure compounds. Biomed. J., 2014, 37(6), 357-368. doi: 10.4103/2319-4170.143502 PMID: 25355390
- Komura, D.L.; Ruthes, A.C.; Carbonero, E.R.; Gorin, P.A.J.; Iacomini, M. Water-soluble polysaccharides from Pleurotus ostreatus var. florida mycelial biomass. Int. J. Biol. Macromol., 2014, 70, 354-359. doi: 10.1016/j.ijbiomac.2014.06.007 PMID: 25008131
- Wong, J.H.; Ng, T.B.; Chan, H.H.L.; Liu, Q.; Man, G.C.W.; Zhang, C.Z.; Guan, S.; Ng, C.C.W.; Fang, E.F.; Wang, H.; Liu, F.; Ye, X.; Rolka, K.; Naude, R.; Zhao, S.; Sha, O.; Li, C.; Xia, L. Mushroom extracts and compounds with suppressive action on breast cancer: evidence from studies using cultured cancer cells, tumor-bearing animals, and clinical trials. Appl. Microbiol. Biotechnol., 2020, 104(11), 4675-4703. doi: 10.1007/s00253-020-10476-4 PMID: 32274562
- Zhang, X.; Cai, Z.; Mao, H.; Hu, P.; Li, X. Isolation and structure elucidation of polysaccharides from fruiting bodies of mushroom Coriolus versicolor and evaluation of their immunomodulatory effects. Int. J. Biol. Macromol., 2021, 166, 1387-1395. doi: 10.1016/j.ijbiomac.2020.11.018 PMID: 33161080
- Liu, X.; Yu, Z.; Jia, W.; Wu, Y.; Wu, D.; Zhang, H.; Liu, Z.; Yang, Y.; Zhang, J.; Liu, Y.; Tang, C.; Wang, W.; Zhu, L. A review on linking the medicinal functions of mushroom prebiotics with gut microbiota. Int. J. Med. Mushrooms, 2020, 22(10), 943-951. doi: 10.1615/IntJMedMushrooms.2020035799 PMID: 33426824
- Trovato, A.; Siracusa, R.; Di Paola, R.; Scuto, M.; Ontario, M.L.; Bua, O.; Di Mauro, P.; Toscano, M.A.; Petralia, C.C.T.; Maiolino, L.; Serra, A.; Cuzzocrea, S.; Calabrese, V. Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: relevance to Alzheimers disease pathogenesis. Immun. Ageing, 2016, 13(1), 23. doi: 10.1186/s12979-016-0078-8 PMID: 27398086
- Fang, X.; Jiang, Y.; Ji, H.; Zhao, L.; Xiao, W.; Wang, Z.; Ding, G. The synergistic beneficial effects of Ginkgo flavonoid and Coriolus versicolor polysaccharide for memory improvements in a mouse model of dementia. Evid. Based Complement. Alternat. Med., 2015, 2015(9), 128394. PMID: 25821476
- Bains, A.; Chawla, P.; Kaur, S.; Najda, A.; Fogarasi, M.; Fogarasi, S. Bioactives from mushroom: health attributes and food industry applications. Materials (Basel), 2021, 14(24), 7640. doi: 10.3390/ma14247640 PMID: 34947237
- Nagy, M.; Socaci, S.; Tofană, M.; Biris-Dorhoi, E.S.; Țibulcă, D.; Petruț, G.; Salanta, C.L. Chemical composition and bioactive compounds of some wild edible mushrooms. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol., 2017, 74(1), 1-8. doi: 10.15835/buasvmcn-fst:12629
- Kim, M.Y.; Seguin, P.; Ahn, J.K.; Kim, J.J.; Chun, S.C.; Kim, E.H.; Seo, S.H.; Kang, E.Y.; Kim, S.L.; Park, Y.J.; Ro, H.M.; Chung, I.M. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J. Agric. Food Chem., 2008, 56(16), 7265-7270. doi: 10.1021/jf8008553 PMID: 18616260
- Pawlikowska, M.; Jędrzejewski, T.; Piotrowski, J.; Kozak, W. Fever-range hyperthermia inhibits cells immune response to protein-bound polysaccharides derived from Coriolus versicolor extract. Mol. Immunol., 2016, 80, 50-57. doi: 10.1016/j.molimm.2016.10.013 PMID: 27825050
- Li, X.Y.; Wang, J.F.; Zhu, P.P.; Liu, L.; Ge, J.B.; Yang, S.X. Immune enhancement of a polysaccharides peptides isolated from Coriolus versicolor. Chung Kuo Yao Li Hsueh Pao, 1990, 11(6), 542-545. PMID: 1718146
- DAmico, R.; Trovato, S.A.; Fusco, R.; Cordaro, M.; Impellizzeri, D.; Scuto, M.; Ontario, M.L.; Lo Dico, G.; Cuzzocrea, S.; Di Paola, R.; Siracusa, R.; Calabrese, V. Hericium erinaceus and Coriolus versicolor modulate molecular and biochemical changes after traumatic brain injury. Antioxidants, 2021, 10(6), 898. doi: 10.3390/antiox10060898 PMID: 34199629
- Ferreiro, E.; Pita, I.R.; Mota, S.I.; Valero, J.; Ferreira, N.R.; Fernandes, T.; Calabrese, V.; Fontes-Ribeiro, C.A.; Pereira, F.C.; Rego, A.C. Coriolus versicolor biomass increases dendritic arborization of newly-generated neurons in mouse hippocampal dentate gyrus. Oncotarget, 2018, 9(68), 32929-32942. doi: 10.18632/oncotarget.25978 PMID: 30250640
- Trovato, A.; Siracusa, R.; Di Paola, R.; Scuto, M.; Fronte, V.; Koverech, G.; Luca, M.; Serra, A.; Toscano, M.A.; Petralia, A.; Cuzzocrea, S.; Calabrese, V. Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: Relevance to Alzheimers disease pathogenesis. Neurotoxicology, 2016, 53, 350-358. doi: 10.1016/j.neuro.2015.09.012 PMID: 26433056
- Scuto, M.; Di Mauro, P.; Ontario, M.L.; Amato, C.; Modafferi, S.; Ciavardelli, D.; Trovato, S.A.; Maiolino, L.; Calabrese, V. Nutritional mushroom treatment in Menieres disease with Coriolus versicolor: A rationale for therapeutic intervention in neuroinflammation and antineurodegeneration. Int. J. Mol. Sci., 2019, 21(1), 284. doi: 10.3390/ijms21010284 PMID: 31906226
- Monro, J.A. Treatment of cancer with mushroom products. Arch. Environ. Health, 2003, 58(8), 533-537. doi: 10.3200/AEOH.58.8.533-537 PMID: 15259434
- Gil-Antuñano, S.P.; Serrano, C.L.; López, D.A.C.; González, R.S.P.; Dexeus, C.D.; Centeno, M.C.; Coronado, M.P.; de la Fuente, V.J.; López, Fernández, J.A.; Vanrell, B.C.; Cortés Bordoy, J. Efficacy of a Coriolusversicolor-based vaginal gel in human papillomavirus-positive women older than 40 years: A sub-analysis of PALOMA study. J. Pers. Med., 2022, 12(10), 1559. doi: 10.3390/jpm12101559 PMID: 36294699
- Committee on Hearing and equilibrium guidelines for the diagnosis and evaluation of therapy in Menieres disease. Otolaryngol. Head Neck Surg., 1995, 113(3), 181-185. doi: 10.1016/S0194-5998(95)70102-8 PMID: 7675476
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature, 2014, 510(7503), 92-101. doi: 10.1038/nature13479 PMID: 24899309
- Di Paola, R.; Impellizzeri, D.; Fusco, R.; Cordaro, M.; Siracusa, R.; Crupi, R.; Esposito, E.; Cuzzocrea, S. Ultramicronized palmitoylethanolamide (PEA-um®) in the treatment of idiopathic pulmonary fibrosis. Pharmacol. Res., 2016, 111, 405-412. doi: 10.1016/j.phrs.2016.07.010 PMID: 27402190
- Fusco, R.; Cordaro, M.; Siracusa, R.; DAmico, R.; Genovese, T.; Gugliandolo, E.; Peritore, A.F.; Crupi, R.; Impellizzeri, D.; Cuzzocrea, S.; Di Paola, R. Biochemical evaluation of the antioxidant effects of hydroxytyrosol on pancreatitis-associated gut injury. Antioxidants, 2020, 9(9), 781. doi: 10.3390/antiox9090781 PMID: 32842687
- Schapira, A.H.V.; Mann, V.M.; Cooper, J.M.; Dexter, D.; Daniel, S.E.; Jenner, P.; Clark, J.B.; Marsden, C.D. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinsons disease. J. Neurochem., 1990, 55(6), 2142-2145. doi: 10.1111/j.1471-4159.1990.tb05809.x PMID: 2121905
- Barrientos, A.; Fontanesi, F.; Díaz, F. Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using polarography and spectrophotometric enzyme assays. Curr. Protoc. Hum. Genet., 2009, Chapter 19, Unit19.3. doi: 10.1002/0471142905.hg1903s63 PMID: 19806590
- Amara, I.; Ontario, M.L.; Scuto, M.; Lo Dico, G.M.; Sciuto, S.; Greco, V.; Abid-Essefi, S.; Signorile, A.; Salinaro, A.T.; Calabrese, V. Moringa oleifera protects SH-SY5Y cells from DEHP-induced endoplasmic reticulum stress and apoptosis. Antioxidants, 2021, 10(4), 532. doi: 10.3390/antiox10040532 PMID: 33805396
- Wolfer, A.M.; Gaudin, M.; Taylor-Robinson, S.D.; Holmes, E.; Nicholson, J.K. Development and validation of a high-throughput ultrahigh-performance liquid chromatography-mass spectrometry approach for screening of oxylipins and their precursors. Anal. Chem., 2015, 87(23), 11721-11731. doi: 10.1021/acs.analchem.5b02794 PMID: 26501362
- Merchant, S.N.; Adams, J.C.; Nadol, J.B., Jr. Pathology and pathophysiology of idiopathic sudden sensorineural hearing loss. Otol. Neurotol., 2005, 26(2), 151-160. doi: 10.1097/00129492-200503000-00004 PMID: 15793397
- Capaccio, P.; Pignataro, L.; Gaini, L.M.; Sigismund, P.E.; Novembrino, C.; De Giuseppe, R.; Uva, V.; Tripodi, A.; Bamonti, F. Unbalanced oxidative status in idiopathic sudden sensorineural hearing loss. Eur. Arch. Otorhinolaryngol., 2012, 269(2), 449-453. doi: 10.1007/s00405-011-1671-2 PMID: 21706323
- Momin, S.R.; Melki, S.J.; Alagramam, K.N.; Megerian, C.A. Spiral ganglion loss outpaces inner hair cell loss in endolymphatic hydrops. Laryngoscope, 2010, 120(1), 159-165. PMID: 19877178
- Perez-Carpena, P.; Lopez-Escamez, J.A. Current understanding and clinical management of Menieres disease: A systematic review. Semin. Neurol., 2020, 40(1), 138-150. doi: 10.1055/s-0039-3402065 PMID: 31887752
- Verdoodt, D.; Van Camp, G.; Ponsaerts, P.; Van Rompaey, V. On the pathophysiology of DFNA9: Effect of pathogenic variants in the COCH gene on inner ear functioning in human and transgenic mice. Hear. Res., 2021, 401, 108162. doi: 10.1016/j.heares.2020.108162 PMID: 33421658
- Baruah, P. Cochlin in autoimmune inner ear disease: Is the search for an inner ear autoantigen over? Auris Nasus Larynx, 2014, 41(6), 499-501. doi: 10.1016/j.anl.2014.08.014 PMID: 25199741
- Kouhi, A.; Shakeri, S.; Yazdani, N.; Shababi, N.; Mohseni, A.; Mohseni, A.; Sadr, M.; Mohammad, A.M.; Rezaei, A.; Rezaei, N. Association of pro-inflammatory cytokine gene polymorphism with Menieres disease in an Iranian sample. Iran. J. Allergy Asthma Immunol., 2021, 20(6), 734-739. doi: 10.18502/ijaai.v20i6.8024 PMID: 34920656
- Calabrese, V.; Cornelius, C.; Mancuso, C.; Lentile, R.; Stella, A.G.; Butterfield, D.A. Redox homeostasis and cellular stress response in aging and neurodegeneration; Free Radicals and Antioxidant Protocols, 2010, pp. 285-308. doi: 10.1007/978-1-60327-029-8_17
- Calabrese, V.; Cornelius, C.; Maiolino, L.; Luca, M.; Chiaramonte, R.; Toscano, M.A.; Serra, A. Oxidative stress, redox homeostasis and cellular stress response in Ménières disease: role of vitagenes. Neurochem. Res., 2010, 35(12), 2208-2217. doi: 10.1007/s11064-010-0304-2 PMID: 21042850
- Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol., 2008, 8(5), 349-361. doi: 10.1038/nri2294 PMID: 18437155
- Megerian, C.A. Diameter of the cochlear nerve in endolymphatic hydrops: Implications for the etiology of hearing loss in Ménières disease. Laryngoscope, 2005, 115(9), 1525-1535. doi: 10.1097/01.mlg.0000167804.82950.9e PMID: 16148690
- Jung, J.; Yoo, J.E.; Choe, Y.H.; Park, S.C.; Lee, H.J.; Lee, H.J.; Noh, B.; Kim, S.H.; Kang, G.-Y.; Lee, K.-M.; Yoon, S.S.; Jang, D.S.; Yoon, J.-H.; Hyun, Y.-M.; Choi, J.Y. Cleaved cochlin sequesters pseudomonas aeruginosa and activates innate immunity in the inner ear. Cell Host Microbe., 2019, 25(4), 513-525.e6. doi: 10.1016/j.chom.2019.02.001 PMID: 30905438
- Jędrzejewski, T.; Pawlikowska, M.; Piotrowski, J.; Kozak, W. Protein-bound polysaccharides from Coriolus versicolor attenuate LPS-induced synthesis of pro-inflammatory cytokines and stimulate PBMCs proliferation. Immunol. Lett., 2016, 178, 140-147. doi: 10.1016/j.imlet.2016.08.013 PMID: 27594322
- Danial-Farran, N.; Chervinsky, E.; Nadar-Ponniah, P.T.; Cohen Barak, E.; Taiber, S.; Khayat, M.; Avraham, K.B.; Shalev, S.A. Homozygote loss-of-function variants in the human COCH gene underlie hearing loss. Eur. J. Hum. Genet., 2021, 29(2), 338-342. doi: 10.1038/s41431-020-00724-6 PMID: 32939038
- Ishiyama, G.; Lopez, I.A.; Acuna, D.; Ishiyama, A. Investigations of the microvasculature of the human macula utricle in Menieres disease. Front. Cell. Neurosci., 2019, 13, 445. doi: 10.3389/fncel.2019.00445 PMID: 31636542
- Wu, S.H.; Liao, P.Y.; Dong, L.; Chen, Z.Q. Signal pathway involved in inhibition by lipoxin A4 of production of interleukins induced in endothelial cells by lipopolysaccharide. Inflamm. Res., 2008, 57(9), 430-437. doi: 10.1007/s00011-008-7147-1 PMID: 18777114
- Elsayed, E.A.; El Enshasy, H.; Wadaan, M.A.M.; Aziz, R. Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm., 2014, 2014, 1-15. doi: 10.1155/2014/805841 PMID: 25505823
- Calabrese, V.; Santoro, A.; Trovato Salinaro, A.; Modafferi, S.; Scuto, M.; Albouchi, F.; Monti, D.; Giordano, J.; Zappia, M.; Franceschi, C.; Calabrese, E.J. Hormetic approaches to the treatment of Parkinsons disease: Perspectives and possibilities. J. Neurosci. Res., 2018, 96(10), 1641-1662. doi: 10.1002/jnr.24244 PMID: 30098077
- Kawaguchi, S.; Hagiwara, A.; Suzuki, M. Polymorphic analysis of the heat-shock protein 70 gene (HSPA1A) in Ménières disease. Acta Otolaryngol., 2008, 128(11), 1173-1177. doi: 10.1080/00016480801901675 PMID: 19241595
- Møller, M.N.; Kirkeby, S.; Vikeså, J.; Nielsen, F.C.; Cayé-Thomasen, P. Gene expression demonstrates an immunological capacity of the human endolymphatic sac. Laryngoscope, 2015, 125(8), E269-E275. doi: 10.1002/lary.25242 PMID: 25779626
- Requena, T.; Gazquez, I.; Moreno, A.; Batuecas, A.; Aran, I.; Soto-Varela, A.; Santos-Perez, S.; Perez, N.; Perez-Garrigues, H.; Lopez-Nevot, A.; Martin, E.; Sanz, R.; Perez, P.; Trinidad, G.; Alarcon-Riquelme, M.E.; Teggi, R.; Zagato, L.; Lopez-Nevot, M.A.; Lopez-Escamez, J.A. Allelic variants in TLR10 gene may influence bilateral affectation and clinical course of Menieres disease. Immunogenetics, 2013, 65(5), 345-355. doi: 10.1007/s00251-013-0683-z PMID: 23370977
- Nakanishi, H.; Kawashima, Y.; Kurima, K.; Chae, J.J.; Ross, A.M.; Pinto-Patarroyo, G.; Patel, S.K.; Muskett, J.A.; Ratay, J.S.; Chattaraj, P.; Park, Y.H.; Grevich, S.; Brewer, C.C.; Hoa, M.; Kim, H.J.; Butman, J.A.; Broderick, L.; Hoffman, H.M.; Aksentijevich, I.; Kastner, D.L.; Goldbach-Mansky, R.; Griffith, A.J. NLRP3 mutation and cochlear autoinflammation cause syndromic and nonsyndromic hearing loss DFNA34 responsive to anakinra therapy. Proc. Natl. Acad. Sci. USA, 2017, 114(37), E7766-E7775. doi: 10.1073/pnas.1702946114 PMID: 28847925
- Nakanishi, H.; Prakash, P.; Ito, T.; Kim, H.J.; Brewer, C.C.; Harrow, D.; Roux, I.; Hosokawa, S.; Griffith, A.J. Genetic hearing loss associated with autoinflammation. Front. Neurol., 2020, 11, 141. doi: 10.3389/fneur.2020.00141 PMID: 32194497
- Frejo, L.; Lopez-Escamez, J.A. Cytokines and inflammation in Meniere disease. Clin. Exp. Otorhinolaryngol., 2022, 15(1), 49-59. doi: 10.21053/ceo.2021.00920 PMID: 35124944
- Cabrera, S.; Sanchez, E.; Requena, T.; Martinez-Bueno, M.; Benitez, J.; Perez, N.; Trinidad, G.; Soto-Varela, A.; Santos-Perez, S.; Martin-Sanz, E.; Fraile, J.; Perez, P.; Alarcon-Riquelme, M.E.; Batuecas, A.; Espinosa-Sanchez, J.M.; Aran, I.; Lopez-Escamez, J.A. Intronic variants in the NFKB1 gene may influence hearing forecast in patients with unilateral sensorineural hearing loss in Menieres disease. PLoS One, 2014, 9(11), e112171. doi: 10.1371/journal.pone.0112171 PMID: 25397881
- Frejo, L.; Requena, T.; Okawa, S.; Gallego-Martinez, A.; Martinez-Bueno, M.; Aran, I.; Batuecas-Caletrio, A.; Benitez-Rosario, J.; Espinosa-Sanchez, J.M.; Fraile-Rodrigo, J.J.; García-Arumi, A.M.; González-Aguado, R.; Marques, P.; Martin-Sanz, E.; Perez-Fernandez, N.; Pérez-Vázquez, P.; Perez-Garrigues, H.; Santos-Perez, S.; Soto-Varela, A.; Tapia, M.C.; Trinidad-Ruiz, G.; del Sol, A.; Alarcon Riquelme, M.E.; Lopez-Escamez, J.A. Regulation of Fn14 receptor and NF-κB underlies inflammation in Menieres disease. Front. Immunol., 2017, 8, 1739. doi: 10.3389/fimmu.2017.01739 PMID: 29326686
- Shameli, A.; Xiao, W.; Zheng, Y.; Shyu, S.; Sumodi, J.; Meyerson, H.J.; Harding, C.V.; Maitta, R.W. A critical role for alpha-synuclein in development and function of T lymphocytes. Immunobiology, 2016, 221(2), 333-340. doi: 10.1016/j.imbio.2015.10.002 PMID: 26517968
- Grozdanov, V.; Danzer, K.M. Intracellular Alpha-Synuclein and Immune Cell Function. Front. Cell Dev. Biol., 2020, 8562692. doi: 10.3389/fcell.2020.562692 PMID: 33178682
- Gazquez, I.; Soto-Varela, A.; Aran, I.; Santos, S.; Batuecas, A.; Trinidad, G.; Perez-Garrigues, H.; Gonzalez-Oller, C.; Acosta, L.; Lopez-Escamez, J.A. High prevalence of systemic autoimmune diseases in patients with Menières disease. PLoS One, 2011, 6(10), e26759. doi: 10.1371/journal.pone.0026759 PMID: 22053211
- Wang, Y.; Ren, D. Mechanism of aseptic inflammation upon the inner ear injury. J. Bio-X Res., 2020, 3(2), 72-77. doi: 10.1097/JBR.0000000000000041
- Cordaro, M.; Modafferi, S.; DAmico, R.; Fusco, R.; Genovese, T.; Peritore, A.F.; Gugliandolo, E.; Crupi, R.; Interdonato, L.; Di Paola, D.; Impellizzeri, D.; Cuzzocrea, S.; Calabrese, V.; Di Paola, R.; Siracusa, R. Natural compounds such as Hericium erinaceus and Coriolus versicolor modulate neuroinflammation, oxidative stress and Lipoxin A4 expression in rotenone-induced Parkinsons disease in mice. Biomedicines, 2022, 10(10), 2505. doi: 10.3390/biomedicines10102505 PMID: 36289766
Supplementary files
