Recent Advances in Pharmaceutical Design: Unleashing the Potential of Novel Therapeutics


Cite item

Full Text

Abstract

:Pharmaceutical design has made significant advancements in recent years, leading to the development of novel therapeutics with unprecedented efficacy and safety profiles. This review highlights the potential of these innovations to revolutionize healthcare and improve patient outcomes. The application of cutting-edge technologies like artificial intelligence, machine learning, and data mining in drug discovery and design has made it easier to find potential drug candidates. Combining big data and omics has led to the discovery of new therapeutic targets and personalized medicine strategies. Nanoparticles, liposomes, and microneedles are examples of advanced drug delivery systems that allow precise control over drug release, better bioavailability, and targeted delivery to specific tissues or cells. This improves the effectiveness of the treatment while reducing side effects. Stimuli-responsive materials and smart drug delivery systems enable drugs to be released on demand when specific internal or external signals are sent. Biologics and gene therapies are promising approaches in pharmaceutical design, offering high specificity and potency for treating various diseases like cancer, autoimmune disorders, and infectious diseases. Gene therapies hold tremendous potential for correcting genetic abnormalities, with recent breakthroughs demonstrating successful outcomes in inherited disorders and certain types of cancer. Advancements in nanotechnology and nanomedicine have paved the way for innovative diagnostic tools and therapeutics, such as nanoparticle-based imaging agents, targeted drug delivery systems, gene editing technologies, and regenerative medicine strategies. Finally, the review emphasizes the importance of regulatory considerations, ethical challenges, and future directions in pharmaceutical design. Regulatory agencies are adapting to the rapid advancements in the field, ensuring the safety and efficacy of novel therapeutics while fostering innovation. Ethical considerations regarding the use of emerging technologies, patient privacy, and access to advanced therapies also require careful attention.

About the authors

Ram Narayan Prajapati

Department of Pharmaceutics, Bundelkhand University

Email: info@benthamscience.net

Bharat Bhushan

Department of Pharmacology, Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Kuldeep Singh

Department of Pharmacology, Rajiv Academy for Pharmacy

Author for correspondence.
Email: info@benthamscience.net

Himansu Chopra

Department of Pharmaceutics, Rajiv Academy for Pharmacy

Email: info@benthamscience.net

Shivendra Kumar

Department of Pharmacology, Rajiv Academy for Pharmacy

Email: info@benthamscience.net

Mehak Agrawal

Department of Pharmaceutics, Rajiv Academy for Pharmacy

Email: info@benthamscience.net

Devender Pathak

Pharmaceutical chemistry, Rajiv Academy for Pharmacy

Email: info@benthamscience.net

Dilip Kumar Chanchal

Department of Pharmacognosy, Smt. Vidyawati College of Pharmacy

Email: info@benthamscience.net

Laxmikant

Department of Chemistry, Agra Public Pharmacy College of Diploma

Email: info@benthamscience.net

References

  1. Tariq, O.; Siddiqi, A.J. Vitamin C content of Indian medicinal plants- A literature review. Indian Drugs., 1985, 23(2), 72-83.
  2. Butler, D. Translational research: Crossing the valley of death. Nature, 2008, 453(7197), 840-842. doi: 10.1038/453840a PMID: 18548043
  3. Maxmen, A. Translational research: The American way. Nature, 2011, 478(7368), S16-S18. doi: 10.1038/478S16a PMID: 21993821
  4. Pammolli, F.; Magazzini, L.; Riccaboni, M. The productivity crisis in pharmaceutical R&D. Nat. Rev. Drug Discov., 2011, 10(6), 428-438. doi: 10.1038/nrd3405 PMID: 21629293
  5. Bennani, Y.L. Drug discovery in the next decade: Innovation needed ASAP. Drug Discov. Today, 2011, 16(17-18), 779-792. doi: 10.1016/j.drudis.2011.06.004 PMID: 21704185
  6. Stevens, A.J.; Jensen, J.J.; Wyller, K.; Kilgore, P.C.; Chatterjee, S.; Rohrbaugh, M.L. The role of public-sector research in the discovery of drugs and vaccines. N. Engl. J. Med., 2011, 364(6), 535-541. doi: 10.1056/NEJMsa1008268 PMID: 21306239
  7. Kneller, R. The importance of new companies for drug discovery: Origins of a decade of new drugs. Nat. Rev. Drug Discov., 2010, 9(11), 867-882. doi: 10.1038/nrd3251 PMID: 21031002
  8. Chanda, S.K.; Caldwell, J.S. Fulfilling the promise: Drug discovery in the post-genomic era. Drug Discov. Today, 2003, 8(4), 168-174. doi: 10.1016/S1359-6446(02)02595-3 PMID: 12581711
  9. Van den Broeck, WM Drug targets, target identification, validation, and screening. The practice of medicinal chemistry, 2015, 45-70. doi: 10.1016/B978-0-12-417205-0.00003-1
  10. Bergauer, T.; Ruppert, T.; Essioux, L.; Spleiss, O. Drug target identification and validation: Global pharmaceutical industry experts on challenges, best strategies, innovative precompetitive collaboration concepts, and future areas of industry precompetitive research and development. Ther. Innov. Regul. Sci., 2016, 50(6), 769-776. doi: 10.1177/2168479016651298 PMID: 30231745
  11. Titov, D.V.; Liu, J.O. Identification and validation of protein targets of bioactive small molecules. Bioorg. Med. Chem., 2012, 20(6), 1902-1909. doi: 10.1016/j.bmc.2011.11.070 PMID: 22226983
  12. Goel, A.K.; Davies, J. Artificial intelligence. In: The Cambridge handbook of intelligence; Cambridge, 2019.
  13. Harrer, S; Shah, P; Antony, B; Hu, J Artificial intelligence for clinical trial design. Sci, trends Pharmacol, 2019. doi: 10.1016/j.tips.2019.05.005
  14. Zhong, F.; Xing, J.; Li, X.; Liu, X.; Fu, Z.; Xiong, Z.; Lu, D.; Wu, X.; Zhao, J.; Tan, X.; Li, F.; Luo, X.; Li, Z.; Chen, K.; Zheng, M.; Jiang, H. Artificial intelligence in drug design. Sci. China Life Sci., 2018, 61(10), 1191-1204. doi: 10.1007/s11427-018-9342-2 PMID: 30054833
  15. Brown, N.; Ertl, P.; Lewis, R.; Luksch, T.; Reker, D.; Schneider, N. Artificial intelligence in chemistry and drug design. J. Comput. Aided Mol. Des., 2020, 34(7), 709-715. doi: 10.1007/s10822-020-00317-x PMID: 32468207
  16. McGaughey, G.B.; Sheridan, R.P.; Bayly, C.I.; Culberson, J.C.; Kreatsoulas, C.; Lindsley, S.; Maiorov, V.; Truchon, J.F.; Cornell, W.D. Comparison of topological, shape, and docking methods in virtual screening. J. Chem. Inf. Model., 2007, 47(4), 1504-1519. doi: 10.1021/ci700052x PMID: 17591764
  17. Ekins, S. The next era: Deep learning in pharmaceutical research. Pharm. Res., 2016, 33(11), 2594-2603. doi: 10.1007/s11095-016-2029-7 PMID: 27599991
  18. Johnson, K.W.; Shameer, K.; Glicksberg, B.S.; Readhead, B.; Sengupta, P.P.; Björkegren, J.L.M.; Kovacic, J.C.; Dudley, J.T. Enabling precision cardiology through multiscale biology and systems medicine. JACC Basic Transl. Sci., 2017, 2(3), 311-327. doi: 10.1016/j.jacbts.2016.11.010 PMID: 30062151
  19. Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, P.J.; Liu, X.; Marcus, J.; Sun, M.; Sundberg, P.; Yee, H.; Zhang, K.; Zhang, Y.; Flores, G.; Duggan, G.E.; Irvine, J.; Le, Q.; Litsch, K.; Mossin, A.; Tansuwan, J.; Wang, D.; Wexler, J.; Wilson, J.; Ludwig, D.; Volchenboum, S.L.; Chou, K.; Pearson, M.; Madabushi, S.; Shah, N.H.; Butte, A.J.; Howell, M.D.; Cui, C.; Corrado, G.S.; Dean, J. Scalable and accurate deep learning with electronic health records. NPJ Digit. Med., 2018, 1(1), 18. doi: 10.1038/s41746-018-0029-1 PMID: 31304302
  20. Lavecchia, A.; Cerchia, C. In silico methods to address polypharmacology: Current status, applications and future perspectives. Drug Discov. Today, 2016, 21(2), 288-298. doi: 10.1016/j.drudis.2015.12.007 PMID: 26743596
  21. Jing, Y.; Bian, Y.; Hu, Z.; Wang, L.; Xie, X.Q.S. Deep learning for drug design: An artificial intelligence paradigm for drug discovery in the big data era. AAPS J., 2018, 20(3), 58. doi: 10.1208/s12248-018-0210-0 PMID: 29603063
  22. Powles, J.; Hodson, H. Google deep mind and healthcare in an age of algorithms. Health Technol., 2017, 7(4), 351-367. doi: 10.1007/s12553-017-0179-1 PMID: 29308344
  23. Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; Penedones, H.; Petersen, S.; Simonyan, K.; Crossan, S.; Kohli, P.; Jones, D.T.; Silver, D.; Kavukcuoglu, K.; Hassabis, D. Improved protein structure prediction using potentials from deep learning. Nature, 2020, 577(7792), 706-710. doi: 10.1038/s41586-019-1923-7 PMID: 31942072
  24. AlQuraishi, M. End-to-End differentiable learning of protein structure. Cell Syst., 2019, 8(4), 292-301.e3. doi: 10.1016/j.cels.2019.03.006 PMID: 31005579
  25. Franklin, R.; Gosling, R.G. Molecular configuration in sodium thymonucleate. Nature, 1953, 171(4356), 740-741. doi: 10.1038/171740a0 PMID: 13054694
  26. Eisenberg, D. Max Perutz’s achievements: How did he do it? Protein Sci., 1994, 3(10), 1625-1628. doi: 10.1002/pro.5560031001 PMID: 7849579
  27. Kendrew, J.C.; Dickerson, R.E.; Strandberg, B.E.; Hart, R.G.; Davies, D.R.; Phillips, D.C.; Shore, V.C. Structure of myoglobin: A three-dimensional Fourier synthesis at 2 A. resolution. Nature, 1960, 185(4711), 422-427. doi: 10.1038/185422a0 PMID: 18990802
  28. Drews, J. Drug discovery: A historical perspective. Science, 2000, 287(5460), 1960-1964. doi: 10.1126/science.287.5460.1960 PMID: 10720314
  29. Macarron, R.; Banks, M.N.; Bojanic, D.; Burns, D.J.; Cirovic, D.A.; Garyantes, T.; Green, D.V.S.; Hertzberg, R.P.; Janzen, W.P.; Paslay, J.W.; Schopfer, U.; Sittampalam, G.S. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov., 2011, 10(3), 188-195. doi: 10.1038/nrd3368 PMID: 21358738
  30. Chen, H.; Zhou, X.; Wang, A.; Zheng, Y.; Gao, Y.; Zhou, J. Evolutions in fragment-based drug design: the deconstruction–reconstruction approach. Drug Discov. Today, 2015, 20(1), 105-113. doi: 10.1016/j.drudis.2014.09.015 PMID: 25263697
  31. Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov., 2018, 17(2), 97-113. doi: 10.1038/nrd.2017.232 PMID: 29242609
  32. Samsdodd, F. Target-based drug discovery: Is something wrong? Drug Discov. Today, 2005, 10(2), 139-147. doi: 10.1016/S1359-6446(04)03316-1 PMID: 15718163
  33. Moffat, J.G.; Vincent, F.; Lee, J.A.; Eder, J.; Prunotto, M. Opportunities and challenges in phenotypic drug discovery: An industry perspective. Nat. Rev. Drug Discov., 2017, 16(8), 531-543. doi: 10.1038/nrd.2017.111 PMID: 28685762
  34. Haasen, D.; Schopfer, U.; Antczak, C.; Guy, C.; Fuchs, F.; Selzer, P. How phenotypic screening influenced drug discovery: Lessons from five years of practice. Assay Drug Dev. Technol., 2017, 15(6), 239-246. doi: 10.1089/adt.2017.796 PMID: 28800248
  35. Jones, L.H.; Bunnage, M.E. Applications of chemogenomic library screening in drug discovery. Nat. Rev. Drug Discov., 2017, 16(4), 285-296. doi: 10.1038/nrd.2016.244 PMID: 28104905
  36. Blundell, T.; Dodson, G.; Hodgkin, D.; Mercola, D. Insulin: the structure in the crystal and its reflection in chemistry and biology by. Adv. Protein Chem., 1972, 26, 279-402. doi: 10.1016/S0065-3233(08)60143-6
  37. Informa, U.K. Pharma R&D annual review 2017 2017. Available from: https://pharmaintelligence.informa.com/~/media/Informa‐Shop‐Window/Pharma/Files/PDFs/whitepapers/RD‐Review‐2017.pdf accessed Oct 6 2018.
  38. Urquhart, L. Top drugs and companies by sales in 2017. Nat. Rev. Drug Discov., 2018, 17(4), 232. doi: 10.1038/nrd.2018.42 PMID: 29588516
  39. Padhi, A.; Sengupta, M.; Sengupta, S.; Roehm, K.H.; Sonawane, A. Antimicrobial peptides and proteins in mycobacterial therapy: Current status and future prospects. Tuberculosis, 2014, 94(4), 363-373. doi: 10.1016/j.tube.2014.03.011 PMID: 24813349
  40. Buchwald, H.; Dorman, R.B.; Rasmus, N.F.; Michalek, V.N.; Landvik, N.M.; Ikramuddin, S. Effects on GLP-1, PYY, and leptin by direct stimulation of terminal ileum and cecum in humans: Implications for ileal transposition. Surg. Obes. Relat. Dis., 2014, 10(5), 780-786. doi: 10.1016/j.soard.2014.01.032 PMID: 24837556
  41. Giordano, C.; Marchiò, M.; Timofeeva, E.; Biagini, G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front. Neurol., 2014, 5, 63. doi: 10.3389/fneur.2014.00063 PMID: 24808888
  42. Robinson, S.D.; Safavi-Hemami, H.; McIntosh, L.D.; Purcell, A.W.; Norton, R.S.; Papenfuss, A.T. Diversity of conotoxin gene superfamilies in the venomous snail, Conus victoriae. PLoS One, 2014, 9(2), e87648. doi: 10.1371/journal.pone.0087648 PMID: 24505301
  43. Kaspar, A.A.; Reichert, J.M. Future directions for peptide therapeutics development. Drug Discov. Today, 2013, 18(17-18), 807-817. doi: 10.1016/j.drudis.2013.05.011 PMID: 23726889
  44. The peptide therapeutics market is projected to be worth around USD 41.7 Billion in 2030, claims roots analysis. Available from: https://www.rootsanalysis.com/press-releases/peptide-therapeutics-market.html
  45. Finan, B.; Ma, T.; Ottaway, N.; Müller, T.D.; Habegger, K.M.; Heppner, K.M. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci. Transl. Med., 2013, 5(209), 209ra151. doi: 10.1126/scitranslmed.3007218
  46. Wismann, P.; Pedersen, S.L.; Hansen, G.; Mannerstedt, K.; Pedersen, P.J.; Jeppesen, P.B.; Vrang, N.; Fosgerau, K.; Jelsing, J. Novel GLP-1/GLP-2 co-agonists display marked effects on gut volume and improves glycemic control in mice. Physiol. Behav., 2018, 192, 72-81. doi: 10.1016/j.physbeh.2018.03.004 PMID: 29540315
  47. Fosgerau, K.; Jessen, L.; Lind Tolborg, J.; Østerlund, T.; Schæffer Larsen, K.; Rolsted, K.; Brorson, M.; Jelsing, J.; Skovlund Ryge Neerup, T. The novel GLP ‐1‐gastrin dual agonist, ZP3022, increases β‐cell mass and prevents diabetes in db/db mice. Diabetes Obes. Metab., 2013, 15(1), 62-71. doi: 10.1111/j.1463-1326.2012.01676.x PMID: 22862961
  48. Pocai, A. Unraveling oxyntomodulin, GLP1's enigmatic brother. J. Endocrinol., 2012, 215(3), 335-346. doi: 10.1530/JOE-12-0368 PMID: 23019069
  49. Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096), 816-821. doi: 10.1126/science.1225829 PMID: 22745249
  50. Doudna, J.A.; Charpentier, E. Genome editing. Science, 2018, 365(6443), 498-499. PMID: 25430774
  51. Barrangou, R.; Doudna, J.A. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol., 2016, 34(9), 933-941. doi: 10.1038/nbt.3659 PMID: 27606440
  52. Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121), 823-826. doi: 10.1126/science.1232033 PMID: 23287722
  53. Liang, Z.; Chen, K.; Li, T.; Zhang, Y.; Wang, Y.; Zhao, Q.; Liu, J.; Zhang, H.; Liu, C.; Ran, Y.; Gao, C. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun., 2017, 8(1), 14261. doi: 10.1038/ncomms14261 PMID: 28098143
  54. Zhu, C.; Bortesi, L.; Baysal, C.; Twyman, R.M.; Fischer, R.; Capell, T.; Schillberg, S.; Christou, P. Characteristics of genome editing mutations in cereal crops. Trends Plant Sci., 2017, 22(1), 38-52. doi: 10.1016/j.tplants.2016.08.009 PMID: 27645899
  55. National academies of sciences, engineering, and medicine. In: Human genome editing: Science, ethics, and governance; The National Academies Press: Washington, DC, 2017.
  56. The white house office of the press secretary. National nanotechnology initiative: Leading to the next industrial revolution. White House., 2000. Available from: https://clintonwhitehouse4.archives. gov/WH/New/html/20000121_4.html
  57. Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951. doi: 10.1038/nbt.3330 PMID: 26348965
  58. Mitragotri, S.; Lammers, T.; Bae, Y.H.; Schwendeman, S.; De Smedt, S.; Leroux, J.C.; Peer, D.; Kwon, I.C.; Harashima, H.; Kikuchi, A.; Oh, Y.K.; Torchilin, V.; Hennink, W.; Hanes, J.; Park, K. Drug delivery research for the future: Expanding the Nano horizons and beyond. J. Control. Release, 2017, 246, 183-184. doi: 10.1016/j.jconrel.2017.01.011 PMID: 28110715
  59. Kou, L.; Bhutia, Y.D.; Yao, Q.; He, Z.; Sun, J.; Ganapathy, V. Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Front. Pharmacol., 2018, 9, 27. doi: 10.3389/fphar.2018.00027 PMID: 29434548
  60. Pinto Reis, C.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F.; Nanoencapsulation, I.; Nanoencapsulation, I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine, 2006, 2(1), 8-21. doi: 10.1016/j.nano.2005.12.003 PMID: 17292111
  61. Illum, L. Nanoparticulate systems for nasal delivery of drugs: A real improvement over simple systems? J. Pharm. Sci., 2007, 96(3), 473-483. doi: 10.1002/jps.20718 PMID: 17117404
  62. Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol., 2018, 9, 790. doi: 10.3389/fphar.2018.00790 PMID: 30065653
  63. Eschenhagen, T.; Force, T.; Ewer, M.S.; de Keulenaer, G.W.; Suter, T.M.; Anker, S.D.; Avkiran, M.; de Azambuja, E.; Balligand, J.L.; Brutsaert, D.L.; Condorelli, G.; Hansen, A.; Heymans, S.; Hill, J.A.; Hirsch, E.; Hilfiker-Kleiner, D.; Janssens, S.; de Jong, S.; Neubauer, G.; Pieske, B.; Ponikowski, P.; Pirmohamed, M.; Rauchhaus, M.; Sawyer, D.; Sugden, P.H.; Wojta, J.; Zannad, F.; Shah, A.M. Cardiovascular side effects of cancer therapies: A position statement from the heart failure association of the european society of cardiology. Eur. J. Heart Fail., 2011, 13(1), 1-10. doi: 10.1093/eurjhf/hfq213 PMID: 21169385
  64. Collins, F.S.; Morgan, M.; Patrinos, A. The human genome project: Lessons from large-scale biology. Science, 2003, 300(5617), 286-290. doi: 10.1126/science.1084564 PMID: 12690187
  65. Genomes project consortium. A global reference for human genetic variation. Nature, 2015, 526(7571), 68-74. doi: 10.1038/nature15393
  66. Green, E.D.; Rubin, E.M.; Olson, M.V. The future of DNA sequencing. Nature, 2017, 550(7675), 179-181. doi: 10.1038/550179a PMID: 29022931
  67. Payne, K.; Gavan, S.P.; Wright, S.J.; Thompson, A.J. Cost-effectiveness analyses of genetic and genomic diagnostic tests. Nat. Rev. Genet., 2018, 19(4), 235-246. doi: 10.1038/nrg.2017.108 PMID: 29353875
  68. Garraway, L.A.; Verweij, J.; Ballman, K.V. Precision oncology: An overview. J. Clin. Oncol., 2013, 31(15), 1803-1805. doi: 10.1200/JCO.2013.49.4799 PMID: 23589545
  69. Tang, W.H.W.; Wilcox, J.D.; Jacob, M.S.; Rosenzweig, E.B.; Borlaug, B.A.; Frantz, R.P.; Hassoun, P.M.; Hemnes, A.R.; Hill, N.S.; Horn, E.M.; Singh, H.S.; Systrom, D.M.; Tedford, R.J.; Vanderpool, R.R.; Waxman, A.B.; Xiao, L.; Leopold, J.A.; Rischard, F.P. Comprehensive diagnostic evaluation of cardiovascular physiology in patients with pulmonary vascular disease: Insights from the PVDOMICS program. Circ. Heart Fail., 2020, 13(3), e006363. doi: 10.1161/CIRCHEARTFAILURE.119.006363 PMID: 32088984
  70. Strianese, O.; Rizzo, F.; Ciccarelli, M.; Galasso, G.; D’Agostino, Y.; Salvati, A.; Del Giudice, C.; Tesorio, P.; Rusciano, M.R. Precision and personalized medicine: How genomic approach improves the management of cardiovascular and neurodegenerative disease. Genes, 2020, 11(7), 747. doi: 10.3390/genes11070747 PMID: 32640513
  71. Angwin, C.; Jenkinson, C.; Jones, A.; Jennison, C.; Henley, W.; Farmer, A. TriMaster: Randomised double-blind crossover study of a DPP4 inhibitor, SGLT2 inhibitor and thiazolidinedione as second-line or third-line therapy in patients with type 2 diabetes who have suboptimal glycaemic control on metformin treatment with or without a sulfonylurea-a MASTERMIND study protocol. BMJ, 2020, 10(12), e042784. doi: 10.1136/bmjopen-2020-042784
  72. Hampel, H.; Williams, C.; Etcheto, A.; Goodsaid, F.; Parmentier, F.; Sallantin, J.; Kaufmann, W.E.; Missling, C.U.; Afshar, M. A precision medicine framework using artificial intelligence for the identification and confirmation of genomic biomarkers of response to an alzheimer’s disease therapy: Analysis of the blarcamesine (ANAVEX2‐73) phase 2a clinical study. Alzheimers Dement., 2020, 6(1), e12013. doi: 10.1002/trc2.12013 PMID: 32318621
  73. Morello, G.; Guarnaccia, M.; Spampinato, A.G.; Salomone, S.; D’Agata, V.; Conforti, F.L.; Aronica, E.; Cavallaro, S. Integrative multi-omic analysis identifies new drivers and pathways in molecularly distinct subtypes of ALS. Sci. Rep., 2019, 9(1), 9968. doi: 10.1038/s41598-019-46355-w PMID: 31292500
  74. Morello, G.; Salomone, S.; D’Agata, V.; Conforti, F.L.; Cavallaro, S. From multi-omics approaches to precision medicine in amyotrophic lateral sclerosis. Front. Neurosci., 2020, 14, 577755. doi: 10.3389/fnins.2020.577755 PMID: 33192262
  75. Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B.P.; Simon, P.; Löwer, M.; Bukur, V.; Tadmor, A.D.; Luxemburger, U.; Schrörs, B.; Omokoko, T.; Vormehr, M.; Albrecht, C.; Paruzynski, A.; Kuhn, A.N.; Buck, J.; Heesch, S.; Schreeb, K.H.; Müller, F.; Ortseifer, I.; Vogler, I.; Godehardt, E.; Attig, S.; Rae, R.; Breitkreuz, A.; Tolliver, C.; Suchan, M.; Martic, G.; Hohberger, A.; Sorn, P.; Diekmann, J.; Ciesla, J.; Waksmann, O.; Brück, A.K.; Witt, M.; Zillgen, M.; Rothermel, A.; Kasemann, B.; Langer, D.; Bolte, S.; Diken, M.; Kreiter, S.; Nemecek, R.; Gebhardt, C.; Grabbe, S.; Höller, C.; Utikal, J.; Huber, C.; Loquai, C.; Türeci, Ö. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017, 547(7662), 222-226. doi: 10.1038/nature23003 PMID: 28678784
  76. Keskin, D.B.; Anandappa, A.J.; Sun, J.; Tirosh, I.; Mathewson, N.D.; Li, S.; Oliveira, G.; Giobbie-Hurder, A.; Felt, K.; Gjini, E.; Shukla, S.A.; Hu, Z.; Li, L.; Le, P.M.; Allesøe, R.L.; Richman, A.R.; Kowalczyk, M.S.; Abdelrahman, S.; Geduldig, J.E.; Charbonneau, S.; Pelton, K.; Iorgulescu, J.B.; Elagina, L.; Zhang, W.; Olive, O.; McCluskey, C.; Olsen, L.R.; Stevens, J.; Lane, W.J.; Salazar, A.M.; Daley, H.; Wen, P.Y.; Chiocca, E.A.; Harden, M.; Lennon, N.J.; Gabriel, S.; Getz, G.; Lander, E.S.; Regev, A.; Ritz, J.; Neuberg, D.; Rodig, S.J.; Ligon, K.L.; Suvà, M.L.; Wucherpfennig, K.W.; Hacohen, N.; Fritsch, E.F.; Livak, K.J.; Ott, P.A.; Wu, C.J.; Reardon, D.A. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature, 2019, 565(7738), 234-239. doi: 10.1038/s41586-018-0792-9 PMID: 30568305
  77. Ott, P.A.; Hu-Lieskovan, S.; Chmielowski, B.; Govindan, R.; Naing, A.; Bhardwaj, N.; Margolin, K.; Awad, M.M.; Hellmann, M.D.; Lin, J.J.; Friedlander, T.; Bushway, M.E.; Balogh, K.N.; Sciuto, T.E.; Kohler, V.; Turnbull, S.J.; Besada, R.; Curran, R.R.; Trapp, B.; Scherer, J.; Poran, A.; Harjanto, D.; Barthelme, D.; Ting, Y.S.; Dong, J.Z.; Ware, Y.; Huang, Y.; Huang, Z.; Wanamaker, A.; Cleary, L.D.; Moles, M.A.; Manson, K.; Greshock, J.; Khondker, Z.S.; Fritsch, E.; Rooney, M.S.; DeMario, M.; Gaynor, R.B.; Srinivasan, L. A Phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell, 2020, 183(2), 347-362.e24. doi: 10.1016/j.cell.2020.08.053 PMID: 33064988
  78. Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol., 2020, 20(11), 651-668. doi: 10.1038/s41577-020-0306-5 PMID: 32433532
  79. Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res., 2020, 48(W1), W449-W454. doi: 10.1093/nar/gkaa379 PMID: 32406916
  80. Racle, J.; Michaux, J.; Rockinger, G.A.; Arnaud, M.; Bobisse, S.; Chong, C.; Guillaume, P.; Coukos, G.; Harari, A.; Jandus, C.; Bassani-Sternberg, M.; Gfeller, D. Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nat. Biotechnol., 2019, 37(11), 1283-1286. doi: 10.1038/s41587-019-0289-6 PMID: 31611696
  81. Vider-Shalit, T.; Raffaeli, S.; Louzoun, Y. Virus-epitope vaccine design: Informatic matching the HLA-I polymorphism to the virus genome. Mol. Immunol., 2007, 44(6), 1253-1261. doi: 10.1016/j.molimm.2006.06.003 PMID: 16930710
  82. Schubert, B.; Kohlbacher, O. Designing string-of-beads vaccines with optimal spacers. Genome Med., 2016, 8(1), 9. doi: 10.1186/s13073-016-0263-6 PMID: 26813686
  83. Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; Chen, C.; Olive, O.; Carter, T.A.; Li, S.; Lieb, D.J.; Eisenhaure, T.; Gjini, E.; Stevens, J.; Lane, W.J.; Javeri, I.; Nellaiappan, K.; Salazar, A.M.; Daley, H.; Seaman, M.; Buchbinder, E.I.; Yoon, C.H.; Harden, M.; Lennon, N.; Gabriel, S.; Rodig, S.J.; Barouch, D.H.; Aster, J.C.; Getz, G.; Wucherpfennig, K.; Neuberg, D.; Ritz, J.; Lander, E.S.; Fritsch, E.F.; Hacohen, N.; Wu, C.J. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature, 2017, 547(7662), 217-221. doi: 10.1038/nature22991 PMID: 28678778
  84. Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; MacNair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackermann, Z.; Tran, V.M.; Chiappino-Pepe, A.; Badran, A.H.; Andrews, I.W.; Chory, E.J.; Church, G.M.; Brown, E.D.; Jaakkola, T.S.; Barzilay, R.; Collins, J.J. A deep learning approach to antibiotic discovery. Cell, 2020, 180(4), 688-702.e13. doi: 10.1016/j.cell.2020.01.021 PMID: 32084340
  85. Schubert, B.; Schärfe, C.; Dönnes, P.; Hopf, T.; Marks, D.; Kohlbacher, O. Population-specific design of de-immunized protein biotherapeutics. PLOS Comput. Biol., 2018, 14(3), e1005983. doi: 10.1371/journal.pcbi.1005983 PMID: 29499035
  86. FDA Available from: http://www.fda.gov/Biologics BloodVaccines/default.htm
  87. CBER does not regulate the transplantation of vascularized human organ transplants such as kidney, liver, heart, lung, or pancreas. In: The Health Resources Services Administration (HRSA) oversees the transplantation of vascularized human organs; 2018.
  88. Centers for disease control and prevention. Antibiotic resistance threats in the United States 2019. Available from: https://www.cdc.gov/drugresistance/biggest-threats.html cited Mar 18 2022.
  89. Liu, Y.; Tong, Z.; Shi, J.; Li, R.; Upton, M.; Wang, Z. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics, 2021, 11(10), 4910-4928. doi: 10.7150/thno.56205 PMID: 33754035
  90. Cardoso, P.; Glossop, H.; Meikle, T.G.; Aburto-Medina, A.; Conn, C.E.; Sarojini, V.; Valery, C. Molecular engineering of antimicrobial peptides: Microbial targets, peptide motifs and translation opportunities. Biophys. Rev., 2021, 13(1), 35-69. doi: 10.1007/s12551-021-00784-y PMID: 33495702
  91. Ribeiro da Cunha, B.; Fonseca, L.P.; Calado, C.R.C. Antibiotic discovery: Where have we come from, where do we go? Antibiotics, 2019, 8(2), 45. doi: 10.3390/antibiotics8020045 PMID: 31022923
  92. van Duin, D.; Paterson, D.L. Multidrug-resistant bacteria in the community: Trends and lessons learned. Infect. Dis. Clin. North Am., 2016, 30(2), 377-390. doi: 10.1016/j.idc.2016.02.004 PMID: 27208764
  93. Gajdács, M.; Urbán, E.; Stájer, A.; Baráth, Z. Antimicrobial resistance in the context of the sustainable development goals: A brief review. Eur. J. Investig. Health Psychol. Educ., 2021, 11(1), 71-82. doi: 10.3390/ejihpe11010006 PMID: 34542450
  94. Marquette, A.; Bechinger, B. Biophysical investigations elucidating the mechanisms of action of antimicrobial peptides and their synergism. Biomolecules, 2018, 8(2), 18. doi: 10.3390/biom8020018 PMID: 29670065
  95. Haroun, M.; Tratrat, C.; Petrou, A.; Geronikaki, A.; Ivanov, M.; Ćirić, A.; Soković, M.; Nagaraja, S.; Venugopala, K.N.; Balachandran Nair, A.; Elsewedy, H.S.; Kochkar, H. Exploration of the antimicrobial effects of benzothiazolylthiazolidin-4-one and in silico mechanistic investigation. Molecules, 2021, 26(13), 4061. doi: 10.3390/molecules26134061 PMID: 34279400
  96. Chaudhary, D.K.; Khulan, A.; Kim, J. Development of a novel cultivation technique for uncultured soil bacteria. Sci. Rep., 2019, 9(1), 6666. doi: 10.1038/s41598-019-43182-x PMID: 31040339
  97. Singh, V.; Haque, S.; Singh, H.; Verma, J.; Vibha, K.; Singh, R.; Jawed, A.; Tripathi, C.K.M. Isolation, screening, and identification of novel isolates of actinomycetes from India for antimicrobial applications. Front. Microbiol., 2016, 7, 1921. doi: 10.3389/fmicb.2016.01921 PMID: 27999566
  98. Van Goethem, M.W.; Makhalanyane, T.P.; Cowan, D.A.; Valverde, A. Cyanobacteria and alphaproteobacteria may facilitate cooperative interactions in niche communities. Front. Microbiol., 2017, 8, 2099. doi: 10.3389/fmicb.2017.02099 PMID: 29118751
  99. Behie, S.W.; Bonet, B.; Zacharia, V.M.; McClung, D.J.; Traxler, M.F. Molecules to ecosystems: Actinomycete natural products in situ. Front. Microbiol., 2017, 7, 2149. doi: 10.3389/fmicb.2016.02149 PMID: 28144233
  100. Pankhurst, C.E. Symbiotic effectiveness of antibiotic-resistant mutants of fast- and slow-growing strains of Rhizobium nodulating Lotus species. Can. J. Microbiol., 1977, 23(8), 1026-1033. doi: 10.1139/m77-152 PMID: 890601
  101. Goodfellow, M.; Fiedler, H.P. A guide to successful bioprospecting: Informed by actinobacterial systematics. Antonie van Leeuwenhoek, 2010, 98(2), 119-142. doi: 10.1007/s10482-010-9460-2 PMID: 20582471
  102. Marmann, A.; Aly, A.; Lin, W.; Wang, B.; Proksch, P. Co-cultivation--a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar. Drugs, 2014, 12(2), 1043-1065. doi: 10.3390/md12021043 PMID: 24549204
  103. Liu, Y.; Ding, S.; Shen, J.; Zhu, K. Nonribosomal antibacterial peptides that target multidrug-resistant bacteria. Nat. Prod. Rep., 2019, 36(4), 573-592. doi: 10.1039/C8NP00031J PMID: 30324212
  104. Morsy, M.A.; Ali, E.M.; Kandeel, M.; Venugopala, K.N.; Nair, A.B.; Greish, K.; El-Daly, M. Screening and molecular docking of novel benzothiazole derivatives as potential antimicrobial agents. Antibiotics, 2020, 9(5), 221. doi: 10.3390/antibiotics9050221 PMID: 32365587
  105. Venugopala, K.N.; Uppar, V.; Chandrashekharappa, S.; Abdallah, H.H.; Pillay, M.; Deb, P.K.; Morsy, M.A.; Aldhubiab, B.E.; Attimarad, M.; Nair, A.B.; Sreeharsha, N.; Tratrat, C.; Yousef Jaber, A.; Venugopala, R.; Mailavaram, R.P.; Al-Jaidi, B.A.; Kandeel, M.; Haroun, M.; Padmashali, B. Cytotoxicity and antimycobacterial properties of pyrrolo1,2-aquinoline derivatives: molecular target identification and molecular docking studies. Antibiotics, 2020, 9(5), 233. doi: 10.3390/antibiotics9050233 PMID: 32392709
  106. Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; Greko, C.; So, A.D.; Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A.Q.; Qamar, F.N.; Mir, F.; Kariuki, S.; Bhutta, Z.A.; Coates, A.; Bergstrom, R.; Wright, G.D.; Brown, E.D.; Cars, O. Antibiotic resistance—the need for global solutions. Lancet Infect. Dis., 2013, 13(12), 1057-1098. doi: 10.1016/S1473-3099(13)70318-9 PMID: 24252483
  107. Steenbergen, J.N.; Alder, J.; Thorne, G.M.; Tally, F.P. Daptomycin: A lipopeptide antibiotic for the treatment of serious Gram-positive infections. J. Antimicrob. Chemother., 2005, 55(3), 283-288. doi: 10.1093/jac/dkh546 PMID: 15705644
  108. Peraman, R.; Sure, S.K.; Dusthackeer, V.N.A.; Chilamakuru, N.B.; Yiragamreddy, P.R.; Pokuri, C.; Kutagulla, V.K.; Chinni, S. Insights on recent approaches in drug discovery strategies and untapped drug targets against drug resistance. Future J. Pharm. Sci., 2021, 7(1), 56. doi: 10.1186/s43094-021-00196-5 PMID: 33686369
  109. Iacobino, A.; Fattorini, L.; Giannoni, F. Drug-resistant tuberculosis 2020: Where we stand. Appl. Sci., 2020, 10(6), 2153. doi: 10.3390/app10062153
  110. Pardridge, W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab., 2012, 32(11), 1959-1972. doi: 10.1038/jcbfm.2012.126 PMID: 22929442
  111. Yokel, R.A. Nanoparticle brain delivery: A guide to verification methods. Nanomedicine , 2020, 15(4), 409-432. doi: 10.2217/nnm-2019-0169 PMID: 31999236
  112. Burgess, A.; Hynynen, K. Drug delivery across the blood–brain barrier using focused ultrasound. Expert Opin. Drug Deliv., 2014, 11(5), 711-721. doi: 10.1517/17425247.2014.897693 PMID: 24650132
  113. Dhas, N.; Kudarha, R.; Garkal, A.; Ghate, V.; Sharma, S.; Panzade, P.; Khot, S.; Chaudhari, P.; Singh, A.; Paryani, M.; Lewis, S.; Garg, N.; Singh, N.; Bangar, P.; Mehta, T. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs. J. Control. Release, 2021, 330, 257-283. doi: 10.1016/j.jconrel.2020.12.015 PMID: 33345832
  114. Zhou, Y.; Peng, Z.; Seven, E.S.; Leblanc, R.M. Crossing the blood-brain barrier with nanoparticles. J. Control. Release, 2018, 270, 290-303. doi: 10.1016/j.jconrel.2017.12.015 PMID: 29269142
  115. Seven, E.S.; Zhou, Y.; Seven, Y.B.; Mitchell, G.S.; Leblanc, R.M. Crossing blood-brain barrier with carbon quantum dots. FASEB J., 2019, 33(S1), 785-788. doi: 10.1096/fasebj.2019.33.1_supplement.785.8
  116. Zhou, Y.; Liyanage, P.Y.; Devadoss, D.; Guevara, L.R.; Cheng, L.; Graham, R.M.; Chand, H.S.; Al-Youbi, A.O.; Bashammakh, A.S.; El-Shahawi, M.S.; Leblanc, R.M. Nontoxic amphiphilic carbon dots as promising drug nanocarriers across the blood–brain barrier and inhibitors of β-amyloid. Nanoscale, 2019, 11(46), 22387-22397. doi: 10.1039/C9NR08194A PMID: 31730144
  117. Tajik, S.; Dourandish, Z.; Zhang, K.; Beitollahi, H.; Le, Q.V.; Jang, H.W.; Shokouhimehr, M. Carbon and graphene quantum dots: A review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Advances, 2020, 10(26), 15406-15429. doi: 10.1039/D0RA00799D PMID: 35495425
  118. de Medeiros, T.V.; Manioudakis, J.; Noun, F.; Macairan, J.R.; Victoria, F.; Naccache, R. Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(24), 7175-7195. doi: 10.1039/C9TC01640F
  119. Sircar, N.N. Medicinal plants. East Pharm., 1982, 29(291), 49-52.
  120. Rao, A.V.R.; Gurjar, M.K. Drugs from plant resources: An overview. Pharm. Times, 1990, 22(5), 19-20.
  121. Farnsworth, N.R. A computerized data base for medicinal plants. East Pharm., 1985, 28(326), 53-55.
  122. Littleton, J. The future of plant drug discovery. Expert Opin. Drug Discov., 2007, 2(5), 673-683. doi: 10.1517/17460441.2.5.673 PMID: 23488957
  123. Mukherjee, P. Quality control of herbal drugs – An approach to evaluations of botanicals; 5th ed;, 2005, p. 2.
  124. Bhatt, A. Evolution of clinical research: A history before and beyond james lind. Perspect. Clin. Res., 2010, 1(1), 6-10. doi: 10.4103/2229-3485.71839 PMID: 21829774
  125. Murthy, V.H.; Krumholz, H.M.; Gross, C.P. Participation in cancer clinical trials: Race-, sex-, and age-based disparities. JAMA, 2004, 291(22), 2720-2726. doi: 10.1001/jama.291.22.2720 PMID: 15187053
  126. Anderson, D. Digital R&D: four ways to maximize patient engagement in clinical trials. In: Deloitte consulting LLP; , 2018.
  127. National institutes of health, office of science. Policy. Clin Trials.,
  128. Lauer, M.S.; Bonds, D. Eliminating the "expensive" adjective for clinical trials. Am. Heart J., 2014, 167(4), 419-420. doi: 10.1016/j.ahj.2013.12.003 PMID: 24655687
  129. US food and drug administration. Prescription drug user fee act (PDUFA). Available from: https://www.fda.gov/forindustry/userfees/prescriptiondruguserfee/cited Aug 4 2019.
  130. Schuklenk, M.R. Critique of the CIOMS guidelines: All procedure, no substance. Indian J. Med. Ethics, 2017, 24, 1-3. doi: 10.20529/IJME.2017.067
  131. Morris, T.; Brostoff, J.M.; Stonier, P.D.; Boyd, A. Evolution of ethical principles in the practice of pharmaceutical medicine from a UK perspective. Front. Pharmacol., 2020, 10, 1525. doi: 10.3389/fphar.2019.01525 PMID: 32009950

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers