Recent Advances in Pharmaceutical Design: Unleashing the Potential of Novel Therapeutics
- Authors: Prajapati R.N.1, Bhushan B.2, Singh K.3, Chopra H.4, Kumar S.3, Agrawal M.4, Pathak D.5, Chanchal D.K.6, Laxmikant 7
-
Affiliations:
- Department of Pharmaceutics, Bundelkhand University
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University
- Department of Pharmacology, Rajiv Academy for Pharmacy
- Department of Pharmaceutics, Rajiv Academy for Pharmacy
- Pharmaceutical chemistry, Rajiv Academy for Pharmacy
- Department of Pharmacognosy, Smt. Vidyawati College of Pharmacy
- Department of Chemistry, Agra Public Pharmacy College of Diploma
- Issue: Vol 25, No 16 (2024)
- Pages: 2060-2077
- Section: Biotechnology
- URL: https://rjeid.com/1389-2010/article/view/645295
- DOI: https://doi.org/10.2174/0113892010275850240102105033
- ID: 645295
Cite item
Full Text
Abstract
:Pharmaceutical design has made significant advancements in recent years, leading to the development of novel therapeutics with unprecedented efficacy and safety profiles. This review highlights the potential of these innovations to revolutionize healthcare and improve patient outcomes. The application of cutting-edge technologies like artificial intelligence, machine learning, and data mining in drug discovery and design has made it easier to find potential drug candidates. Combining big data and omics has led to the discovery of new therapeutic targets and personalized medicine strategies. Nanoparticles, liposomes, and microneedles are examples of advanced drug delivery systems that allow precise control over drug release, better bioavailability, and targeted delivery to specific tissues or cells. This improves the effectiveness of the treatment while reducing side effects. Stimuli-responsive materials and smart drug delivery systems enable drugs to be released on demand when specific internal or external signals are sent. Biologics and gene therapies are promising approaches in pharmaceutical design, offering high specificity and potency for treating various diseases like cancer, autoimmune disorders, and infectious diseases. Gene therapies hold tremendous potential for correcting genetic abnormalities, with recent breakthroughs demonstrating successful outcomes in inherited disorders and certain types of cancer. Advancements in nanotechnology and nanomedicine have paved the way for innovative diagnostic tools and therapeutics, such as nanoparticle-based imaging agents, targeted drug delivery systems, gene editing technologies, and regenerative medicine strategies. Finally, the review emphasizes the importance of regulatory considerations, ethical challenges, and future directions in pharmaceutical design. Regulatory agencies are adapting to the rapid advancements in the field, ensuring the safety and efficacy of novel therapeutics while fostering innovation. Ethical considerations regarding the use of emerging technologies, patient privacy, and access to advanced therapies also require careful attention.
About the authors
Ram Narayan Prajapati
Department of Pharmaceutics, Bundelkhand University
Email: info@benthamscience.net
Bharat Bhushan
Department of Pharmacology, Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
Kuldeep Singh
Department of Pharmacology, Rajiv Academy for Pharmacy
Author for correspondence.
Email: info@benthamscience.net
Himansu Chopra
Department of Pharmaceutics, Rajiv Academy for Pharmacy
Email: info@benthamscience.net
Shivendra Kumar
Department of Pharmacology, Rajiv Academy for Pharmacy
Email: info@benthamscience.net
Mehak Agrawal
Department of Pharmaceutics, Rajiv Academy for Pharmacy
Email: info@benthamscience.net
Devender Pathak
Pharmaceutical chemistry, Rajiv Academy for Pharmacy
Email: info@benthamscience.net
Dilip Kumar Chanchal
Department of Pharmacognosy, Smt. Vidyawati College of Pharmacy
Email: info@benthamscience.net
Laxmikant
Department of Chemistry, Agra Public Pharmacy College of Diploma
Email: info@benthamscience.net
References
- Tariq, O.; Siddiqi, A.J. Vitamin C content of Indian medicinal plants- A literature review. Indian Drugs., 1985, 23(2), 72-83.
- Butler, D. Translational research: Crossing the valley of death. Nature, 2008, 453(7197), 840-842. doi: 10.1038/453840a PMID: 18548043
- Maxmen, A. Translational research: The American way. Nature, 2011, 478(7368), S16-S18. doi: 10.1038/478S16a PMID: 21993821
- Pammolli, F.; Magazzini, L.; Riccaboni, M. The productivity crisis in pharmaceutical R&D. Nat. Rev. Drug Discov., 2011, 10(6), 428-438. doi: 10.1038/nrd3405 PMID: 21629293
- Bennani, Y.L. Drug discovery in the next decade: Innovation needed ASAP. Drug Discov. Today, 2011, 16(17-18), 779-792. doi: 10.1016/j.drudis.2011.06.004 PMID: 21704185
- Stevens, A.J.; Jensen, J.J.; Wyller, K.; Kilgore, P.C.; Chatterjee, S.; Rohrbaugh, M.L. The role of public-sector research in the discovery of drugs and vaccines. N. Engl. J. Med., 2011, 364(6), 535-541. doi: 10.1056/NEJMsa1008268 PMID: 21306239
- Kneller, R. The importance of new companies for drug discovery: Origins of a decade of new drugs. Nat. Rev. Drug Discov., 2010, 9(11), 867-882. doi: 10.1038/nrd3251 PMID: 21031002
- Chanda, S.K.; Caldwell, J.S. Fulfilling the promise: Drug discovery in the post-genomic era. Drug Discov. Today, 2003, 8(4), 168-174. doi: 10.1016/S1359-6446(02)02595-3 PMID: 12581711
- Van den Broeck, WM Drug targets, target identification, validation, and screening. The practice of medicinal chemistry, 2015, 45-70. doi: 10.1016/B978-0-12-417205-0.00003-1
- Bergauer, T.; Ruppert, T.; Essioux, L.; Spleiss, O. Drug target identification and validation: Global pharmaceutical industry experts on challenges, best strategies, innovative precompetitive collaboration concepts, and future areas of industry precompetitive research and development. Ther. Innov. Regul. Sci., 2016, 50(6), 769-776. doi: 10.1177/2168479016651298 PMID: 30231745
- Titov, D.V.; Liu, J.O. Identification and validation of protein targets of bioactive small molecules. Bioorg. Med. Chem., 2012, 20(6), 1902-1909. doi: 10.1016/j.bmc.2011.11.070 PMID: 22226983
- Goel, A.K.; Davies, J. Artificial intelligence. In: The Cambridge handbook of intelligence; Cambridge, 2019.
- Harrer, S; Shah, P; Antony, B; Hu, J Artificial intelligence for clinical trial design. Sci, trends Pharmacol, 2019. doi: 10.1016/j.tips.2019.05.005
- Zhong, F.; Xing, J.; Li, X.; Liu, X.; Fu, Z.; Xiong, Z.; Lu, D.; Wu, X.; Zhao, J.; Tan, X.; Li, F.; Luo, X.; Li, Z.; Chen, K.; Zheng, M.; Jiang, H. Artificial intelligence in drug design. Sci. China Life Sci., 2018, 61(10), 1191-1204. doi: 10.1007/s11427-018-9342-2 PMID: 30054833
- Brown, N.; Ertl, P.; Lewis, R.; Luksch, T.; Reker, D.; Schneider, N. Artificial intelligence in chemistry and drug design. J. Comput. Aided Mol. Des., 2020, 34(7), 709-715. doi: 10.1007/s10822-020-00317-x PMID: 32468207
- McGaughey, G.B.; Sheridan, R.P.; Bayly, C.I.; Culberson, J.C.; Kreatsoulas, C.; Lindsley, S.; Maiorov, V.; Truchon, J.F.; Cornell, W.D. Comparison of topological, shape, and docking methods in virtual screening. J. Chem. Inf. Model., 2007, 47(4), 1504-1519. doi: 10.1021/ci700052x PMID: 17591764
- Ekins, S. The next era: Deep learning in pharmaceutical research. Pharm. Res., 2016, 33(11), 2594-2603. doi: 10.1007/s11095-016-2029-7 PMID: 27599991
- Johnson, K.W.; Shameer, K.; Glicksberg, B.S.; Readhead, B.; Sengupta, P.P.; Björkegren, J.L.M.; Kovacic, J.C.; Dudley, J.T. Enabling precision cardiology through multiscale biology and systems medicine. JACC Basic Transl. Sci., 2017, 2(3), 311-327. doi: 10.1016/j.jacbts.2016.11.010 PMID: 30062151
- Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, P.J.; Liu, X.; Marcus, J.; Sun, M.; Sundberg, P.; Yee, H.; Zhang, K.; Zhang, Y.; Flores, G.; Duggan, G.E.; Irvine, J.; Le, Q.; Litsch, K.; Mossin, A.; Tansuwan, J.; Wang, D.; Wexler, J.; Wilson, J.; Ludwig, D.; Volchenboum, S.L.; Chou, K.; Pearson, M.; Madabushi, S.; Shah, N.H.; Butte, A.J.; Howell, M.D.; Cui, C.; Corrado, G.S.; Dean, J. Scalable and accurate deep learning with electronic health records. NPJ Digit. Med., 2018, 1(1), 18. doi: 10.1038/s41746-018-0029-1 PMID: 31304302
- Lavecchia, A.; Cerchia, C. In silico methods to address polypharmacology: Current status, applications and future perspectives. Drug Discov. Today, 2016, 21(2), 288-298. doi: 10.1016/j.drudis.2015.12.007 PMID: 26743596
- Jing, Y.; Bian, Y.; Hu, Z.; Wang, L.; Xie, X.Q.S. Deep learning for drug design: An artificial intelligence paradigm for drug discovery in the big data era. AAPS J., 2018, 20(3), 58. doi: 10.1208/s12248-018-0210-0 PMID: 29603063
- Powles, J.; Hodson, H. Google deep mind and healthcare in an age of algorithms. Health Technol., 2017, 7(4), 351-367. doi: 10.1007/s12553-017-0179-1 PMID: 29308344
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; ídek, A.; Nelson, A.W.R.; Bridgland, A.; Penedones, H.; Petersen, S.; Simonyan, K.; Crossan, S.; Kohli, P.; Jones, D.T.; Silver, D.; Kavukcuoglu, K.; Hassabis, D. Improved protein structure prediction using potentials from deep learning. Nature, 2020, 577(7792), 706-710. doi: 10.1038/s41586-019-1923-7 PMID: 31942072
- AlQuraishi, M. End-to-End differentiable learning of protein structure. Cell Syst., 2019, 8(4), 292-301.e3. doi: 10.1016/j.cels.2019.03.006 PMID: 31005579
- Franklin, R.; Gosling, R.G. Molecular configuration in sodium thymonucleate. Nature, 1953, 171(4356), 740-741. doi: 10.1038/171740a0 PMID: 13054694
- Eisenberg, D. Max Perutzs achievements: How did he do it? Protein Sci., 1994, 3(10), 1625-1628. doi: 10.1002/pro.5560031001 PMID: 7849579
- Kendrew, J.C.; Dickerson, R.E.; Strandberg, B.E.; Hart, R.G.; Davies, D.R.; Phillips, D.C.; Shore, V.C. Structure of myoglobin: A three-dimensional Fourier synthesis at 2 A. resolution. Nature, 1960, 185(4711), 422-427. doi: 10.1038/185422a0 PMID: 18990802
- Drews, J. Drug discovery: A historical perspective. Science, 2000, 287(5460), 1960-1964. doi: 10.1126/science.287.5460.1960 PMID: 10720314
- Macarron, R.; Banks, M.N.; Bojanic, D.; Burns, D.J.; Cirovic, D.A.; Garyantes, T.; Green, D.V.S.; Hertzberg, R.P.; Janzen, W.P.; Paslay, J.W.; Schopfer, U.; Sittampalam, G.S. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov., 2011, 10(3), 188-195. doi: 10.1038/nrd3368 PMID: 21358738
- Chen, H.; Zhou, X.; Wang, A.; Zheng, Y.; Gao, Y.; Zhou, J. Evolutions in fragment-based drug design: the deconstructionreconstruction approach. Drug Discov. Today, 2015, 20(1), 105-113. doi: 10.1016/j.drudis.2014.09.015 PMID: 25263697
- Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov., 2018, 17(2), 97-113. doi: 10.1038/nrd.2017.232 PMID: 29242609
- Samsdodd, F. Target-based drug discovery: Is something wrong? Drug Discov. Today, 2005, 10(2), 139-147. doi: 10.1016/S1359-6446(04)03316-1 PMID: 15718163
- Moffat, J.G.; Vincent, F.; Lee, J.A.; Eder, J.; Prunotto, M. Opportunities and challenges in phenotypic drug discovery: An industry perspective. Nat. Rev. Drug Discov., 2017, 16(8), 531-543. doi: 10.1038/nrd.2017.111 PMID: 28685762
- Haasen, D.; Schopfer, U.; Antczak, C.; Guy, C.; Fuchs, F.; Selzer, P. How phenotypic screening influenced drug discovery: Lessons from five years of practice. Assay Drug Dev. Technol., 2017, 15(6), 239-246. doi: 10.1089/adt.2017.796 PMID: 28800248
- Jones, L.H.; Bunnage, M.E. Applications of chemogenomic library screening in drug discovery. Nat. Rev. Drug Discov., 2017, 16(4), 285-296. doi: 10.1038/nrd.2016.244 PMID: 28104905
- Blundell, T.; Dodson, G.; Hodgkin, D.; Mercola, D. Insulin: the structure in the crystal and its reflection in chemistry and biology by. Adv. Protein Chem., 1972, 26, 279-402. doi: 10.1016/S0065-3233(08)60143-6
- Informa, U.K. Pharma R&D annual review 2017 2017. Available from: https://pharmaintelligence.informa.com/~/media/Informa‐Shop‐Window/Pharma/Files/PDFs/whitepapers/RD‐Review‐2017.pdf accessed Oct 6 2018.
- Urquhart, L. Top drugs and companies by sales in 2017. Nat. Rev. Drug Discov., 2018, 17(4), 232. doi: 10.1038/nrd.2018.42 PMID: 29588516
- Padhi, A.; Sengupta, M.; Sengupta, S.; Roehm, K.H.; Sonawane, A. Antimicrobial peptides and proteins in mycobacterial therapy: Current status and future prospects. Tuberculosis, 2014, 94(4), 363-373. doi: 10.1016/j.tube.2014.03.011 PMID: 24813349
- Buchwald, H.; Dorman, R.B.; Rasmus, N.F.; Michalek, V.N.; Landvik, N.M.; Ikramuddin, S. Effects on GLP-1, PYY, and leptin by direct stimulation of terminal ileum and cecum in humans: Implications for ileal transposition. Surg. Obes. Relat. Dis., 2014, 10(5), 780-786. doi: 10.1016/j.soard.2014.01.032 PMID: 24837556
- Giordano, C.; Marchiò, M.; Timofeeva, E.; Biagini, G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front. Neurol., 2014, 5, 63. doi: 10.3389/fneur.2014.00063 PMID: 24808888
- Robinson, S.D.; Safavi-Hemami, H.; McIntosh, L.D.; Purcell, A.W.; Norton, R.S.; Papenfuss, A.T. Diversity of conotoxin gene superfamilies in the venomous snail, Conus victoriae. PLoS One, 2014, 9(2), e87648. doi: 10.1371/journal.pone.0087648 PMID: 24505301
- Kaspar, A.A.; Reichert, J.M. Future directions for peptide therapeutics development. Drug Discov. Today, 2013, 18(17-18), 807-817. doi: 10.1016/j.drudis.2013.05.011 PMID: 23726889
- The peptide therapeutics market is projected to be worth around USD 41.7 Billion in 2030, claims roots analysis. Available from: https://www.rootsanalysis.com/press-releases/peptide-therapeutics-market.html
- Finan, B.; Ma, T.; Ottaway, N.; Müller, T.D.; Habegger, K.M.; Heppner, K.M. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci. Transl. Med., 2013, 5(209), 209ra151. doi: 10.1126/scitranslmed.3007218
- Wismann, P.; Pedersen, S.L.; Hansen, G.; Mannerstedt, K.; Pedersen, P.J.; Jeppesen, P.B.; Vrang, N.; Fosgerau, K.; Jelsing, J. Novel GLP-1/GLP-2 co-agonists display marked effects on gut volume and improves glycemic control in mice. Physiol. Behav., 2018, 192, 72-81. doi: 10.1016/j.physbeh.2018.03.004 PMID: 29540315
- Fosgerau, K.; Jessen, L.; Lind Tolborg, J.; Østerlund, T.; Schæffer Larsen, K.; Rolsted, K.; Brorson, M.; Jelsing, J.; Skovlund Ryge Neerup, T. The novel GLP ‐1‐gastrin dual agonist, ZP3022, increases β‐cell mass and prevents diabetes in db/db mice. Diabetes Obes. Metab., 2013, 15(1), 62-71. doi: 10.1111/j.1463-1326.2012.01676.x PMID: 22862961
- Pocai, A. Unraveling oxyntomodulin, GLP1's enigmatic brother. J. Endocrinol., 2012, 215(3), 335-346. doi: 10.1530/JOE-12-0368 PMID: 23019069
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096), 816-821. doi: 10.1126/science.1225829 PMID: 22745249
- Doudna, J.A.; Charpentier, E. Genome editing. Science, 2018, 365(6443), 498-499. PMID: 25430774
- Barrangou, R.; Doudna, J.A. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol., 2016, 34(9), 933-941. doi: 10.1038/nbt.3659 PMID: 27606440
- Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121), 823-826. doi: 10.1126/science.1232033 PMID: 23287722
- Liang, Z.; Chen, K.; Li, T.; Zhang, Y.; Wang, Y.; Zhao, Q.; Liu, J.; Zhang, H.; Liu, C.; Ran, Y.; Gao, C. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun., 2017, 8(1), 14261. doi: 10.1038/ncomms14261 PMID: 28098143
- Zhu, C.; Bortesi, L.; Baysal, C.; Twyman, R.M.; Fischer, R.; Capell, T.; Schillberg, S.; Christou, P. Characteristics of genome editing mutations in cereal crops. Trends Plant Sci., 2017, 22(1), 38-52. doi: 10.1016/j.tplants.2016.08.009 PMID: 27645899
- National academies of sciences, engineering, and medicine. In: Human genome editing: Science, ethics, and governance; The National Academies Press: Washington, DC, 2017.
- The white house office of the press secretary. National nanotechnology initiative: Leading to the next industrial revolution. White House., 2000. Available from: https://clintonwhitehouse4.archives. gov/WH/New/html/20000121_4.html
- Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951. doi: 10.1038/nbt.3330 PMID: 26348965
- Mitragotri, S.; Lammers, T.; Bae, Y.H.; Schwendeman, S.; De Smedt, S.; Leroux, J.C.; Peer, D.; Kwon, I.C.; Harashima, H.; Kikuchi, A.; Oh, Y.K.; Torchilin, V.; Hennink, W.; Hanes, J.; Park, K. Drug delivery research for the future: Expanding the Nano horizons and beyond. J. Control. Release, 2017, 246, 183-184. doi: 10.1016/j.jconrel.2017.01.011 PMID: 28110715
- Kou, L.; Bhutia, Y.D.; Yao, Q.; He, Z.; Sun, J.; Ganapathy, V. Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Front. Pharmacol., 2018, 9, 27. doi: 10.3389/fphar.2018.00027 PMID: 29434548
- Pinto Reis, C.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F.; Nanoencapsulation, I.; Nanoencapsulation, I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine, 2006, 2(1), 8-21. doi: 10.1016/j.nano.2005.12.003 PMID: 17292111
- Illum, L. Nanoparticulate systems for nasal delivery of drugs: A real improvement over simple systems? J. Pharm. Sci., 2007, 96(3), 473-483. doi: 10.1002/jps.20718 PMID: 17117404
- Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol., 2018, 9, 790. doi: 10.3389/fphar.2018.00790 PMID: 30065653
- Eschenhagen, T.; Force, T.; Ewer, M.S.; de Keulenaer, G.W.; Suter, T.M.; Anker, S.D.; Avkiran, M.; de Azambuja, E.; Balligand, J.L.; Brutsaert, D.L.; Condorelli, G.; Hansen, A.; Heymans, S.; Hill, J.A.; Hirsch, E.; Hilfiker-Kleiner, D.; Janssens, S.; de Jong, S.; Neubauer, G.; Pieske, B.; Ponikowski, P.; Pirmohamed, M.; Rauchhaus, M.; Sawyer, D.; Sugden, P.H.; Wojta, J.; Zannad, F.; Shah, A.M. Cardiovascular side effects of cancer therapies: A position statement from the heart failure association of the european society of cardiology. Eur. J. Heart Fail., 2011, 13(1), 1-10. doi: 10.1093/eurjhf/hfq213 PMID: 21169385
- Collins, F.S.; Morgan, M.; Patrinos, A. The human genome project: Lessons from large-scale biology. Science, 2003, 300(5617), 286-290. doi: 10.1126/science.1084564 PMID: 12690187
- Genomes project consortium. A global reference for human genetic variation. Nature, 2015, 526(7571), 68-74. doi: 10.1038/nature15393
- Green, E.D.; Rubin, E.M.; Olson, M.V. The future of DNA sequencing. Nature, 2017, 550(7675), 179-181. doi: 10.1038/550179a PMID: 29022931
- Payne, K.; Gavan, S.P.; Wright, S.J.; Thompson, A.J. Cost-effectiveness analyses of genetic and genomic diagnostic tests. Nat. Rev. Genet., 2018, 19(4), 235-246. doi: 10.1038/nrg.2017.108 PMID: 29353875
- Garraway, L.A.; Verweij, J.; Ballman, K.V. Precision oncology: An overview. J. Clin. Oncol., 2013, 31(15), 1803-1805. doi: 10.1200/JCO.2013.49.4799 PMID: 23589545
- Tang, W.H.W.; Wilcox, J.D.; Jacob, M.S.; Rosenzweig, E.B.; Borlaug, B.A.; Frantz, R.P.; Hassoun, P.M.; Hemnes, A.R.; Hill, N.S.; Horn, E.M.; Singh, H.S.; Systrom, D.M.; Tedford, R.J.; Vanderpool, R.R.; Waxman, A.B.; Xiao, L.; Leopold, J.A.; Rischard, F.P. Comprehensive diagnostic evaluation of cardiovascular physiology in patients with pulmonary vascular disease: Insights from the PVDOMICS program. Circ. Heart Fail., 2020, 13(3), e006363. doi: 10.1161/CIRCHEARTFAILURE.119.006363 PMID: 32088984
- Strianese, O.; Rizzo, F.; Ciccarelli, M.; Galasso, G.; DAgostino, Y.; Salvati, A.; Del Giudice, C.; Tesorio, P.; Rusciano, M.R. Precision and personalized medicine: How genomic approach improves the management of cardiovascular and neurodegenerative disease. Genes, 2020, 11(7), 747. doi: 10.3390/genes11070747 PMID: 32640513
- Angwin, C.; Jenkinson, C.; Jones, A.; Jennison, C.; Henley, W.; Farmer, A. TriMaster: Randomised double-blind crossover study of a DPP4 inhibitor, SGLT2 inhibitor and thiazolidinedione as second-line or third-line therapy in patients with type 2 diabetes who have suboptimal glycaemic control on metformin treatment with or without a sulfonylurea-a MASTERMIND study protocol. BMJ, 2020, 10(12), e042784. doi: 10.1136/bmjopen-2020-042784
- Hampel, H.; Williams, C.; Etcheto, A.; Goodsaid, F.; Parmentier, F.; Sallantin, J.; Kaufmann, W.E.; Missling, C.U.; Afshar, M. A precision medicine framework using artificial intelligence for the identification and confirmation of genomic biomarkers of response to an alzheimers disease therapy: Analysis of the blarcamesine (ANAVEX2‐73) phase 2a clinical study. Alzheimers Dement., 2020, 6(1), e12013. doi: 10.1002/trc2.12013 PMID: 32318621
- Morello, G.; Guarnaccia, M.; Spampinato, A.G.; Salomone, S.; DAgata, V.; Conforti, F.L.; Aronica, E.; Cavallaro, S. Integrative multi-omic analysis identifies new drivers and pathways in molecularly distinct subtypes of ALS. Sci. Rep., 2019, 9(1), 9968. doi: 10.1038/s41598-019-46355-w PMID: 31292500
- Morello, G.; Salomone, S.; DAgata, V.; Conforti, F.L.; Cavallaro, S. From multi-omics approaches to precision medicine in amyotrophic lateral sclerosis. Front. Neurosci., 2020, 14, 577755. doi: 10.3389/fnins.2020.577755 PMID: 33192262
- Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B.P.; Simon, P.; Löwer, M.; Bukur, V.; Tadmor, A.D.; Luxemburger, U.; Schrörs, B.; Omokoko, T.; Vormehr, M.; Albrecht, C.; Paruzynski, A.; Kuhn, A.N.; Buck, J.; Heesch, S.; Schreeb, K.H.; Müller, F.; Ortseifer, I.; Vogler, I.; Godehardt, E.; Attig, S.; Rae, R.; Breitkreuz, A.; Tolliver, C.; Suchan, M.; Martic, G.; Hohberger, A.; Sorn, P.; Diekmann, J.; Ciesla, J.; Waksmann, O.; Brück, A.K.; Witt, M.; Zillgen, M.; Rothermel, A.; Kasemann, B.; Langer, D.; Bolte, S.; Diken, M.; Kreiter, S.; Nemecek, R.; Gebhardt, C.; Grabbe, S.; Höller, C.; Utikal, J.; Huber, C.; Loquai, C.; Türeci, Ö. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017, 547(7662), 222-226. doi: 10.1038/nature23003 PMID: 28678784
- Keskin, D.B.; Anandappa, A.J.; Sun, J.; Tirosh, I.; Mathewson, N.D.; Li, S.; Oliveira, G.; Giobbie-Hurder, A.; Felt, K.; Gjini, E.; Shukla, S.A.; Hu, Z.; Li, L.; Le, P.M.; Allesøe, R.L.; Richman, A.R.; Kowalczyk, M.S.; Abdelrahman, S.; Geduldig, J.E.; Charbonneau, S.; Pelton, K.; Iorgulescu, J.B.; Elagina, L.; Zhang, W.; Olive, O.; McCluskey, C.; Olsen, L.R.; Stevens, J.; Lane, W.J.; Salazar, A.M.; Daley, H.; Wen, P.Y.; Chiocca, E.A.; Harden, M.; Lennon, N.J.; Gabriel, S.; Getz, G.; Lander, E.S.; Regev, A.; Ritz, J.; Neuberg, D.; Rodig, S.J.; Ligon, K.L.; Suvà, M.L.; Wucherpfennig, K.W.; Hacohen, N.; Fritsch, E.F.; Livak, K.J.; Ott, P.A.; Wu, C.J.; Reardon, D.A. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature, 2019, 565(7738), 234-239. doi: 10.1038/s41586-018-0792-9 PMID: 30568305
- Ott, P.A.; Hu-Lieskovan, S.; Chmielowski, B.; Govindan, R.; Naing, A.; Bhardwaj, N.; Margolin, K.; Awad, M.M.; Hellmann, M.D.; Lin, J.J.; Friedlander, T.; Bushway, M.E.; Balogh, K.N.; Sciuto, T.E.; Kohler, V.; Turnbull, S.J.; Besada, R.; Curran, R.R.; Trapp, B.; Scherer, J.; Poran, A.; Harjanto, D.; Barthelme, D.; Ting, Y.S.; Dong, J.Z.; Ware, Y.; Huang, Y.; Huang, Z.; Wanamaker, A.; Cleary, L.D.; Moles, M.A.; Manson, K.; Greshock, J.; Khondker, Z.S.; Fritsch, E.; Rooney, M.S.; DeMario, M.; Gaynor, R.B.; Srinivasan, L. A Phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell, 2020, 183(2), 347-362.e24. doi: 10.1016/j.cell.2020.08.053 PMID: 33064988
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol., 2020, 20(11), 651-668. doi: 10.1038/s41577-020-0306-5 PMID: 32433532
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res., 2020, 48(W1), W449-W454. doi: 10.1093/nar/gkaa379 PMID: 32406916
- Racle, J.; Michaux, J.; Rockinger, G.A.; Arnaud, M.; Bobisse, S.; Chong, C.; Guillaume, P.; Coukos, G.; Harari, A.; Jandus, C.; Bassani-Sternberg, M.; Gfeller, D. Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nat. Biotechnol., 2019, 37(11), 1283-1286. doi: 10.1038/s41587-019-0289-6 PMID: 31611696
- Vider-Shalit, T.; Raffaeli, S.; Louzoun, Y. Virus-epitope vaccine design: Informatic matching the HLA-I polymorphism to the virus genome. Mol. Immunol., 2007, 44(6), 1253-1261. doi: 10.1016/j.molimm.2006.06.003 PMID: 16930710
- Schubert, B.; Kohlbacher, O. Designing string-of-beads vaccines with optimal spacers. Genome Med., 2016, 8(1), 9. doi: 10.1186/s13073-016-0263-6 PMID: 26813686
- Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; Chen, C.; Olive, O.; Carter, T.A.; Li, S.; Lieb, D.J.; Eisenhaure, T.; Gjini, E.; Stevens, J.; Lane, W.J.; Javeri, I.; Nellaiappan, K.; Salazar, A.M.; Daley, H.; Seaman, M.; Buchbinder, E.I.; Yoon, C.H.; Harden, M.; Lennon, N.; Gabriel, S.; Rodig, S.J.; Barouch, D.H.; Aster, J.C.; Getz, G.; Wucherpfennig, K.; Neuberg, D.; Ritz, J.; Lander, E.S.; Fritsch, E.F.; Hacohen, N.; Wu, C.J. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature, 2017, 547(7662), 217-221. doi: 10.1038/nature22991 PMID: 28678778
- Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; MacNair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackermann, Z.; Tran, V.M.; Chiappino-Pepe, A.; Badran, A.H.; Andrews, I.W.; Chory, E.J.; Church, G.M.; Brown, E.D.; Jaakkola, T.S.; Barzilay, R.; Collins, J.J. A deep learning approach to antibiotic discovery. Cell, 2020, 180(4), 688-702.e13. doi: 10.1016/j.cell.2020.01.021 PMID: 32084340
- Schubert, B.; Schärfe, C.; Dönnes, P.; Hopf, T.; Marks, D.; Kohlbacher, O. Population-specific design of de-immunized protein biotherapeutics. PLOS Comput. Biol., 2018, 14(3), e1005983. doi: 10.1371/journal.pcbi.1005983 PMID: 29499035
- FDA Available from: http://www.fda.gov/Biologics BloodVaccines/default.htm
- CBER does not regulate the transplantation of vascularized human organ transplants such as kidney, liver, heart, lung, or pancreas. In: The Health Resources Services Administration (HRSA) oversees the transplantation of vascularized human organs; 2018.
- Centers for disease control and prevention. Antibiotic resistance threats in the United States 2019. Available from: https://www.cdc.gov/drugresistance/biggest-threats.html cited Mar 18 2022.
- Liu, Y.; Tong, Z.; Shi, J.; Li, R.; Upton, M.; Wang, Z. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics, 2021, 11(10), 4910-4928. doi: 10.7150/thno.56205 PMID: 33754035
- Cardoso, P.; Glossop, H.; Meikle, T.G.; Aburto-Medina, A.; Conn, C.E.; Sarojini, V.; Valery, C. Molecular engineering of antimicrobial peptides: Microbial targets, peptide motifs and translation opportunities. Biophys. Rev., 2021, 13(1), 35-69. doi: 10.1007/s12551-021-00784-y PMID: 33495702
- Ribeiro da Cunha, B.; Fonseca, L.P.; Calado, C.R.C. Antibiotic discovery: Where have we come from, where do we go? Antibiotics, 2019, 8(2), 45. doi: 10.3390/antibiotics8020045 PMID: 31022923
- van Duin, D.; Paterson, D.L. Multidrug-resistant bacteria in the community: Trends and lessons learned. Infect. Dis. Clin. North Am., 2016, 30(2), 377-390. doi: 10.1016/j.idc.2016.02.004 PMID: 27208764
- Gajdács, M.; Urbán, E.; Stájer, A.; Baráth, Z. Antimicrobial resistance in the context of the sustainable development goals: A brief review. Eur. J. Investig. Health Psychol. Educ., 2021, 11(1), 71-82. doi: 10.3390/ejihpe11010006 PMID: 34542450
- Marquette, A.; Bechinger, B. Biophysical investigations elucidating the mechanisms of action of antimicrobial peptides and their synergism. Biomolecules, 2018, 8(2), 18. doi: 10.3390/biom8020018 PMID: 29670065
- Haroun, M.; Tratrat, C.; Petrou, A.; Geronikaki, A.; Ivanov, M.; Ćirić, A.; Soković, M.; Nagaraja, S.; Venugopala, K.N.; Balachandran Nair, A.; Elsewedy, H.S.; Kochkar, H. Exploration of the antimicrobial effects of benzothiazolylthiazolidin-4-one and in silico mechanistic investigation. Molecules, 2021, 26(13), 4061. doi: 10.3390/molecules26134061 PMID: 34279400
- Chaudhary, D.K.; Khulan, A.; Kim, J. Development of a novel cultivation technique for uncultured soil bacteria. Sci. Rep., 2019, 9(1), 6666. doi: 10.1038/s41598-019-43182-x PMID: 31040339
- Singh, V.; Haque, S.; Singh, H.; Verma, J.; Vibha, K.; Singh, R.; Jawed, A.; Tripathi, C.K.M. Isolation, screening, and identification of novel isolates of actinomycetes from India for antimicrobial applications. Front. Microbiol., 2016, 7, 1921. doi: 10.3389/fmicb.2016.01921 PMID: 27999566
- Van Goethem, M.W.; Makhalanyane, T.P.; Cowan, D.A.; Valverde, A. Cyanobacteria and alphaproteobacteria may facilitate cooperative interactions in niche communities. Front. Microbiol., 2017, 8, 2099. doi: 10.3389/fmicb.2017.02099 PMID: 29118751
- Behie, S.W.; Bonet, B.; Zacharia, V.M.; McClung, D.J.; Traxler, M.F. Molecules to ecosystems: Actinomycete natural products in situ. Front. Microbiol., 2017, 7, 2149. doi: 10.3389/fmicb.2016.02149 PMID: 28144233
- Pankhurst, C.E. Symbiotic effectiveness of antibiotic-resistant mutants of fast- and slow-growing strains of Rhizobium nodulating Lotus species. Can. J. Microbiol., 1977, 23(8), 1026-1033. doi: 10.1139/m77-152 PMID: 890601
- Goodfellow, M.; Fiedler, H.P. A guide to successful bioprospecting: Informed by actinobacterial systematics. Antonie van Leeuwenhoek, 2010, 98(2), 119-142. doi: 10.1007/s10482-010-9460-2 PMID: 20582471
- Marmann, A.; Aly, A.; Lin, W.; Wang, B.; Proksch, P. Co-cultivation--a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar. Drugs, 2014, 12(2), 1043-1065. doi: 10.3390/md12021043 PMID: 24549204
- Liu, Y.; Ding, S.; Shen, J.; Zhu, K. Nonribosomal antibacterial peptides that target multidrug-resistant bacteria. Nat. Prod. Rep., 2019, 36(4), 573-592. doi: 10.1039/C8NP00031J PMID: 30324212
- Morsy, M.A.; Ali, E.M.; Kandeel, M.; Venugopala, K.N.; Nair, A.B.; Greish, K.; El-Daly, M. Screening and molecular docking of novel benzothiazole derivatives as potential antimicrobial agents. Antibiotics, 2020, 9(5), 221. doi: 10.3390/antibiotics9050221 PMID: 32365587
- Venugopala, K.N.; Uppar, V.; Chandrashekharappa, S.; Abdallah, H.H.; Pillay, M.; Deb, P.K.; Morsy, M.A.; Aldhubiab, B.E.; Attimarad, M.; Nair, A.B.; Sreeharsha, N.; Tratrat, C.; Yousef Jaber, A.; Venugopala, R.; Mailavaram, R.P.; Al-Jaidi, B.A.; Kandeel, M.; Haroun, M.; Padmashali, B. Cytotoxicity and antimycobacterial properties of pyrrolo1,2-aquinoline derivatives: molecular target identification and molecular docking studies. Antibiotics, 2020, 9(5), 233. doi: 10.3390/antibiotics9050233 PMID: 32392709
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; Greko, C.; So, A.D.; Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A.Q.; Qamar, F.N.; Mir, F.; Kariuki, S.; Bhutta, Z.A.; Coates, A.; Bergstrom, R.; Wright, G.D.; Brown, E.D.; Cars, O. Antibiotic resistancethe need for global solutions. Lancet Infect. Dis., 2013, 13(12), 1057-1098. doi: 10.1016/S1473-3099(13)70318-9 PMID: 24252483
- Steenbergen, J.N.; Alder, J.; Thorne, G.M.; Tally, F.P. Daptomycin: A lipopeptide antibiotic for the treatment of serious Gram-positive infections. J. Antimicrob. Chemother., 2005, 55(3), 283-288. doi: 10.1093/jac/dkh546 PMID: 15705644
- Peraman, R.; Sure, S.K.; Dusthackeer, V.N.A.; Chilamakuru, N.B.; Yiragamreddy, P.R.; Pokuri, C.; Kutagulla, V.K.; Chinni, S. Insights on recent approaches in drug discovery strategies and untapped drug targets against drug resistance. Future J. Pharm. Sci., 2021, 7(1), 56. doi: 10.1186/s43094-021-00196-5 PMID: 33686369
- Iacobino, A.; Fattorini, L.; Giannoni, F. Drug-resistant tuberculosis 2020: Where we stand. Appl. Sci., 2020, 10(6), 2153. doi: 10.3390/app10062153
- Pardridge, W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab., 2012, 32(11), 1959-1972. doi: 10.1038/jcbfm.2012.126 PMID: 22929442
- Yokel, R.A. Nanoparticle brain delivery: A guide to verification methods. Nanomedicine , 2020, 15(4), 409-432. doi: 10.2217/nnm-2019-0169 PMID: 31999236
- Burgess, A.; Hynynen, K. Drug delivery across the bloodbrain barrier using focused ultrasound. Expert Opin. Drug Deliv., 2014, 11(5), 711-721. doi: 10.1517/17425247.2014.897693 PMID: 24650132
- Dhas, N.; Kudarha, R.; Garkal, A.; Ghate, V.; Sharma, S.; Panzade, P.; Khot, S.; Chaudhari, P.; Singh, A.; Paryani, M.; Lewis, S.; Garg, N.; Singh, N.; Bangar, P.; Mehta, T. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs. J. Control. Release, 2021, 330, 257-283. doi: 10.1016/j.jconrel.2020.12.015 PMID: 33345832
- Zhou, Y.; Peng, Z.; Seven, E.S.; Leblanc, R.M. Crossing the blood-brain barrier with nanoparticles. J. Control. Release, 2018, 270, 290-303. doi: 10.1016/j.jconrel.2017.12.015 PMID: 29269142
- Seven, E.S.; Zhou, Y.; Seven, Y.B.; Mitchell, G.S.; Leblanc, R.M. Crossing blood-brain barrier with carbon quantum dots. FASEB J., 2019, 33(S1), 785-788. doi: 10.1096/fasebj.2019.33.1_supplement.785.8
- Zhou, Y.; Liyanage, P.Y.; Devadoss, D.; Guevara, L.R.; Cheng, L.; Graham, R.M.; Chand, H.S.; Al-Youbi, A.O.; Bashammakh, A.S.; El-Shahawi, M.S.; Leblanc, R.M. Nontoxic amphiphilic carbon dots as promising drug nanocarriers across the bloodbrain barrier and inhibitors of β-amyloid. Nanoscale, 2019, 11(46), 22387-22397. doi: 10.1039/C9NR08194A PMID: 31730144
- Tajik, S.; Dourandish, Z.; Zhang, K.; Beitollahi, H.; Le, Q.V.; Jang, H.W.; Shokouhimehr, M. Carbon and graphene quantum dots: A review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Advances, 2020, 10(26), 15406-15429. doi: 10.1039/D0RA00799D PMID: 35495425
- de Medeiros, T.V.; Manioudakis, J.; Noun, F.; Macairan, J.R.; Victoria, F.; Naccache, R. Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(24), 7175-7195. doi: 10.1039/C9TC01640F
- Sircar, N.N. Medicinal plants. East Pharm., 1982, 29(291), 49-52.
- Rao, A.V.R.; Gurjar, M.K. Drugs from plant resources: An overview. Pharm. Times, 1990, 22(5), 19-20.
- Farnsworth, N.R. A computerized data base for medicinal plants. East Pharm., 1985, 28(326), 53-55.
- Littleton, J. The future of plant drug discovery. Expert Opin. Drug Discov., 2007, 2(5), 673-683. doi: 10.1517/17460441.2.5.673 PMID: 23488957
- Mukherjee, P. Quality control of herbal drugs An approach to evaluations of botanicals; 5th ed;, 2005, p. 2.
- Bhatt, A. Evolution of clinical research: A history before and beyond james lind. Perspect. Clin. Res., 2010, 1(1), 6-10. doi: 10.4103/2229-3485.71839 PMID: 21829774
- Murthy, V.H.; Krumholz, H.M.; Gross, C.P. Participation in cancer clinical trials: Race-, sex-, and age-based disparities. JAMA, 2004, 291(22), 2720-2726. doi: 10.1001/jama.291.22.2720 PMID: 15187053
- Anderson, D. Digital R&D: four ways to maximize patient engagement in clinical trials. In: Deloitte consulting LLP; , 2018.
- National institutes of health, office of science. Policy. Clin Trials.,
- Lauer, M.S.; Bonds, D. Eliminating the "expensive" adjective for clinical trials. Am. Heart J., 2014, 167(4), 419-420. doi: 10.1016/j.ahj.2013.12.003 PMID: 24655687
- US food and drug administration. Prescription drug user fee act (PDUFA). Available from: https://www.fda.gov/forindustry/userfees/prescriptiondruguserfee/cited Aug 4 2019.
- Schuklenk, M.R. Critique of the CIOMS guidelines: All procedure, no substance. Indian J. Med. Ethics, 2017, 24, 1-3. doi: 10.20529/IJME.2017.067
- Morris, T.; Brostoff, J.M.; Stonier, P.D.; Boyd, A. Evolution of ethical principles in the practice of pharmaceutical medicine from a UK perspective. Front. Pharmacol., 2020, 10, 1525. doi: 10.3389/fphar.2019.01525 PMID: 32009950
Supplementary files
