The Cutting-edge of CRISPR for Cancer Treatment and its Future Prospects


Cite item

Full Text

Abstract

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a versatile technology that allows precise modification of genes. One of its most promising applications is in cancer treatment. By targeting and editing specific genes involved in cancer development and progression, CRISPR has the potential to become a powerful tool in the fight against cancer. This review aims to assess the recent progress in CRISPR technology for cancer research and to examine the obstacles and potential strategies to address them. The two most commonly used CRISPR systems for gene editing are CRISPR/Cas9 and CRISPR/Cas12a. CRISPR/Cas9 employs different repairing systems, including homologous recombination (HR) and nonhomologous end joining (NHEJ), to introduce precise modifications to the target genes. However, off-target effects and low editing efficiency are some of the main challenges associated with this technology. To overcome these issues, researchers are exploring new delivery methods and developing CRISPR/Cas systems with improved specificity. Moreover, there are ethical concerns surrounding using CRISPR in gene editing, including the potential for unintended consequences and the creation of genetically modified organisms. It is important to address these issues through rigorous testing and strict regulations. Despite these challenges, the potential benefits of CRISPR in cancer therapy cannot be overlooked. By introducing precise modifications to cancer cells, CRISPR could offer a targeted and effective treatment option for patients with different types of cancer. Further investigation and development of CRISPR technology are necessary to overcome the existing challenges and harness its full potential in cancer therapy.

About the authors

Kah Liau

School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University

Email: info@benthamscience.net

An Ooi

School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University

Email: info@benthamscience.net

Chian Mah

School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University

Email: info@benthamscience.net

Penny Yong

School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University

Email: info@benthamscience.net

Ling Kee

School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University

Email: info@benthamscience.net

Cheng Loo

School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University

Email: info@benthamscience.net

Ming Tay

School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University

Email: info@benthamscience.net

Jhi Foo

School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University

Email: info@benthamscience.net

Sharina Hamzah

School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Koonin, E.V.; Makarova, K.S. CRISPR-Cas: An Adaptive Immunity System in Prokaryotes. F1000 Biol. Rep., 2009. doi: 10.3410/b1-95
  2. Ishino, Y.; Krupovic, M.; Forterre, P. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. J. Bacteriol., 2018, 200(7), e00580-e17. doi: 10.1128/JB.00580-17
  3. Zaidi, S.S-A.; Mahas, A.; Vanderschuren, H.; Mahfouz, M.M. Engineering Crops of the Future: CRISPR Approaches to Develop Climate-Resilient and Disease-Resistant Plants. Genome Biol., 2020, 21(1)
  4. Liu, W.; Li, L.; Jiang, J.; Wu, M.; Lin, P. Applications and Challenges of CRISPR-Cas Gene-Editing to Disease Treatment in Clinics. Precis. Clin. Med., 2021, 4(3), 179-191. doi: 10.1093/pcmedi/pbab014
  5. Doudna, J.A.; Charpentier, E. The New Frontier of Genome Engineering with CRISPR-Cas9. Science, 2014, 346(6213), 1258096-1258096. doi: 10.1126/science.1258096
  6. Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 2012, 337(6096), 816-821. doi: 10.1126/science.1225829
  7. (a)) Marino, M. Biography of Jennifer A. Doudna. Proc. Natl. Acad. Sci. USA, 2004, 101(49), 16987-16989. doi: 10.1073/pnas.0408147101; (b)) Özcan, A.; Krajeski, R.; Ioannidi, E.; Lee, B.; Gardner, A.; Makarova, K.S. Koonin.E.V.; Abudayyeh, O.O; Gootenberg, J.S. Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature, 2021, 597(7878), 720-725. doi: 10.1038/s41586-021-03886-5
  8. Asmamaw, M.; Zawdie, B. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics : Targets & Therapy, 2021, 15, 353-361. doi: 10.2147/BTT.S326422
  9. Xu, Y.; Li, Z. CRISPR-Cas Systems: Overview, Innovations and Applications in Human Disease Research and Gene Therapy. Comput. Struct. Biotechnol. J., 2020, 18, 2401-2415. doi: 10.1016/j.csbj.2020.08.031
  10. Sun, W.; Yang, J.; Cheng, Z.; Amrani, N.; Liu, C.; Wang, K.; Ibraheim, R.; Edraki, A.; Huang, X.; Wang, M.; Wang, J.; Liu, L.; Sheng, J.; Liu, L.; Sheng, G.; Yang, Y.; Lou, J.; Sontheimer, E.J.; Wang, Y. Structures of Neisseria Meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States. Mol. Cell, 2019, 76(6), 938-952.e5. doi: 10.1016/j.molcel.2019.09.025
  11. Vilela, A. An Overview of CRISPR-Based Technologies in Wine Yeasts to Improve Wine Flavor and Safety. Fermentation, 2021, 7(1), 5. doi: 10.3390/fermentation7010005
  12. Xue, C.; Greene, E.C. DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing. Trends Genet., 2021, 37(7), 639-656. doi: 10.1016/j.tig.2021.02.008
  13. Rupnik, A.; Grenon, M.; Lowndes, N. The MRN Complex. Curr. Biol., 2008, 18(11), R455-R457. doi: 10.1016/j.cub.2008.03.040
  14. Reuven, N.; Adler, J.; Broennimann, K.; Myers, N.; Shaul, Y. Recruitment of DNA Repair MRN Complex by Intrinsically Disordered Protein Domain Fused to Cas9 Improves Efficiency of CRISPR-Mediated Genome Editing. Biomolecules, 2019, 9(10), 584. doi: 10.3390/biom9100584
  15. Zou, Y.; Liu, Y.; Wu, X.; Shell, S.M. Functions of Human Replication Protein a (RPA): From DNA Replication to DNA Damage and Stress Responses. J. Cell. Physiol., 2006, 208(2), 267-273. doi: 10.1002/jcp.20622
  16. Herrero, A.B.; San Miguel, J.; Gutierrez, N.C. Deregulation of DNA Double-Strand Break Repair in Multiple Myeloma: Implications for Genome Stability. PLoS One, 2015, 10(3) doi: 10.1371/journal.pone.0121581
  17. Jackson, S.P. Sensing and repairing DNA double-strand breaks. Carcinogenesis, 2002, 23(5), 687-696. doi: 10.1093/carcin/23.5.687
  18. Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-Guided Human Genome Engineering via Cas9. Science, 2013, 339(6121), 823-826. doi: 10.1126/science.1232033
  19. McGowan, E.; Lin, Q.; Ma, G.; Yin, H.; Chen, S.; Lin, Y. PD-1 disrupted CAR-T cells in the treatment of solid tumors: promises and challenges. Biomed. Pharmacother., 2020, 121, 109625. doi: 10.1016/j.biopha.2019.109625
  20. Sever, R.; Brugge, J.S. Signal Transduction in Cancer. Cold Spring Harb. Perspect. Med., 2015, 5(4), a006098-a006098. doi: 10.1101/cshperspect.a006098
  21. Tuveson, D.; Clevers, H. Cancer Modeling Meets Human Organoid Technology. Science, 2019, 364(6444), 952-955. doi: 10.1126/science.aaw6985
  22. Banerjee, A.; Malonia, S.K.; Dutta, S. Frontiers of CRISPR-Cas9 for Cancer Research and Therapy. Journal of Exploratory Research in Pharmacology, 2021, 000(000) doi: 10.14218/jerp.2020.00033
  23. Vankeerberghen, A.; Cuppens, H.; Cassiman, J-J. The Cystic Fibrosis Transmembrane Conductance Regulator: An Intriguing Protein with Pleiotropic Functions. J. Cyst. Fibros., 2002, 1(1), 13-29. doi: 10.1016/s1569-1993(01)00003-0
  24. Schwank, G.; Koo, B-K.; Sasselli, V. Dekkers, Johanna F.; Heo, I.; Demircan, T.; Sasaki, N.; Boymans, S.; Cuppen, E.; van der Ent, Cornelis K.; Nieuwenhuis, Edward E. S.; Beekman, Jeffrey M.; Clevers, H. Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients. Cell Stem Cell, 2013, 13(6), 653-658. doi: 10.1016/j.stem.2013.11.002
  25. Drost, J.; van Jaarsveld, R.H.; Ponsioen, B.; Zimberlin, C.; van Boxtel, R.; Buijs, A.; Sachs, N.; Overmeer, R.M.; Offerhaus, G.J.; Begthel, H.; Korving, J.; van de Wetering, M.; Schwank, G.; Logtenberg, M.; Cuppen, E.; Snippert, H.J.; Medema, J.P.; Kops, G.J.P.L.; Clevers, H. Sequential Cancer Mutations in Cultured Human Intestinal Stem Cells. Nature, 2015, 521(7550), 43-47. doi: 10.1038/nature14415
  26. Matano, M.; Date, S.; Shimokawa, M.; Takano, A.; Fujii, M.; Ohta, Y.; Watanabe, T.; Kanai, T.; Sato, T. Modeling Colorectal Cancer Using CRISPR-Cas9–Mediated Engineering of Human Intestinal Organoids. Nat. Med., 2015, 21(3), 256-262. doi: 10.1038/nm.3802
  27. Drost, J.; Boxtel, R. van; Blokzijl, F.; Mizutani, T.; Sasaki, N.; Sasselli, V.; Ligt, J. de; Behjati, S.; Grolleman, J. E.; Wezel, T. van; Nik-Zainal, S.; Kuiper, R. P.; Cuppen, E.; Clevers, H. Use of CRISPR-Modified Human Stem Cell Organoids to Study the Origin of Mutational Signatures in Cancer. Science, 2017, 358(6360), 234-238. doi: 10.1126/science.aao3130
  28. Tang, J.; Salama, R.; Gadgeel, S.M.; Sarkar, F.H.; Ahmad, A. Erlotinib Resistance in Lung Cancer: Current Progress and Future Perspectives. Front. Pharmacol., 2013, 4. doi: 10.3389/fphar.2013.00015
  29. Kosaka, T.; Yamaki, E.; Mogi, A.; Kuwano, H. Mechanisms of Resistance to EGFR TKIs and Development of a New Generation of Drugs in Non-Small-Cell Lung Cancer. J. Biomed. Biotechnol., 2011, 2011, 1-7. doi: 10.1155/2011/165214
  30. Oxnard, G.R.; Arcila, M.E.; Chmielecki, J.; Ladanyi, M.; Miller, V.A.; Pao, W. New Strategies in Overcoming Acquired Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Lung Cancer. Clin. Cancer Res., 2011, 17(17), 5530-5537. doi: 10.1158/1078-0432.ccr-10-2571
  31. Terai, H.; Kitajima, S.; Potter, D.S.; Matsui, Y.; Quiceno, L.G.; Chen, T.; Kim, T.; Rusan, M.; Thai, T.C.; Piccioni, F.; Donovan, K.A.; Kwiatkowski, N.; Hinohara, K.; Wei, G.; Gray, N.S.; Fischer, E.S.; Wong, K-K.; Shimamura, T.; Letai, A.; Hammerman, P.S. ER Stress Signaling Promotes the Survival of Cancer "Persister Cells" Tolerant to EGFR Tyrosine Kinase Inhibitors. Cancer Res., 2017, 78(4), 1044-1057. doi: 10.1158/0008-5472.can-17-1904
  32. Qin, S.; Ingle, J.N.; Liu, M.; Yu, J.; Wickerham, D.L.; Kubo, M.; Weinshilboum, R.M.; Wang, L. Calmodulin-like Protein 3 Is an Estrogen Receptor Alpha Coregulator for Gene Expression and Drug Response in a SNP, Estrogen, and SERM-Dependent Fashion. Breast Cancer Res., 2017, 19(1) doi: 10.1186/s13058-017-0890-x
  33. Reinshagen, C.; Bhere, D.; Choi, S.H.; Hutten, S.; Nesterenko, I.; Wakimoto, H.; Le Roux, E.; Rizvi, A.; Du, W.; Minicucci, C.; Shah, K. CRISPR-Enhanced Engineering of Therapy-Sensitive Cancer Cells for Self-Targeting of Primary and Metastatic Tumors. Sci. Transl. Med., 2018, 10(449), eaao3240. doi: 10.1126/scitranslmed.aao3240
  34. Zhang, M.; Eshraghian, E.A.; Jammal, O.A.; Zhang, Z.; Zhu, X. CRISPR Technology: The Engine That Drives Cancer Therapy. Biomed. Pharmacother., 2021, 133, 111007. doi: 10.1016/j.biopha.2020.111007
  35. Gebler, C.; Lohoff, T.; Paszkowski-Rogacz, M.; Mircetic, J.; Chakraborty, D.; Camgoz, A.; Hamann, M.V.; Theis, M.; Thiede, C.; Buchholz, F. Inactivation of Cancer Mutations Utilizing CRISPR/Cas9. J. Natl. Cancer Inst., 2016, 109(1), djw183. doi: 10.1093/jnci/djw183
  36. Ren, J.; Liu, X.; Fang, C.; Jiang, S.; June, C.H.; Zhao, Y. Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 2017, 23(9), 2255-2266. doi: 10.1158/1078-0432.CCR-16-1300
  37. Liu, X.; Zhang, Y.; Cheng, C.; Cheng, A.W.; Zhang, X.; Li, N.; Xia, C.; Wei, X.; Liu, X.; Wang, H. CRISPR-Cas9-Mediated Multiplex Gene Editing in CAR-T Cells. Cell Res., 2016, 27(1), 154-157. doi: 10.1038/cr.2016.142
  38. Su, S.; Hu, B.; Shao, J.; Shen, B.; Du, J.; Du, Y.; Zhou, J.; Yu, L.; Zhang, L.; Chen, F.; Sha, H.; Cheng, L.; Meng, F.; Zou, Z.; Huang, X.; Liu, B. CRISPR-Cas9 Mediated Efficient PD-1 Disruption on Human Primary T Cells from Cancer Patients. Sci. Rep., 2016, 6(1) doi: 10.1038/srep20070
  39. Guo, N.; Liu, J-B.; Li, W.; Ma, Y-S.; Fu, D. The Power and the Promise of CRISPR/Cas9 Genome Editing for Clinical Application with Gene Therapy. J. Adv. Res., 2021, 40. doi: 10.1016/j.jare.2021.11.018
  40. Lu, Y.; Xue, J.; Deng, T.; Zhou, X.; Yu, K.; Deng, L.; Huang, M.; Yi, X.; Liang, M.; Wang, Y.; Shen, H.; Tong, R.; Wang, W.; Li, L.; Song, J.; Li, J.; Su, X.; Ding, Z.; Gong, Y.; Zhu, J. Safety and Feasibility of CRISPR-Edited T Cells in Patients with Refractory Non- Small-Cell Lung Cancer. In: Nature Medicine; , 2020; 26, pp. (5)732-740. doi: 10.1038/s41591-020-0840-5
  41. Liu, Q. World-First Phase I Clinical Trial for CRISPR-Cas9 PD-1- Edited T-Cells in Advanced Nonsmall Cell Lung Cancer.Global Medical Genetics; , 2020, 07, pp. (03)073-074. doi: 10.1055/s-0040-1721451
  42. Cohen, D.J.; Pant, S.; O’Neil, B.; Marinis, J.; Winnberg, J.; Ahlers, C.M.; Callaway, J.; Rathi, C.; Acusta, A.; Verticelli, A.; Bertin, J.; Smothers, J.F. A Phase I/II Study of GSK3145095 Alone and in Combination with Anticancer Agents Including Pembrolizumab in Adults with Selected Solid Tumors. J. Clin. Oncol., 2019, 37(15)(Suppl.), TPS4165-TPS4165. doi: 10.1200/jco.2019.37.15_suppl.tps4165
  43. GlaxoSmithKline; Parexel. A Phase I/II, Open-Label Study to Investigate the Safety, Clinical Activity, Pharmacokinetics, and Pharmacodynamics of GSK3145095 Administered Alone and in Combination With Anticancer Agents Including Pembrolizumab in Adult Participants With Selected Advanced Solid Tumors. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/results/NCT03681951?term=CRISPR&cond=cancers&draw=2&rank=10 (accessed 2022-06-23).
  44. Jing, Z.; Zhang, N.; Ding, L.; Wang, X.; Hua, Y.; Jiang, M.; Wu, S.X. Safety and Activity of Programmed Cell Death-1 Gene Knockout Engineered T Cells in Patients with Previously Treated Advanced Esophageal Squamous Cell Carcinoma: An Open-Label, Single-Arm Phase I Study. J. Clin. Oncol., 2018, 36(15)(Suppl.), 3054-3054. doi: 10.1200/jco.2018.36.15_suppl.3054
  45. Stadtmauer, E.A.; Fraietta, J.A.; Davis, M.M.; Cohen, A.D.; Weber, K.L.; Lancaster, E.; Mangan, P.A.; Kulikovskaya, I.; Gupta, M.; Chen, F.; Tian, L.; Gonzalez, V.E.; Xu, J.; Jung, I.; Melenhorst, J.J.; Plesa, G.; Shea, J.; Matlawski, T.; Cervini, A.; Gaymon, A.L. CRISPR-Engineered T Cells in Patients with Refractory Cancer. Science, 2020, 367(6481) doi: 10.1126/science.aba7365
  46. McGuirk, J.; Bachier, C.R.; Bishop, M.R.; Ho, P.J.; Murthy, H.S.; Dickinson, M.J.; Maakaron, J.E.; Andreadis, C.; Ghobadi, A.; Waller, E.K.; Benton, M.D.; Suh, S.; Xu, H.; Morawa, E.; Awan, F.T.; Shaughnessy, P.; Tam, C.S.L.; Kroeger, N.; Maziarz, R.T. A Phase 1 Dose Escalation and Cohort Expansion Study of the Safety and Efficacy of Allogeneic CRISPR-Cas9–Engineered T Cells (CTX110) in Patients (Pts) with Relapsed or Refractory (R/R) B-Cell Malignancies (CARBON). J. Clin. Oncol., 2021, 39(15)(Suppl.), TPS7570-TPS7570. doi: 10.1200/jco.2021.39.15_suppl.tps7570
  47. Kulkarni, S.; Morawa, E.; Ho, T. Updated Results from the Phase 1 CARBON Trial of CTX110TM; CRISPR Therapeutics AG: Cambridge, Massachusetts, United States, 2021. https://crisprtx.gcs-web.com/static-files/e5304031-1ceb-4db3-8451-08b1adcd3ee8 (accessed 2023-01-15)
  48. Li, Y.; Glass, Z.; Huang, M.; Chen, Z-Y.; Xu, Q. Ex Vivo Cell-Based CRISPR/Cas9 Genome Editing for Therapeutic Applications. Biomaterials, 2020, 234, 119711. doi: 10.1016/j.biomaterials.2019.119711
  49. Banakar, R.; Schubert, M.; Kurgan, G.; Rai, K. M.; Beaudoin, S. F.; Collingwood, M. A.; Vakulskas, C. A.; Wang, K.; Zhang, F. Efficiency, Specificity and Temperature Sensitivity of Cas9 and Cas12a RNPs for DNA-Free Genome Editing in Plants. Frontiers in Genome Editing, 2022, 3. doi: 10.3389/fgeed.2021.760820
  50. Zhang, S.; Shen, J.; Li, D.; Cheng, Y. Strategies in the Delivery of Cas9 Ribonucleoprotein for CRISPR/Cas9 Genome Editing. Theranostics, 2021, 11(2), 614-648. doi: 10.7150/thno.47007
  51. Nambiar, M.; Raghavan, S.C. How Does DNA Break during Chromosomal Translocations? Nucleic Acids Res., 2011, 39(14), 5813-5825. doi: 10.1093/nar/gkr223
  52. Wu, H.; Yu, Y.; Zheng, Q.; Liu, T.; Wu, Y.; Wang, Z.; Zheng, H.; Liu, L.; Li, J. Benefit of Chemotherapy Based on Platinum with Definitive Radiotherapy in Older Patients with Locally Advanced Esophageal Squamous Cell Carcinoma. Radiat. Oncol., 2021, 16(1) doi: 10.1186/s13014-021-01931-1
  53. Yu, J.; Zhong, B.; Zhao, L.; Hou, Y.; Wang, X.; Chen, X. Receptor-Interacting Serine/Threonine-Protein Kinase 1 (RIPK1) Inhibitors Necrostatin-1 (Nec-1) and 7-Cl-O-Nec-1 (Nec-1s) Are Potent Inhibitors of NAD(P)H: Quinone Oxidoreductase 1 (NQO1). Free Radic. Biol. Med., 2021, 173, 64-69. doi: 10.1016/j.freeradbiomed.2021.07.017
  54. Srivastava, S.; Riddell, S.R. Chimeric Antigen Receptor T Cell Therapy: Challenges to Bench-To-Bedside Efficacy. J. Immunol., 2018, 200(2), 459-468. doi: 10.4049/jimmunol.1701155
  55. Sadelain, M.; Brentjens, R.; Rivière, I. The Basic Principles of Chimeric Antigen Receptor Design. Cancer Discov., 2013, 3(4), 388-398. doi: 10.1158/2159-8290.cd-12-0548
  56. Office of the Commissioner. FDA approves CAR-T cell therapy to treat adults with certain types of large B-cell lymphoma. U.S. Food and Drug Administration. https://www.fda.gov/news-events/press-announcements/fda-approves-car-t-cell-therapy-treat-adults-certain-types-large-b-cell-lymphoma (accessed 2022-06-30).
  57. Zheng, X.; Qi, C.; Yang, L.; Quan, Q.; Liu, B.; Zhong, Z.; Tang, X.; Fan, T.; Zhou, J.; Zhang, Y. The Improvement of CRISPR-Cas9 System with Ubiquitin-Associated Domain Fusion for Efficient Plant Genome Editing. Front. Plant Sci., 2020, 11, 621. doi: 10.3389/fpls.2020.00621
  58. Zhang, X-H.; Tee, L.Y.; Wang, X-G.; Huang, Q-S.; Yang, S-H. Off-Target Effects in CRISPR/Cas9-Mediated Genome Engineering. Mol. Ther. Nucleic Acids, 2015, 4(1), e264. doi: 10.1038/mtna.2015.37
  59. Tycko, J. Myer, Vic E.; Hsu, Patrick D. Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity. Mol. Cell, 2016, 63(3), 355-370. doi: 10.1016/j.molcel.2016.07.004
  60. Wu, X.; Kriz, A.J.; Sharp, P.A. Target Specificity of the CRISPR-Cas9 System. Quant. Biol., 2014, 2(2), 59-70. doi: 10.1007/s40484-014-0030-x
  61. Vouillot, L.; Thélie, A.; Pollet, N. Comparison of T7E1 and Surveyor Mismatch Cleavage Assays to Detect Mutations Triggered by Engineered Nucleases. G3: Genes, Genomes. Genetics, 2015, 5(3), 407-415. doi: 10.1534/g3.114.015834
  62. Sentmanat, M.F.; Peters, S.T.; Florian, C.P.; Connelly, J.P.; Pruett-Miller, S.M. A Survey of Validation Strategies for CRISPR-Cas9 Editing. Sci. Rep., 2018, 8(1) doi: 10.1038/s41598-018-19441-8
  63. Qiu, P.; Shandilya, H.; D’Alessio, J.M.; O’Connor, K.; Durocher, J.; Gerard, G.F. Mutation Detection Using Surveyor Nuclease. Biotechniques, 2004, 36(4), 702-707. doi: 10.2144/04364PF01
  64. Selvakumar, S.C.; Preethi, K.A.; Ross, K.; Tusubira, D.; Khan, M.W.A.; Mani, P.; Rao, T.N.; Sekar, D. CRISPR/Cas9 and next Generation Sequencing in the Personalized Treatment of Cancer. Mol. Cancer, 2022, 21(1) doi: 10.1186/s12943-022-01565-1
  65. Wong, N.; Liu, W.; Wang, X. WU-CRISPR: Characteristics of Functional Guide RNAs for the CRISPR/Cas9 System. Genome Biol., 2015, 16(1) doi: 10.1186/s13059-015-0784-0
  66. Höijer, I.; Emmanouilidou, A.; Östlund, R.; van Schendel, R.; Bozorgpana, S.; Tijsterman, M.; Feuk, L.; Gyllensten, U.; den Hoed, M.; Ameur, A. CRISPR-Cas9 Induces Large Structural Variants at On-Target and Off-Target Sites in Vivo That Segregate across Generations. Nat. Commun., 2022, 13(1) doi: 10.1038/s41467-022-28244-5
  67. Pattanayak, V.; Ramirez, C.L.; Joung, J.K.; Liu, D.R. Revealing Off-Target Cleavage Specificities of Zinc-Finger Nucleases by in Vitro Selection. Nat. Methods, 2011, 8(9), 765-770. doi: 10.1038/nmeth.1670
  68. Pacesa, M.; Lin, C.-H.; Cléry, A.; Bargsten, K.; Irby, M. J.; Allain, F. H. T.; Cameron, P.; Donohoue, P. D.; Jinek, M. Structural Basis for Cas9 Off-Target Activity. 2021. doi: 10.1101/2021.11.18.469088
  69. McKnight, J.N.; Tsukiyama, T.; Bowman, G.D. Sequence-Targeted Nucleosome Sliding in Vivo by a Hybrid Chd1 Chromatin Remodeler. Genome Res., 2016, 26(5), 693-704. doi: 10.1101/gr.199919.115
  70. Zimin, A.; Stevens, K.A.; Crepeau, M.W.; Holtz-Morris, A.; Koriabine, M.; Marçais, G.; Puiu, D.; Roberts, M.; Wegrzyn, J.L.; de Jong, P.J.; Neale, D.B.; Salzberg, S.L.; Yorke, J.A.; Langley, C.H. Sequencing and Assembly of the 22-Gb Loblolly Pine Genome. Genetics, 2014, 196(3), 875-890. doi: 10.1534/genetics.113.159715
  71. Zischewski, J.; Fischer, R.; Bortesi, L. Detection of On-Target and Off-Target Mutations Generated by CRISPR/Cas9 and Other Sequence-Specific Nucleases. Biotechnol. Adv., 2017, 35(1), 95-104. doi: 10.1016/j.biotechadv.2016.12.003
  72. Yang, L.; Grishin, D.; Wang, G.; Aach, J.; Zhang, C-Z.; Chari, R.; Homsy, J.; Cai, X.; Zhao, Y.; Fan, J-B.; Seidman, C.; Seidman, J.; Pu, W.; Church, G. Targeted and Genome-Wide Sequencing Reveal Single Nucleotide Variations Impacting Specificity of Cas9 in Human Stem Cells. Nat. Commun., 2014, 5(1) doi: 10.1038/ncomms6507
  73. Levy, A.; Goren, M.G.; Yosef, I.; Auster, O.; Manor, M.; Amitai, G.; Edgar, R.; Qimron, U.; Sorek, R. CRISPR Adaptation Biases Explain Preference for Acquisition of Foreign DNA. Nature, 2015, 520(7548), 505-510. doi: 10.1038/nature14302
  74. Husnik, F.; McCutcheon, J.P. Functional Horizontal Gene Transfer from Bacteria to Eukaryotes. Nat. Rev. Microbiol., 2017, 16(2), 67-79. doi: 10.1038/nrmicro.2017.137
  75. Bondy-Denomy, J.; Pawluk, A.; Maxwell, K.L.; Davidson, A.R. Bacteriophage Genes That Inactivate the CRISPR/Cas Bacterial Immune System. Nature, 2013, 493(7432), 429-432. doi: 10.1038/nature11723
  76. Li, Y. Bondy-Denomy, J. Anti-CRISPRs Go Viral: The Infection Biology of CRISPR-Cas Inhibitors. Cell Host Microbe, 2021. doi: 10.1016/j.chom.2020.12.007
  77. Pinilla-Redondo, R.; Shehreen, S.; Marino, N.D.; Fagerlund, R.D.; Brown, C.M.; Sørensen, S.J.; Fineran, P.C.; Bondy-Denomy, J. Discovery of Multiple Anti-CRISPRs Highlights Anti-Defense Gene Clustering in Mobile Genetic Elements. Nat. Commun., 2020, 11(1) doi: 10.1038/s41467-020-19415-3
  78. Marino, N.D.; Pinilla-Redondo, R. Csörgő, B.; Bondy-Denomy, J. Anti-CRISPR Protein Applications: Natural Brakes for CRISPR-Cas Technologies. Nat. Methods, 2020, 17(5), 471-479. doi: 10.1038/s41592-020-0771-6
  79. Bondy-Denomy, J.; Davidson, A.R.; Doudna, J.A.; Fineran, P.C.; Maxwell, K.L.; Moineau, S.; Peng, X.; Sontheimer, E.J.; Wiedenheft, B. A Unified Resource for Tracking Anti-CRISPR Names. CRISPR J., 2018, 1(5), 304-305. doi: 10.1089/crispr.2018.0043
  80. Wiegand, T.; Karambelkar, S.; Bondy-Denomy, J.; Wiedenheft, B. Structures and Strategies of Anti-CRISPR-Mediated Immune Suppression. Annu. Rev. Microbiol., 2020, 74(1), 21-37. doi: 10.1146/annurev-micro-020518-120107
  81. Shin, J.; Jiang, F.; Liu, J-J.; Bray, N.L.; Rauch, B.J.; Baik, S.H.; Nogales, E.; Bondy-Denomy, J.; Corn, J.E.; Doudna, J.A. Disabling Cas9 by an Anti-CRISPR DNA Mimic. Sci. Adv., 2017, 3(7), e1701620. doi: 10.1126/sciadv.1701620
  82. Yourik, P.; Fuchs, R.T.; Mabuchi, M.; Curcuru, J.L.; Robb, G.B. Staphylococcus Aureus Cas9 Is a Multiple-Turnover Enzyme. RNA, 2018, 25(1), 35-44. doi: 10.1261/rna.067355.118
  83. Zhang, Y.; Marchisio, M.A.; Type, I.I. Anti-CRISPR Proteins as a New Tool for Synthetic Biology. RNA Biol., 2020, 18(8), 1085-1098. doi: 10.1080/15476286.2020.1827803
  84. Jiang, F.; Zhou, K.; Ma, L.; Gressel, S.; Doudna, J.A.A. Cas9-Guide RNA Complex Preorganized for Target DNA Recognition. Science, 2015, 348(6242), 1477-1481. doi: 10.1126/science.aab1452
  85. Harrington, L.B.; Doxzen, K.W.; Ma, E.; Liu, J-J.; Knott, G.J.; Edraki, A.; Garcia, B.; Amrani, N.; Chen, J.S.; Cofsky, J.C.; Kranzusch, P.J.; Sontheimer, E.J.; Davidson, A.R.; Maxwell, K.L.; Doudna, J.A. A Broad-Spectrum Inhibitor of CRISPR-Cas9. Cell, 2017, 170(6), 1224-1233.e15. doi: 10.1016/j.cell.2017.07.037
  86. Sternberg, S.H.; LaFrance, B.; Kaplan, M.; Doudna, J.A. Conformational Control of DNA Target Cleavage by CRISPR–Cas9. Nature, 2015, 527(7576), 110-113. doi: 10.1038/nature15544
  87. Pawluk, A.; Amrani, N.; Zhang, Y.; Garcia, B.; Hidalgo-Reyes, Y.; Lee, J.; Edraki, A.; Shah, M.; Sontheimer, E.J.; Maxwell, K.L.; Davidson, A.R. Naturally Occurring Off-Switches for CRISPR-Cas9. Cell, 2016, 167(7), 1829-1838.e9. doi: 10.1016/j.cell.2016.11.017
  88. Yang, Y.; Xu, J.; Ge, S.; Lai, L. CRISPR/Cas: Advances, Limitations, and Applications for Precision Cancer Research. Frontiers in Medicine, 2021, •••, 8. doi: 10.3389/fmed.2021.649896
  89. Zhang, F.; Wen, Y.; Guo, X. CRISPR/Cas9 for Genome Editing: Progress, Implications and Challenges. Hum. Mol. Genet., 2014, 23(R1), R40-R46. doi: 10.1093/hmg/ddu125
  90. Rasul, M.F.; Hussen, B.M.; Salihi, A.; Ismael, B.S.; Jalal, P.J.; Zanichelli, A.; Jamali, E.; Baniahmad, A.; Ghafouri-Fard, S.; Basiri, A.; Taheri, M. Strategies to Overcome the Main Challenges of the Use of CRISPR/Cas9 as a Replacement for Cancer Therapy. Mol. Cancer, 2022, 21(1) doi: 10.1186/s12943-021-01487-4
  91. Duan, L.; Ouyang, K.; Xu, X.; Xu, L.; Wen, C.; Zhou, X.; Qin, Z.; Xu, Z.; Sun, W.; Liang, Y. Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing. Front. Genet., 2021, 12. doi: 10.3389/fgene.2021.673286
  92. Chistiakov, D.A.; Voronova, N.V.; Chistiakov, P.A. Genetic Variations in DNA Repair Genes, Radiosensitivity to Cancer and Susceptibility to Acute Tissue Reactions in Radiotherapy-Treated Cancer Patients. Acta Oncologica (Stockholm, Sweden), 2008, 47(5), 809-824. doi: 10.1080/02841860801885969
  93. Bremnes, R.M.; Dønnem, T.; Al-Saad, S.; Al-Shibli, K.; Andersen, S.; Sirera, R.; Camps, C.; Marinez, I.; Busund, L-T. The Role of Tumor Stroma in Cancer Progression and Prognosis: Emphasis on Carcinoma-Associated Fibroblasts and Non-Small Cell Lung Cancer. J. Thorac. Oncol., 2011, 6(1), 209-217. doi: 10.1097/jto.0b013e3181f8a1bd
  94. Valkenburg, K.C.; de Groot, A.E.; Pienta, K.J. Targeting the Tumour Stroma to Improve Cancer Therapy. Nat. Rev. Clin. Oncol., 2018, 15(6), 366-381. doi: 10.1038/s41571-018-0007-1
  95. Yi, L.; Li, J. CRISPR-Cas9 Therapeutics in Cancer: Promising Strategies and Present Challenges. Biochimica et Biophysica Acta (BBA) -. Rev. Can., 2016, 1866(2), 197-207. doi: 10.1016/j.bbcan.2016.09.002
  96. Tang, H.; Shrager, J.B. CRISPR/Cas-Mediated Genome Editing to Treat EGFR-Mutant Lung Cancer: A Personalized Molecular Surgical Therapy. EMBO Mol. Med., 2016, 8(2), 83-85. doi: 10.15252/emmm.201506006
  97. Regalado, A. The creator of the CRISPR babies has been released from a Chinese prison., MIT Technology Review. https://www.technologyreview.com/2022/04/04/1048829/he-jiankui-prison-free-crispr-babies/.
  98. Peng, Y.; Lv, J.; Ding, L.; Gong, X.; Zhou, Q. Responsible Governance of Human Germline Genome Editing in China. Biol. Reprod., 2022. doi: 10.1093/biolre/ioac114
  99. Kondo, K.; Taguchi, C. Japanese Regulatory Framework and Approach for Genome-Edited Foods Based on Latest Scientific Findings.Food Safety; , 2022, 10, pp. (4)113-128. doi: 10.14252/foodsafetyfscj.d-21-00016
  100. Callaway, E. CRISPR Plants Now Subject to Tough GM Laws in European Union. Nature, 2018, 560(7716), 16-16. doi: 10.1038/d41586-018-05814-6
  101. Hamaguchi, M.; O’Connor, E.; Chen, T.; Parnell, L.; Richard McCombie, W.; Wigler, M. Rapid Isolation of CDNA by Hybridization. Proc. Natl. Acad. Sci. USA, 1998, 95(7), 3764-3769. doi: 10.1073/pnas.95.7.3764
  102. Richardson, C.D.; Ray, G.J.; DeWitt, M.A.; Curie, G.L.; Corn, J.E. Enhancing Homology-Directed Genome Editing by Catalytically Active and Inactive CRISPR-Cas9 Using Asymmetric Donor DNA. Nat. Biotechnol., 2016, 34(3), 339-344. doi: 10.1038/nbt.3481

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers