Development of Daruharidra (Berberis aristata) Based Biogenic Cadmium Sulfide Nanoparticles: Their Implementation as Antibacterial and Novel Therapeutic Agents against Human Breast and Ovarian Cancer


如何引用文章

全文:

详细

Background:This article presents a new and environmentally friendly method for generating DH-CdSNPs (cadmium sulfide nanoparticles) ranging from 5-10 nm in size. A green synthesis method for the development of inorganic nanoparticles was developed a few years back for their applications in diverse fields, such as medicine, bioimaging and remediation. The biogenic synthesis of these nanoparticles containing daruharidra (Berberis aristata) and cadmium sulfide is an effective alternative.

Aims:By employing Daruharidra extract as a herbal analog, we aim to minimize the risks and adverse effects that come along with the use of other chemically synthesized nanoparticles. This study's main goal was to investigate the potential of these nanoparticles as powerful antibacterial and anticancer agents.

Methods:We used a crude powdered daruharidra extract as a stabilizer ingredient to create CdSbased nanoformulations in an environmentally responsible way. By exposing the breast cancer cell line (MDAMB-231) and ovarian teratocarcinoma cell line (PA1) to these nanoformulations, we were able to evaluate their anticancer activities. Additionally, flow cytometry analysis was conducted to scrutinize the process of cell cycle arrest and apoptosis in reference to anticancer studies. Furthermore, DH-CdSNPs were applied on different gram-positive as well as gramnegative bacteria in a disc diffusion assay to ascertain their antibacterial activity. Nanoparticles were tested on bacterial strains to check if they were resistant after the MIC or minimum inhibitory concentration.

Results:The cytotoxicity of nanoparticles was tested by MTT assay. The impact of increasing concentrations of NPs on cell lines was tested, revealing a cytotoxic effect. The half-maximal inhibitory concentration values for a 24-hour treatment were determined to be 95.74µg/ml for ovarian cancer cells and 796.25 µg/ml for breast cancer cells. Treatment with DH-CdSNP resulted in a noteworthy increase in early apoptotic cells, with percentages rising from approximately 3% to 14.5% in ovarian cancer cell lines and from 4% to 13.6% in breast cancer cell lines. Furthermore, the NPs induced arrest of the cell cycle, specifically in the interphase of G2 and mitosis phase, with DNA damage observed in sub G1 in ovarian cancer cells and G0/G1 arrest observed in breast cancer cells. Additionally, the NPs exhibited exceptional potency against both gram-positive as well as gram-negative bacteria.

Conclusion:Less research has been done on using bioinspired DH-CdSNP to deliver anticancer medications. The amalgamation of plant extract and the DH-CdSNP could cause a paradigm shift in the cancer therapy approach. The findings revealed that the biosynthesized DH-CdSNP limited the growth of human breast and ovarian cancer cells. This property can be further investigated against a variety of additional cell lines to determine whether this property makes the DH-CdSNP a promising treatment alternative. The results obtained from these nanoformulations exhibit faster efficacy compared to traditional medications.

作者简介

Aditi Bhatnagar

School of Biochemical Engineering, IIT (BHU)

Email: info@benthamscience.net

Abha Mishra

School of Biochemical Engineering, IIT (BHU)

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Kumar, A.; Singh, S.; Kumar, D. Evaluation of antimicrobial potential of cadmium sulphide nanoparticles against bacterial pathogens. Int. J. Pharm. Sci. Rev. Res., 2014, 24(2), 202-207.
  2. Reyes-Esparza, J.; Martínez-Mena, A.; Gutiérrez-Sancha, I.; Rodríguez-Fragoso, P.; de la Cruz, G.G.; Mondragón, R.; Rodríguez-Fragoso, L. Synthesis, characterization and biocompatibility of cadmium sulfide nanoparticles capped with dextrin for in vivo and in vitro imaging application. J. Nanobiotechnology, 2015, 13(1), 83. doi: 10.1186/s12951-015-0145-x PMID: 26577398
  3. Houts, P.S.; Lenhard, R.E.; Varricchio, C. ACS cancer facts and figures. Cancer Pract., 2000, 8(3), 105-108. doi: 10.1046/j.1523-5394.2000.83001.x
  4. Yuan, C.; Zhang, W.; Wang, J.; Huang, C.; Shu, B.; Liang, Q.; Huang, T.; Wang, J.; Shi, Q.; Tang, D.; Wang, Y. Chinese Medicine Phenomics (Chinmedphenomics): Personalized, Precise and Promising. Phenomics, 2022, 2(6), 383-388. doi: 10.1007/s43657-022-00074-x PMID: 36939806
  5. Nakatani, N. Phenolic antioxidants from herbs and spices. Biofactors, 2000, 13(1-4), 141-146. doi: 10.1002/biof.5520130123 PMID: 11237173
  6. Balachandran, P.; Govindarajan, R. Cancer—an ayurvedic perspective. Pharmacol. Res., 2005, 51(1), 19-30. doi: 10.1016/j.phrs.2004.04.010 PMID: 15519531
  7. Ying, W. Phenomic Studies on Diseases: Potential and Challenges. Phenomics, 2023, 3(3), 285-299. doi: 10.1007/s43657-022-00089-4 PMID: 36714223
  8. Ko, J.K.S.; Leung, W.C.; Ho, W.K.; Chiu, P. Herbal diterpenoids induce growth arrest and apoptosis in colon cancer cells with increased expression of the nonsteroidal anti-inflammatory drug-activated gene. Eur. J. Pharmacol., 2007, 559(1), 1-13. doi: 10.1016/j.ejphar.2006.12.004 PMID: 17258704
  9. Kainsa, S.; Kumar, P.; Rani, P. Medicinal Plants of Asian Origin Having Anticancer Potential: Short Review. Asian J. Biomed. Pharm. Sci., 2012, 2(10), 1-7.
  10. Kaur, R.; Kapoor, K.; Kaur, H. Plants as a source of anticancer agents, 2011.
  11. Othman, M.S.; Obeidat, S.T.; Al-Bagawi, A.H.; Fareid, M.A.; Fehaid, A.; Abdel Moneim, A.E. Green-synthetized selenium nanoparticles using berberine as a promising anticancer agent. J. Integr. Med., 2022, 20(1), 65-72. doi: 10.1016/j.joim.2021.11.002 PMID: 34802980
  12. Tavakoli, J.; Miar, S.; Majid Zadehzare, M.; Akbari, H. Evaluation of effectiveness of herbal medication in cancer care: A review study. Iran. J. Cancer Prev., 2012, 5(3), 144-156. PMID: 25628834
  13. Lamichhane, B.; Adhikari, S.; Shrestha, P.; Govinda Shrestha, B. Study of phytochemical, antioxidant, antimicrobial and anticancer activity of Berberis Aristata. J. Trop. Life Sci., 2014, 4(1) doi: 10.11594/jtls.04.01.01
  14. Borek, C. Dietary antioxidants and human cancer. Integr. Cancer Ther., 2004, 3(4), 333-341. doi: 10.1177/1534735404270578 PMID: 15523104
  15. Meng, Z.; Li, T.; Ma, X.; Wang, X.; Van Ness, C.; Gan, Y.; Zhou, H.; Tang, J.; Lou, G.; Wang, Y.; Wu, J.; Yen, Y.; Xu, R.; Huang, W. Berbamine inhibits the growth of liver cancer cells and cancer-initiating cells by targeting Ca2+/calmodulin-dependent protein kinase II. Mol. Cancer Ther., 2013, 12(10), 2067-2077. doi: 10.1158/1535-7163.MCT-13-0314 PMID: 23960096
  16. Liu, C.X.; Xiao, P.G.; Liu, G.S. Studies on plant resources, pharmacology and clinical treatment with berbamine. Phytother. Res., 1991, 5(5), 228-230. doi: 10.1002/ptr.2650050508
  17. Shivaji, K.; Mani, S.; Ponmurugan, P.; De Castro, C.S.; Lloyd Davies, M.; Balasubramanian, M.G.; Pitchaimuthu, S. Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells. ACS Appl. Nano Mater., 2018, 1(4), 1683-1693. doi: 10.1021/acsanm.8b00147
  18. Deepak, P.; Amutha, V.; Kamaraj, C.; Balasubramani, G.; Aiswarya, D.; Perumal, P. Chemical and green synthesis of nanoparticles and their efficacy on cancer cells.Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier Inc.: Amsterdam, 2019. doi: 10.1016/B978-0-08-102579-6.00016-2
  19. Radnia, F.; Mohajeri, N.; Zarghami, N. New insight into the engineering of green carbon dots: Possible applications in emerging cancer theranostics. Talanta, 2020, 209120547 doi: 10.1016/j.talanta.2019.120547
  20. Han, H.S.; Koo, S.Y.; Choi, K.Y. 2022, Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging. Bioact. Mater., 2021, 14, 182-205. doi: 10.1016/j.bioactmat.2021.11.027
  21. Valizadeh, A.; Mikaeili, H.; Samiei, M.; Farkhani, S.M.; Zarghami, N. kouhi, M.; Akbarzadeh, A.; Davaran, S. Quantum dots: Synthesis, bioapplications, and toxicity. Nanoscale Res. Lett., 2012, 7(1), 480. doi: 10.1186/1556-276X-7-480 PMID: 22929008
  22. Kukhta, A.V.; Kolesnik, E.E.; Lesnikovich, A.I.; Nichik, M.N.; Kudlash, A.N.; Vorobyova, S.A. "Organic-inorganic nanocomposites: Optical and electrophysical properties," Synth. React. Inorganic, Met. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2007, 37(5), 333-339. doi: 10.1080/15533170701392396
  23. Chen, X.; Li, L.; Lai, Y.; Yan, J.; Tang, Y.; Wang, X. Microwave-Assisted Synthesis of Glutathione-Capped CdTe/CdSe Near-Infrared Quantum Dots for Cell Imaging. Int. J. Mol. Sci., 2015, 16(12), 11500-11508. doi: 10.3390/ijms160511500 PMID: 25997004
  24. Tayade, R.J.; Natarajan, T.S.; Bajaj, H.C. Photocatalytic Degradation of Methylene Blue Dye Using Ultraviolet Light Emitting Diodes. Ind. Eng. Chem. Res., 2009, 48(23), 10262-10267. doi: 10.1021/ie9012437
  25. Saddal, S.K.; Telang, T.; Bhange, V.P. Green synthesis of silver nanoparticles using stem extract of Berberis aristata and to study characterization and its antimicrobial activity. J. Pharm. Res., 2018, 12(March), 840.
  26. Chandra, H.; Patel, D.; Kumari, P.; Jangwan, J.S.; Yadav, S. Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: Characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Mater. Sci. Eng. C, 2019, 102, 212-220. doi: 10.1016/j.msec.2019.04.035 PMID: 31146992
  27. Kumar, A.; Singh, K.R.; Ghate, M.D.; Lalhlenmawia, H.; Kumar, D.; Singh, J. Bioinspired quantum dots for cancer therapy: A mini-review. Mater. Lett., 2021, 313131742 doi: 10.1016/j.matlet.2022.131742
  28. Bhatnagar, A.; Saini, R.; Dagar, P.; Mishra, A. Molecular modelling and in vitro studies of Daruharidra as a potent alpha-amylase inhibitor. J. Biomol. Struct. Dyn., 2022, 0(0), 1-12. doi: 10.1080/07391102.2022.2058093 PMID: 35412420
  29. Yeh, S.; Wei, K.; Sun, Y.; Jeng, U.; Liang, K.S. Morphological Transformation of PS., 2003, 7903-7907.
  30. Bahuguna, A.; Khan, I.; Bajpai, V.K.; Kang, S.C. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J. Pharmacol., 2017, 12(2), 115-118. doi: 10.3329/bjp.v12i2.30892
  31. Scudiero, D.A.; Shoemaker, R.H.; Paull, K.D.; Monks, A.; Tierney, S.; Nofziger, T.H.; Currens, M.J.; Seniff, D.; Boyd, M.R. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res., 1988, 48(17), 4827-4833. PMID: 3409223
  32. Darzynkiewicz, Z.; Bedner, E.; Smolewski, P. Flow cytometry in analysis of cell cycle and apoptosis. Semin. Hematol., 2001, 38(2), 179-193. doi: 10.1016/S0037-1963(01)90051-4 PMID: 11309699
  33. Vermes, I.; Haanen, C.; Steffens-Nakken, H.; Reutellingsperger, C. A novel assay for apoptosis Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods, 1995, 184(1), 39-51. doi: 10.1016/0022-1759(95)00072-I PMID: 7622868
  34. Rao, M.D.; Pennathur, G. Green synthesis and characterization of cadmium sulphide nanoparticles from Chlamydomonas reinhardtii and their application as photocatalysts. Mater. Res. Bull., 2017, 85, 64-73. doi: 10.1016/j.materresbull.2016.08.049
  35. Regmi, A.; Basnet, Y.; Bhattarai, S.; Gautam, S.K. Cadmium Sulfide Nanoparticles: Synthesis, Characterization, and Antimicrobial Study. J. Nanomater., 2023, 2023, 1-7. doi: 10.1155/2023/8187000
  36. Chandra, H.; Patel, D.; Kumari, P.; Jangwan, J.S.; Yadav, S. Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: Characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Mater. Sci. Eng., 2019, 102(2) doi: 10.1016/j.msec.2019.04.035
  37. Singh, B.R.; Singh, B.N.; Khan, W.; Singh, H.B.; Naqvi, A.H. ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots. Biomaterials, 2012, 33(23), 5753-5767. doi: 10.1016/j.biomaterials.2012.04.045 PMID: 22594971
  38. Ghasempour, A.; Dehghan, H.; Ataee, M.; Chen, B.; Zhao, Z.; Sedighi, M.; Guo, X.; Shahbazi, M.A. Cadmium Sulfide Nanoparticles: Preparation, Characterization, and Biomedical Applications. Molecules, 2023, 28(9), 3857. doi: 10.3390/molecules28093857 PMID: 37175267
  39. Ul, I.; Bhat, H.; Yi, Y.S. Green synthesis and antibacterial activity of cadmium sulfide nanoparticles (CdSNPs) using Panicum sarmentosum. Asian Journal of Green Chemistry, 2019, 3(4), 455-469. doi: 10.33945/SAMI/AJGC.2019.4.3
  40. Bendale, Y.; Bendale, V.; Paul, S. Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integr. Med. Res., 2017, 6(2), 141-148. doi: 10.1016/j.imr.2017.01.006 PMID: 28664137
  41. Koopman, G.; Reutelingsperger, C.P.; Kuijten, G.A.; Keehnen, R.M.; Pals, S.T.; van Oers, M.H. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood, 1994, 84(5), 1415-1420. doi: 10.1182/blood.V84.5.1415.bloodjournal8451415 PMID: 8068938
  42. Lezaja, A.; Altmeyer, M. Inherited DNA lesions determine G1 duration in the next cell cycle. Cell Cycle, 2018, 17(1), 24-32. doi: 10.1080/15384101.2017.1383578 PMID: 28980862
  43. Pozarowski, P.; Darzynkiewicz, Z. Analysis of cell cycle by flow cytometry. Methods Mol. Biol., 2004, 281(April), 301-312. doi: 10.1385/1-59259-811-0:301 PMID: 15220539

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024