New Insights into Pharmaceutical Nanocrystals for the Improved Topical Delivery of Therapeutics in Various Skin Disorders


Cite item

Full Text

Abstract

Nanotechnology has provided nanostructure-based delivery of drugs, among which nanocrystals have been investigated and explored for feasible topical drug delivery. Nanocrystals are nano-sized colloidal carriers, considered pure solid particles with a maximum drug load and a very small amount of stabilizer. The size or mean diameter of the nanocrystals is less than 1 µm and has a crystalline character. Prominent synthesis methods include the utilization of microfluidic- driven platforms as well as the milling approach, which is both adaptable and adjustable. Nanocrystals have shown a high capacity for loading drugs, utilization of negligible amounts of excipients, greater chemical stability, lower toxic effects, and ease of scale-up, as well as manufacturing. They have gained interest as drug delivery platforms, and the significantly large surface area of the skin makes it a potential approach for topical therapeutic formulations for different skin disorders including fungal and bacterial infections, psoriasis, wound healing, and skin cancers, etc. This article explores the preparation techniques, applications, and recent patents of nanocrystals for treating various skin conditions.

About the authors

Vanshita Singh

Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Keshav Bansal

Institute of Pharmaceutical Research, GLA University

Author for correspondence.
Email: info@benthamscience.net

Hemant Bhati

Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Meenakshi Bajpai

Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

References

  1. Ali, S.; Shabbir, M.; Shahid, N. The structure of skin and transdermal drug delivery system-a review. Res. J. Pharm. Technol., 2015, 8(2), 103-109. doi: 10.5958/0974-360X.2015.00019.0
  2. Gupta, J.; Gupta, R. Vanshita. Microneedle technology: An insight into recent advancements and future trends in drug and vaccine delivery. Assay Drug Dev. Technol., 2021, 19(2), 97-114. doi: 10.1089/adt.2020.1022 PMID: 33297823
  3. Cevc, G. Drug delivery across the skin. Expert Opin. Investig. Drugs, 1997, 6(12), 1887-1937. doi: 10.1517/13543784.6.12.1887 PMID: 15989590
  4. Rosenkrantz, W. Practical applications of topical therapy for allergic, infectious, and seborrheic disorders. Clin. Tech. Small Anim. Pract., 2006, 21(3), 106-116. doi: 10.1053/j.ctsap.2006.05.003 PMID: 16933477
  5. Zhou, D.; Zhou, F.; Sheng, S.; Wei, Y.; Chen, X.; Su, J. Intra-articular nanodrug delivery strategies for treating osteoarthritis. Drug Discov. Today, 2023, 28(3), 103482. doi: 10.1016/j.drudis.2022.103482 PMID: 36584875
  6. Seth, D.; Cheldize, K.; Brown, D.; Freeman, E.E. Global burden of skin disease: Inequities and innovations. Curr. Dermatol. Rep., 2017, 6(3), 204-210. doi: 10.1007/s13671-017-0192-7 PMID: 29226027
  7. Brown, M.B.; Martin, G.P.; Jones, S.A.; Akomeah, F.K. Dermal and transdermal drug delivery systems: Current and future prospects. Drug Deliv., 2006, 13(3), 175-187. doi: 10.1080/10717540500455975 PMID: 16556569
  8. Wu, Y.; Vazquez-Prada, K.X.; Liu, Y.; Whittaker, A.K.; Zhang, R.; Ta, H.T. Recent advances in the development of theranostic nanoparticles for cardiovascular diseases. Nanotheranostics, 2021, 5(4), 499-514. doi: 10.7150/ntno.62730 PMID: 34367883
  9. Hemrajani, C.; Negi, P.; Parashar, A. Overcoming drug delivery barriers and challenges in topical therapy of atopic dermatitis: A nanotechnological perspective. Biomed. Pharmacother., 2022, 147, 112633. doi: 10.1016/j.biopha.2022.112633 PMID: 35030434
  10. Wu, X.; Guy, R.H. Applications of nanoparticles in topical drug delivery and in cosmetics. J. Drug Deliv. Sci. Technol., 2009, 19(6), 371-384. doi: 10.1016/S1773-2247(09)50080-9
  11. Liu, H.; Geng, Z.; Su, J. Engineered mammalian and bacterial extracellular vesicles as promising nanocarriers for targeted therapy. Extracellular Vesicles and Circulating Nucleic Acids, 2022, 3(1), 63-86. doi: 10.20517/evcna.2022.04
  12. Xu, X.; Liu, H.; Sicheng, W. Neutrophil-erythrocyte hybrid membrane-coated hollow copper sulfide nanoparticles for targeted and photothermal/anti-inflammatory therapy of osteoarthritis. Compos., Part B Eng., 2022, 237.
  13. Yang, X.; Li, Y.; Liu, X.; He, W.; Huang, Q.; Feng, Q. Nanoparticles and their effects on differentiation of mesenchymal stem cells. Biomaterials Translation, 2020, 1(1), 58-68. PMID: 35837661
  14. Müller, R.H.; Gohla, S.; Keck, C.M. State of the art of nanocrystals-special features, production, nanotoxicology aspects and intracellular delivery. Eur. J. Pharm. Biopharm., 2011, 78(1), 1-9. doi: 10.1016/j.ejpb.2011.01.007 PMID: 21266197
  15. Agarwal, V.; Bajpai, M. Design, fabrication and characterization of esomeprazole nanocrystals for enhancing the dissolution rate and stability. Recent Pat. Nanotechnol., 2021, 15(2), 165-179. doi: 10.2174/1872210514666201016150915 PMID: 33069204
  16. Al Shaal, L.; Shegokar, R.; Müller, R.H. Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation. Int. J. Pharm., 2011, 420(1), 133-140. doi: 10.1016/j.ijpharm.2011.08.018 PMID: 21871547
  17. Lu, Y.; Qi, J.; Dong, X.; Zhao, W.; Wu, W. The in vivo fate of nanocrystals. Drug Discov. Today, 2017, 22(4), 744-750. doi: 10.1016/j.drudis.2017.01.003 PMID: 28088442
  18. Zhang, J.; Xie, Z.; Zhang, N.; Zhong, J. Nanosuspension drug delivery system: Preparation, characterization, postproduction processing, dosage form, and application Micro and nano technologies; Elsevier, 2017, pp. 413-443.
  19. Parmar, P.K.; Wadhawan, J.; Bansal, A.K. Pharmaceutical nanocrystals: A promising approach for improved topical drug delivery. Drug Discov. Today, 2021, 26(10), 2329-2349. doi: 10.1016/j.drudis.2021.07.010 PMID: 34265460
  20. Junghanns, J-U.A.H.; Müller, R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomedicine, 2008, 3(3), 295-309. PMID: 18990939
  21. Shetea, G.; Jaina, H.; Punja, D.; Prajapata, H.; Akotiyaa, P.; Bansal, A. Stabilizers used in nano-crystal based drug delivery systems. J. Excip. Food Chem., 2014, 1(5), 184-209.
  22. Colombo, M.; Staufenbiel, S.; Rühl, E.; Bodmeier, R. In situ determination of the saturation solubility of nanocrystals of poorly soluble drugs for dermal application. Int. J. Pharm., 2017, 521(1-2), 156-166. doi: 10.1016/j.ijpharm.2017.02.030 PMID: 28223247
  23. Patzelt, A.; Lademann, J. Drug delivery to hair follicles. Expert Opin. Drug Deliv., 2013, 10(6), 787-797. doi: 10.1517/17425247.2013.776038 PMID: 23530745
  24. Müller, R.; Zhai, X.; Romero, G.; Keck, C. Nanocrystals for passive dermal penetration enhancement Percutaneous penetration enhancers chemical methods in penetration enhancement: Nanocarriers; Springer-Verlag Berlin Heidelberg, 2016, pp. 283-295. doi: 10.1007/978-3-662-47862-2_18
  25. Vidlářová, L.; Romero, G.B.; Hanuš, J.; Štěpánek, F.; Müller, R.H. Nanocrystals for dermal penetration enhancement-effect of concentration and underlying mechanisms using curcumin as model. Eur. J. Pharm. Biopharm., 2016, 104, 216-225. doi: 10.1016/j.ejpb.2016.05.004 PMID: 27163241
  26. Pawar, V.K.; Singh, Y.; Meher, J.G.; Gupta, S.; Chourasia, M.K. Engineered nanocrystal technology: In-vivo fate, targeting and applications in drug delivery. J. Control. Release, 2014, 183, 51-66. doi: 10.1016/j.jconrel.2014.03.030 PMID: 24667572
  27. Patel, V.; Sharma, O.P.; Mehta, T. Nanocrystal: A novel approach to overcome skin barriers for improved topical drug delivery. Expert Opin. Drug Deliv., 2018, 15(4), 351-368. doi: 10.1080/17425247.2018.1444025 PMID: 29465253
  28. Tuomela, A.; Hirvonen, J.; Peltonen, L. Stabilizing agents for drug nanocrystals: Effect on bioavailability. Pharmaceutics, 2016, 8(2), 16. doi: 10.3390/pharmaceutics8020016 PMID: 27213435
  29. Saini, J.K.; Kumar, S. Development of nanocrystal formulation with improved dissolution. J. Drug Deliv. Ther., 2018, 8(5), 118-129. doi: 10.22270/jddt.v8i5.1946
  30. Seweryn, A. Interactions between surfactants and the skin-theory and practice. Adv. Colloid Interface Sci., 2018, 256, 242-255. doi: 10.1016/j.cis.2018.04.002 PMID: 29685575
  31. Obeidat, W.M.; Schwabe, K.; Müller, R.H.; Keck, C.M. Preservation of nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm., 2010, 76(1), 56-67. doi: 10.1016/j.ejpb.2010.05.001 PMID: 20452422
  32. Pelikh, O.; Hartmann, S.F.; Abraham, A.M.; Keck, C.M. Nanocrystals for Dermal Application BT - Nanocosmetics: From Ideas to Products; Springer International Publishing: Cham, 2019, pp. 161-177. doi: 10.1007/978-3-030-16573-4_8
  33. Miao, X.; Yang, W.; Feng, T.; Lin, J.; Huang, P. Drug nanocrystals for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2018, 10(3), e1499. doi: 10.1002/wnan.1499 PMID: 29044971
  34. Van Eerdenbrugh, B.; Van den Mooter, G.; Augustijns, P. Top-down production of drug nanocrystals: Nanosuspension stabilization, miniaturization and transformation into solid products. Int. J. Pharm., 2008, 364(1), 64-75. doi: 10.1016/j.ijpharm.2008.07.023 PMID: 18721869
  35. Chen, H.; Khemtong, C.; Yang, X.; Chang, X.; Gao, J. Nanonization strategies for poorly water-soluble drugs. Drug Discov. Today, 2011, 16(7-8), 354-360. doi: 10.1016/j.drudis.2010.02.009 PMID: 20206289
  36. Sinha, B.; Müller, R.H.; Möschwitzer, J.P. Bottom-up approaches for preparing drug nanocrystals: Formulations and factors affecting particle size. Int. J. Pharm., 2013, 453(1), 126-141. doi: 10.1016/j.ijpharm.2013.01.019 PMID: 23333709
  37. Chan, H.K.; Kwok, P.C.L. Production methods for nanodrug particles using the bottom-up approach. Adv. Drug Deliv. Rev., 2011, 63(6), 406-416. doi: 10.1016/j.addr.2011.03.011 PMID: 21457742
  38. Shegokar, R.; Müller, R.H. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives. Int. J. Pharm., 2010, 399(1-2), 129-139. doi: 10.1016/j.ijpharm.2010.07.044 PMID: 20674732
  39. Merisko-Liversidge, E.; Liversidge, G.G. Nanosizing for oral and parenteral drug delivery: A perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv. Drug Deliv. Rev., 2011, 63(6), 427-440. doi: 10.1016/j.addr.2010.12.007 PMID: 21223990
  40. Chen, Z.; Wu, W.; Lu, Y. What is the future for nanocrystal-based drug-delivery systems? Ther. Deliv., 2020, 11(4), 225-229. doi: 10.4155/tde-2020-0016 PMID: 32157960
  41. Gigliobianco, M.; Casadidio, C.; Censi, R.; Di Martino, P. Nanocrystals of poorly soluble drugs: Drug bioavailability and physicochemical stability. Pharmaceutics, 2018, 10(3), 134. doi: 10.3390/pharmaceutics10030134 PMID: 30134537
  42. Hancock, B.C.; Carlson, G.T.; Ladipo, D.D.; Langdon, B.A.; Mullarney, M.P. Comparison of the mechanical properties of the crystalline and amorphous forms of a drug substance. Int. J. Pharm., 2002, 241(1), 73-85. doi: 10.1016/S0378-5173(02)00133-3 PMID: 12086723
  43. Chogale, M.; Ghodake, V.; Patravale, V. Performance parameters and characterizations of nanocrystals: A brief review. Pharmaceutics, 2016, 8(3), 26. doi: 10.3390/pharmaceutics8030026 PMID: 27589788
  44. Lee, J.; Lee, S.J.; Choi, J.Y.; Yoo, J.Y.; Ahn, C.H. Amphiphilic amino acid copolymers as stabilizers for the preparation of nanocrystal dispersion. Eur. J. Pharm. Sci., 2005, 24(5), 441-449. doi: 10.1016/j.ejps.2004.12.010 PMID: 15784334
  45. Kipp, J. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm., 2004, 284(1-2), 109-122. doi: 10.1016/j.ijpharm.2004.07.019 PMID: 15454302
  46. Sawant, K.K.; Patel, M.H.; Patel, K. Cefdinir nanosuspension for improved oral bioavailability by media milling technique: formulation, characterization and in vitro–in vivo evaluations. Drug Dev. Ind. Pharm., 2016, 42(5), 758-768. doi: 10.3109/03639045.2015.1104344 PMID: 26548349
  47. Drews, T.O.; Tsapatsis, M. Model of the evolution of nanoparticles to crystals via an aggregative growth mechanism. Microporous Mesoporous Mater., 2007, 101(1-2), 97-107. doi: 10.1016/j.micromeso.2006.10.021
  48. Jahangir, M.A.; Imam, S.S.; Muheem, A. Nanocrystals: Characterization overview, applications in drug delivery, and their toxicity concerns. J. Pharm. Innov., 2022, 17(1), 237-248. doi: 10.1007/s12247-020-09499-1
  49. Khizar, S.; Alrushaid, N.; Alam Khan, F. Nanocarriers based novel and effective drug delivery system. Int. J. Pharm., 2023, 632, 122570. doi: 10.1016/j.ijpharm.2022.122570 PMID: 36587775
  50. Liu, Y.; Shuai, S.; Huang, G.; Chen, Y.; Shen, B.; Yue, P. Nanocrystals based mucosal delivery system: Research advances. Drug Dev. Ind. Pharm., 2021, 47(11), 1700-1712. doi: 10.1080/03639045.2022.2053985 PMID: 35287534
  51. Armstrong, A.W.; Read, C. Pathophysiology, clinical presentation, and treatment of psoriasis. JAMA, 2020, 323(19), 1945-1960. doi: 10.1001/jama.2020.4006 PMID: 32427307
  52. Torsekar, R.; Gautam, M. Topical therapies in psoriasis. Indian Dermatol. Online J., 2017, 8(4), 235-245. doi: 10.4103/2229-5178.209622 PMID: 28761838
  53. Shahine, Y.; El-Aal, S.A.A.; Reda, A.M. Diosmin nanocrystal gel alleviates imiquimod-induced psoriasis in rats via modulating TLR7,8/NF-κB/micro RNA-31, AKT/mTOR/P70S6K milieu, and Tregs/Th17 balance. Inflammopharmacology, 2023, 31(3), 1341-1359. doi: 10.1007/s10787-023-01198-w PMID: 37010718
  54. Li, L.; Liu, C.; Fu, J. CD44 targeted indirubin nanocrystal-loaded hyaluronic acid hydrogel for the treatment of psoriasis. Int. J. Biol. Macromol., 2023, 243, 125239. doi: 10.1016/j.ijbiomac.2023.125239 PMID: 37295696
  55. Men, Z.; Su, T.; Tang, Z.; Liang, J.; Shen, T. Tacrolimus nanocrystals microneedle patch for plaque psoriasis. Int. J. Pharm., 2022, 627, 122207. doi: 10.1016/j.ijpharm.2022.122207 PMID: 36122614
  56. Tekko, I.A.; Permana, A.D.; Vora, L.; Hatahet, T.; McCarthy, H.O.; Donnelly, R.F. Localised and sustained intradermal delivery of methotrexate using nanocrystal-loaded microneedle arrays: Potential for enhanced treatment of psoriasis. Eur. J. Pharm. Sci., 2020, 152, 105469. doi: 10.1016/j.ejps.2020.105469 PMID: 32679177
  57. Gowda, B.H.J.; Mohanto, S.; Singh, A. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art. Mater. Today Chem., 2023, 27, 101319. doi: 10.1016/j.mtchem.2022.101319
  58. Rahman, M.A.; Abul Barkat, H.; Harwansh, R.K.; Deshmukh, R. Carbon-based nanomaterials: Carbon nanotubes, graphene, and fullerenes for the control of burn infections and wound healing. Curr. Pharm. Biotechnol., 2022, 23(12), 1483-1496. doi: 10.2174/1389201023666220309152340 PMID: 35264085
  59. Wang, W.; Lu, K.; Yu, C.; Huang, Q.; Du, Y.Z. Nano-drug delivery systems in wound treatment and skin regeneration. J. Nanobiotechnology, 2019, 17(1), 82. doi: 10.1186/s12951-019-0514-y PMID: 31291960
  60. Kotian, V.; Koland, M.; Mutalik, S. Nanocrystal-based topical gels for improving wound healing efficacy of curcumin. Crystals, 2022, 12(11), 1565. doi: 10.3390/cryst12111565
  61. Afrin, S.; Shahruzzaman, M.; Haque, P. Advanced CNC/PEG/PDMAA Semi-IPN hydrogel for drug delivery management in wound healing. Gels, 2022, 8(6), 340. doi: 10.3390/gels8060340 PMID: 35735684
  62. Singh, S.K.; Dwivedi, S.D.; Yadav, K. Novel biotherapeutics targeting biomolecular and cellular approaches in diabetic wound healing. Biomedicines, 2023, 11(2), 613. doi: 10.3390/biomedicines11020613 PMID: 36831151
  63. Hu, Y.; Xiong, Y.; Tao, R. Advances and perspective on animal models and hydrogel biomaterials for diabetic wound healing. Biomater. Transl., 2022, 3(3), 188-200. PMID: 36654776
  64. Lin, H. BoLatai A, Wu N. Application progress of nano silver dressing in the treatment of diabetic foot. Diabetes Metab. Syndr. Obes., 2021, 14, 4145-4154. doi: 10.2147/DMSO.S330322 PMID: 34621128
  65. Tong, WY; bin Abdullah, AYK; binti Rozman, NAS Antimicrobial wound dressing film utilizing cellulose nanocrystal as drug delivery system for curcumin. Cellulose, 2018, 25(1), 631-638. doi: 10.1007/s10570-017-1562-9
  66. Atia, N.M.; Hazzah, H.A.; Gaafar, P.M.E.; Abdallah, O.Y. Diosmin nanocrystal–loaded wafers for treatment of diabetic ulcer: In vitro and in vivo evaluation. J. Pharm. Sci., 2019, 108(5), 1857-1871. doi: 10.1016/j.xphs.2018.12.019 PMID: 30599171
  67. Tomić, I.; Miočić, S.; Pepić, I.; Šimić, D.; Filipović-Grčić, J. Efficacy and safety of azelaic acid nanocrystal-loaded in situ hydrogel in the treatment of acne vulgaris. Pharmaceutics, 2021, 13(4), 567. doi: 10.3390/pharmaceutics13040567 PMID: 33923739
  68. Tang, X.; Liu, Y.; Yuan, H.; Gao, R. Development of a self-assembled hydrogels based on carboxymethyl chitosan and oxidized hyaluronic acid containing tanshinone extract nanocrystals for enhanced dissolution and acne treatment. Pharmaceuticals, 2022, 15(12), 1534. doi: 10.3390/ph15121534 PMID: 36558985
  69. Karakucuk, A.; Tort, S. Preparation, characterization and antimicrobial activity evaluation of electrospun PCL nanofiber composites of resveratrol nanocrystals. Pharm. Dev. Technol., 2020, 25(10), 1216-1225. doi: 10.1080/10837450.2020.1805761 PMID: 32744472
  70. Naik, P.P.; Desai, M.B. Basal cell carcinoma: A narrative review on contemporary diagnosis and management. Oncol. Ther., 2022, 10(2), 317-335. doi: 10.1007/s40487-022-00201-8 PMID: 35729457
  71. Soni, N.; Jyoti, K.; Jain, U.K.; Katyal, A.; Chandra, R.; Madan, J. Noscapinoids bearing silver nanocrystals augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1, mouse melanoma skin cancer cells. Biomed. Pharmacother., 2017, 90, 906-913. doi: 10.1016/j.biopha.2017.04.042 PMID: 28441716
  72. Majumdar, A; Dubey, N; Nitin, D Dermal delivery of docetaxel loaded nano liquid crystals for the treatment of skin cancer. Int. J. Appl. Pharm., 2019, 188-1193.
  73. Santos, A.C.; Morais, F.; Simões, A. Nanotechnology for the development of new cosmetic formulations. Expert Opin. Drug Deliv., 2019, 16(4), 313-330. doi: 10.1080/17425247.2019.1585426 PMID: 30793641
  74. Assem, M.; Khowessah, O.M.; Ghorab, D. Nano-crystallization as a tool for the enhancement of beclomethasone dipropionate dermal deposition: Formulation, in vitro characterization and ex vivo study. J. Drug Deliv. Sci. Technol., 2019, 54, 101318. doi: 10.1016/j.jddst.2019.101318
  75. Esposito, S.; Noviello, S.; Leone, S. Epidemiology and microbiology of skin and soft tissue infections. Curr. Opin. Infect. Dis., 2016, 29(2), 109-115. doi: 10.1097/QCO.0000000000000239 PMID: 26779772
  76. Peghin, M.; Ruiz-Camps, I. Recent concepts in fungal involvement in skin and soft tissue infections. Curr. Opin. Infect. Dis., 2022, 35(2), 103-111. doi: 10.1097/QCO.0000000000000806 PMID: 34861654
  77. Yu, Y.Q.; Yang, X.; Wu, X.F.; Fan, Y.B. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications. Front. Bioeng. Biotechnol., 2021, 9, 646554. doi: 10.3389/fbioe.2021.646554 PMID: 33855015
  78. Pyo, S.M.; Hespeler, D.; Keck, C.M.; Müller, R.H. Dermal miconazole nitrate nanocrystals-formulation development, increased antifungal efficacy & skin penetration. Int. J. Pharm., 2017, 531(1), 350-359. doi: 10.1016/j.ijpharm.2017.08.108 PMID: 28855137
  79. Kumar, M.; Shanthi, N.; Mahato, A.K.; Soni, S.; Rajnikanth, P.S. Preparation of luliconazole nanocrystals loaded hydrogel for improvement of dissolution and antifungal activity. Heliyon, 2019, 5(5), e01688. doi: 10.1016/j.heliyon.2019.e01688 PMID: 31193099
  80. Permana, A.D.; Paredes, A.J.; Volpe-Zanutto, F.; Anjani, Q.K.; Utomo, E.; Donnelly, R.F. Dissolving microneedle-mediated dermal delivery of itraconazole nanocrystals for improved treatment of cutaneous candidiasis. Eur. J. Pharm. Biopharm., 2020, 154, 50-61. doi: 10.1016/j.ejpb.2020.06.025 PMID: 32649991
  81. Harwansh, R.K.; Deshmukh, R. Recent insight into UV-induced oxidative stress and role of herbal bioactives in the management of skin aging. Curr. Pharm. Biotechnol., 2023, 25(1), 14-41. PMID: 37102487
  82. Thomas, D.R.; Burkemper, N.M. Aging skin and wound healing. Clin. Geriatr. Med., 2013, 29(2), xi-x. doi: 10.1016/j.cger.2013.02.001 PMID: 23571044
  83. Sharma, A.; Kuhad, A.; Bhandari, R. Novel nanotechnological approaches for treatment of skin-aging. J. Tissue Viability, 2022, 31(3), 374-386. doi: 10.1016/j.jtv.2022.04.010 PMID: 35550314
  84. Corrêa, R.C.G.; Peralta, R.M.; Haminiuk, C.W.I.; Maciel, G.M.; Bracht, A.; Ferreira, I.C.F.R. New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges. Crit. Rev. Food Sci. Nutr., 2018, 58(6), 942-957. doi: 10.1080/10408398.2016.1233860 PMID: 27623718
  85. Pyo, S.M.; Meinke, M.; Keck, C.; Müller, R. Rutin—increased antioxidant activity and skin penetration by nanocrystal technology (smartCrystals). Cosmetics, 2016, 3(1), 9.
  86. Hatahet, T.; Morille, M.; Hommoss, A.; Dorandeu, C.; Müller, R.H.; Bégu, S. Dermal quercetin smartCrystals®: Formulation development, antioxidant activity and cellular safety. Eur. J. Pharm. Biopharm., 2016, 102, 51-63. doi: 10.1016/j.ejpb.2016.03.004 PMID: 26948977
  87. Pérez-Bernal, A.; Muñoz-Pérez, M.A.; Camacho, F. Management of facial hyperpigmentation. Am. J. Clin. Dermatol., 2000, 1(5), 261-268. doi: 10.2165/00128071-200001050-00001 PMID: 11702317
  88. Desai, S.R. Hyperpigmentation therapy: a review. J. Clin. Aesthet. Dermatol., 2014, 7(8), 13-17. PMID: 25161755
  89. Taheri, A.; Mohammadi, M. The use of cellulose nanocrystals for potential application in topical delivery of hydroquinone. Chem. Biol. Drug Des., 2015, 86(1), 102-106. doi: 10.1111/cbdd.12466 PMID: 25352376
  90. Guo, R.; Lan, Y.; Xue, W. Collagen-cellulose nanocrystal scaffolds containing curcumin-loaded microspheres on infected full-thickness burns repair. J. Tissue Eng. Regen. Med., 2017, 11(12), 3544-3555. doi: 10.1002/term.2272 PMID: 28326684
  91. Bajpai, SK; Ahuja, S; Chand, N; Bajpai, M Nano cellulose dispersed chitosan film with Ag NPs/Curcumin: An in vivo study on Albino rats for wound dressing. Int. J. Biol. Macromol., 2017, 104(Pt A), 1012-9. doi: 10.1016/j.ijbiomac.2017.06.096 PMID: 28666832
  92. Liu, X.; Yang, K.; Chang, M.; Wang, X.; Ren, J. Fabrication of cellulose nanocrystal reinforced nanocomposite hydrogel with self-healing properties. Carbohydr. Polym., 2020, 240, 116289. doi: 10.1016/j.carbpol.2020.116289 PMID: 32475570
  93. Permana, A.D.; Utami, R.N.; Layadi, P. Thermosensitive and mucoadhesive in situ ocular gel for effective local delivery and antifungal activity of itraconazole nanocrystal in the treatment of fungal keratitis. Int. J. Pharm., 2021, 602, 120623. doi: 10.1016/j.ijpharm.2021.120623 PMID: 33892058
  94. Terea, H.; Selloum, D.; Rebiai, A.; Bouafia, A.; Ben, M.O. Preparation and characterization of cellulose/ZnO nanoparticles extracted from peanut shells: effects on antibacterial and antifungal activities; Biomass Convers. Biorefinery, 2023.
  95. Parmar, P.K.; Sharma, N.; Wasil Kabeer, S.; Rohit, A.; Bansal, A.K. Nanocrystal-based gel of apremilast ameliorates imiquimod-induced psoriasis by suppressing inflammatory responses. Int. J. Pharm., 2022, 622, 121873. doi: 10.1016/j.ijpharm.2022.121873 PMID: 35640806
  96. Kumar, A.; Valamla, B.; Thakor, P.; Chary, P.S.; Rajana, N.; Mehra, N.K. Development and evaluation of nanocrystals loaded hydrogel for topical application. J. Drug Deliv. Sci. Technol., 2022, 74, 103503. doi: 10.1016/j.jddst.2022.103503
  97. Parmar, P.K.; Bansal, A.K. Novel nanocrystal-based formulations of apremilast for improved topical delivery. Drug Deliv. Transl. Res., 2021, 11(3), 966-983. doi: 10.1007/s13346-020-00809-1 PMID: 32588281
  98. Tomić, I.; Juretić, M.; Jug, M.; Pepić, I.; Cetina Čižmek, B.; Filipović-Grčić, J. Preparation of in situ hydrogels loaded with azelaic acid nanocrystals and their dermal application performance study. Int. J. Pharm., 2019, 563, 249-258. doi: 10.1016/j.ijpharm.2019.04.016 PMID: 30965120
  99. So, B.R.; Yeo, H.J.; Lee, J.J.; Jung, Y.H.; Jung, S.K. Cellulose nanocrystal preparation from Gelidium amansii and analysis of its anti-inflammatory effect on the skin in vitro and in vivo. Carbohydr. Polym., 2021, 254, 117315. doi: 10.1016/j.carbpol.2020.117315 PMID: 33357878
  100. Mitri, K.; Shegokar, R.; Gohla, S.; Anselmi, C.; Müller, R.H. Lutein nanocrystals as antioxidant formulation for oral and dermal delivery. Int. J. Pharm., 2011, 420(1), 141-146. doi: 10.1016/j.ijpharm.2011.08.026 PMID: 21884768
  101. Zhai, X.; Lademann, J.; Keck, C.M.; Müller, R.H. Nanocrystals of medium soluble actives—Novel concept for improved dermal delivery and production strategy. Int. J. Pharm., 2014, 470(1-2), 141-150. doi: 10.1016/j.ijpharm.2014.04.060 PMID: 24813782
  102. Abdelghany, S.; Tekko, I.A.; Vora, L.; Larrañeta, E.; Permana, A.D.; Donnelly, R.F. Nanosuspension-based dissolving microneedle arrays for intradermal delivery of curcumin. Pharmaceutics, 2019, 11(7), 308. doi: 10.3390/pharmaceutics11070308 PMID: 31269648
  103. Pireddu, R.; Caddeo, C.; Valenti, D. Diclofenac acid nanocrystals as an effective strategy to reduce in vivo skin inflammation by improving dermal drug bioavailability. Colloids Surf. B Biointerfaces, 2016, 143, 64-70. doi: 10.1016/j.colsurfb.2016.03.026 PMID: 26998867
  104. Ghosh, I.; Michniak-Kohn, B. Influence of critical parameters of nanosuspension formulation on the permeability of a poorly soluble drug through the skin-a case study. AAPS PharmSciTech, 2013, 14(3), 1108-1117. doi: 10.1208/s12249-013-9995-4 PMID: 23824877
  105. Oktay, A.N.; Ilbasmis-Tamer, S.; Han, S.; Uludag, O.; Celebi, N. Preparation and in vitro/in vivo evaluation of flurbiprofen nanosuspension-based gel for dermal application. Eur. J. Pharm. Sci., 2020, 155, 105548. doi: 10.1016/j.ejps.2020.105548 PMID: 32937211
  106. Mortenson, M; Pierce, D K; Blythe, D Novel gold-based nanocrystal for medical treatment, and electrochemical production method for the gold-based nanocrystal. JP6703052B2, 2023.
  107. David, A; Bryce, A R D; Anthony, L Novel gold-based nanocrystals. AU2021200463B2, 2022.
  108. Pan, Junyou Include the device of nanocrystal. CN106887522B, 2018.
  109. Lucy, B. Modified wound dressings. AU2017244116B2, 2023.
  110. Thomas, C; Shikha, P B; Tian, H; Thomas, B; Leland, R V T Preparations of hydrophobic therapeutic agents, methods of manufacture and use thereof. US20190169224A1, 2021.
  111. Ashijett, S S; Bhapatgotami, M S; Gokalesai, A S Antimycotic and antibacterium prodrug based on conjugate. CN103857440B, 2018.
  112. Winston, Z O N G; Pawel, W N; Ben, C; Askew, J K Therapeutic compounds and uses thereof. US10966987B2, 2021.
  113. Pan, J. Nanocrystals in devices. JP5882318B2, 2016.
  114. Neeta, G. Topical pharmaceutical composition comprising nanonized silver sulfadiazine. US9433580B2, 2016.
  115. Shrinivas, M P; Geena, M Topical pharmaceutical compositions comprising minoxidil. WO2014122436A1, 2014.
  116. Karsten, P. Calcipotriol monohydrate nanocrystals. WO2011076208A2, 2012.
  117. Keith, J; Robert, L; Mei, Y; Holly, M; Roland, F Delivery of drug nanoparticles and methods of use thereof. WO2017049083A3, 2017.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers