Pre-clinical Evidence-based Neuroprotective Potential of Naringin against Alzheimers Disease-like Pathology: A Comprehensive Review
- Authors: Singh A.1, Kumar Singh N.1
-
Affiliations:
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University
- Issue: Vol 25, No 9 (2024)
- Pages: 1112-1123
- Section: Biotechnology
- URL: https://rjeid.com/1389-2010/article/view/644953
- DOI: https://doi.org/10.2174/1389201024666230801095526
- ID: 644953
Cite item
Full Text
Abstract
Neurodegenerative disorders (NDs) are a group of progressive, chronic, and disabling disorders that are highly prevalent and the incidence is on a constant rise globally. Alzheimers disease (AD), one of the most common neurodegenerative disorders is hallmarked by cognitive impairment, amyloid-β (Aβ) deposition, hyperphosphorylation of tau protein, cholinergic dysfunction, mitochondrial toxicity, and neurodegeneration. Available therapeutic agents only provide symptomatic relief and their use are limited due to serious side effects. Recent research has recognized flavonoids as potential multi-target biomolecules that can reduce the pathogenesis of AD. Naringin, a natural citrus flavonoid has been traditionally used to treat various NDs including AD, and has gained special attention because exhibits a neuroprotective effect by affecting numerous signaling pathways with minimum adverse effects. Naringin reduces deposition of Aβ, hyperphosphorylation of tau protein, cholinergic dysfunction, oxidative stress burden, mitochondrial toxicity, the activity of glutamate receptors, and apoptosis of the neuronal cells. Additionally, it reduces the expression of phosphorylated-P38/P38 and the NF-κB signaling pathway, showing that a wide range of molecular targets is involved in naringin's neuroprotective action. The present study describes the possible pharmacological targets, signaling pathways, and molecular mechanisms of naringin involved in neuroprotection against AD-like pathology. Based on the above pre-clinical reports it can be concluded that naringin could be an alternative therapeutic agent for the management of AD-like manifestation. Thus, there is a strong recommendation to perform more preclinical and clinical studies to develop naringin as a novel molecule that could be a multi-target drug to counteract AD.
About the authors
Ashini Singh
Division of Pharmacology, Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
Niraj Kumar Singh
Division of Pharmacology, Institute of Pharmaceutical Research, GLA University
Author for correspondence.
Email: info@benthamscience.net
References
- Barthélemy, N.R.; Li, Y.; Joseph-Mathurin, N.; Gordon, B.A.; Hassenstab, J.; Benzinger, T.L.S.; Buckles, V.; Fagan, A.M.; Perrin, R.J.; Goate, A.M.; Morris, J.C.; Karch, C.M.; Xiong, C.; Allegri, R.; Mendez, P.C.; Berman, S.B.; Ikeuchi, T.; Mori, H.; Shimada, H.; Shoji, M.; Suzuki, K.; Noble, J.; Farlow, M.; Chhatwal, J.; Graff-Radford, N.R.; Salloway, S.; Schofield, P.R.; Masters, C.L.; Martins, R.N.; OConnor, A.; Fox, N.C.; Levin, J.; Jucker, M.; Gabelle, A.; Lehmann, S.; Sato, C.; Bateman, R.J.; McDade, E. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimers disease. Nat. Med., 2020, 26(3), 398-407. doi: 10.1038/s41591-020-0781-z PMID: 32161412
- Goyal, A.; Verma, A.; Agrawal, N. Dietary phytoestrogens: Neuroprotective role in Parkinsons disease. Curr. Neurovasc. Res., 2021, 18(2), 254-267. doi: 10.2174/1567202618666210604121233 PMID: 34086550
- Singh, N.K.; Garabadu, D. Quercetin exhibits α7nAChR/Nrf2/HO-1-mediated neuroprotection against STZ-induced mitochondrial toxicity and cognitive impairments in experimental rodents. Neurotox. Res., 2021, 39(6), 1859-1879. doi: 10.1007/s12640-021-00410-5 PMID: 34554409
- Ballatore, C.; Lee, V.M.Y.; Trojanowski, J.Q. Tau-mediated neurodegeneration in Alzheimers disease and related disorders. Nat. Rev. Neurosci., 2007, 8(9), 663-672. doi: 10.1038/nrn2194 PMID: 17684513
- Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimers disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115. doi: 10.2174/1570159X13666150716165726 PMID: 26813123
- Medina, M. Recent developments in tau-based therapeutics for neurodegenerative diseases. Recent Patents CNS Drug Discov., 2011, 6(1), 20-30. doi: 10.2174/157488911794079091 PMID: 21118095
- Sharma, A.; Bhardwaj, P.; Arya, S.K. Naringin: A potential natural product in the field of biomedical applications. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100068. doi: 10.1016/j.carpta.2021.100068
- Guzior, N.; Wieckowska, A.; Panek, D.; Malawska, B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimers disease. Curr. Med. Chem., 2015, 22(3), 373-404. doi: 10.2174/0929867321666141106122628 PMID: 25386820
- Yang, Z.; Kuboyama, T.; Tohda, C. A systematic strategy for discovering a therapeutic drug for Alzheimers disease and its target molecule. Front. Pharmacol., 2017, 8, 340. doi: 10.3389/fphar.2017.00340 PMID: 28674493
- Yang, W.; Zhou, K.; Zhou, Y.; An, Y.; Hu, T.; Lu, J.; Huang, S.; Pei, G. Naringin dihydrochalcone ameliorates cognitive deficits and neuropathology in APP/PS1 transgenic mice. Front. Aging Neurosci., 2018, 10, 169. doi: 10.3389/fnagi.2018.00169 PMID: 29922152
- Kuşi, M.; Becer, E.; Vatansever, H.S.; Yücecan, S. Neuroprotective effects of hesperidin and naringin in SK-N-AS cell as an in vitro model for Alzheimer's Disease. J. Am. Nutr. Assoc., 2022, 1-9. doi: 10.1080/07315724.2022.2062488
- Qi, Z.; Xu, Y.; Liang, Z.; Li, S.; Wang, J.; Wei, Y.; Dong, B. Naringin ameliorates cognitive deficits via oxidative stress, proinflammatory factors and the PPARγ signaling pathway in a type 2 diabetic rat model. Mol. Med. Rep., 2015, 12(5), 7093-7101. doi: 10.3892/mmr.2015.4232 PMID: 26300349
- Han, Y.; Su, J.; Liu, X.; Zhao, Y.; Wang, C.; Li, X. Naringin alleviates early brain injury after experimental subarachnoid hemorrhage by reducing oxidative stress and inhibiting apoptosis. Brain Res. Bull., 2017, 133, 42-50. doi: 10.1016/j.brainresbull.2016.12.008 PMID: 28011192
- Meng, X.; Fu, M.; Wang, S.; Chen, W.; Wang, J.; Zhang, N. Naringin ameliorates memory deficits and exerts neuroprotective effects in a mouse model of Alzheimers disease by regulating multiple metabolic pathways. Mol. Med. Rep., 2021, 23(5), 332. doi: 10.3892/mmr.2021.11971 PMID: 33760152
- Ross, J.A.; Kasum, C.M. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr., 2002, 22(1), 19-34. doi: 10.1146/annurev.nutr.22.111401.144957 PMID: 12055336
- Chen, R.; Qi, Q.L.; Wang, M.T.; Li, Q.Y. Therapeutic potential of naringin: An overview. Pharm. Biol., 2016, 54(12), 3203-3210. doi: 10.1080/13880209.2016.1216131 PMID: 27564838
- Xu, Z.L.; Xu, M.Y.; Wang, H.T.; Xu, Q.X.; Liu, M.Y.; Jia, C.P.; Geng, F.; Zhang, N. Pharmacokinetics of eight flavonoids in rats assayed by UPLC-MS/MS after oral administration of Drynariae rhizoma extract. J. Anal. Methods Chem., 2018, 2018, 1-11. doi: 10.1155/2018/4789196 PMID: 30662789
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int., 2020, 132, 109114. doi: 10.1016/j.foodres.2020.109114 PMID: 32331689
- Ho, P.C.; Saville, D.J.; Coville, P.F.; Wanwimolruk, S. Content of CYP3A4 inhibitors, naringin, naringenin and bergapten in grapefruit and grapefruit juice products. Pharm. Acta Helv., 2000, 74(4), 379-385. doi: 10.1016/S0031-6865(99)00062-X PMID: 10812937
- Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid composition of Citrus juices. Molecules, 2007, 12(8), 1641-1673. doi: 10.3390/12081641 PMID: 17960080
- Vallverdú-Queralt, A.; Odriozola-Serrano, I.; Oms-Oliu, G.; Lamuela-Raventós, R.M.; Elez-Martínez, P.; Martín-Belloso, O. Changes in the polyphenol profile of tomato juices processed by pulsed electric fields. J. Agric. Food Chem., 2012, 60(38), 9667-9672. doi: 10.1021/jf302791k PMID: 22957841
- Sánchez-Rabaneda, F.; Jáuregui, O.; Casals, I.; Andrés-Lacueva, C.; Izquierdo-Pulido, M.; Lamuela-Raventós, R.M. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J. Mass Spectrom., 2003, 38(1), 35-42. doi: 10.1002/jms.395 PMID: 12526004
- Alam, F.; Badruddeen, ; Kharya, A.K.; Juber, A.; Khan, M.I. Naringin: Sources, chemistry, toxicity, pharmacokinetics, pharmacological evidences, molecular docking and cell line study. Res. J. Pharm. Technol., 2020, 13(5), 2507. doi: 10.5958/0974-360X.2020.00447.3
- Chen, Z.; Zheng, S.; Li, L.; Jiang, H. Metabolism of flavonoids in human: a comprehensive review. Curr. Drug Metab., 2014, 15(1), 48-61. doi: 10.2174/138920021501140218125020 PMID: 24588554
- Chen, T.; Su, W.; Yan, Z.; Wu, H.; Zeng, X.; Peng, W.; Gan, L.; Zhang, Y.; Yao, H. Identification of naringin metabolites mediated by human intestinal microbes with stable isotope-labeling method and UFLC-Q-TOF-MS/MS. J. Pharm. Biomed. Anal., 2018, 161, 262-272. doi: 10.1016/j.jpba.2018.08.039 PMID: 30172881
- Zeng, X.; Su, W.; Zheng, Y.; He, Y.; He, Y.; Rao, H.; Peng, W.; Yao, H. Pharmacokinetics, tissue distribution, metabolism, and excretion of naringin in aged rats. Front. Pharmacol., 2019, 10, 34. doi: 10.3389/fphar.2019.00034 PMID: 30761003
- Zou, W.; Yang, C.; Liu, M.; Su, W. Tissue distribution study of naringin in rats by liquid chromatography-tandem mass spectrometry. Arzneimittelforschung, 2012, 62(4), 181-186. doi: 10.1055/s-0031-1299746 PMID: 22270844
- Tsai, Y.J.; Tsai, T.H. Mesenteric lymphatic absorption and the pharmacokinetics of naringin and naringenin in the rat. J. Agric. Food Chem., 2012, 60(51), 12435-12442. doi: 10.1021/jf301962g PMID: 23210543
- Liu, M.; Zou, W.; Yang, C.; Peng, W.; Su, W. Metabolism and excretion studies of oral administered naringin, a putative antitussive, in rats and dogs. Biopharm. Drug Dispos., 2012, 33(3), 123-134. doi: 10.1002/bdd.1775 PMID: 22374702
- Surampalli, G.; K Nanjwade, B.; Patil, P.A. Corroboration of naringin effects on the intestinal absorption and pharmacokinetic behavior of candesartan cilexetil solid dispersions using in-situ rat models. Drug Dev. Ind. Pharm., 2015, 41(7), 1057-1065. doi: 10.3109/03639045.2014.925918 PMID: 24918161
- Li, P.; Wang, S.; Guan, X.; Cen, X.; Hu, C.; Peng, W.; Wang, Y.; Su, W. Six months chronic toxicological evaluation of naringin in SpragueDawley rats. Food Chem. Toxicol., 2014, 66, 65-75. doi: 10.1016/j.fct.2014.01.023 PMID: 24462649
- Gao, Y.; Li, C.; Yin, J.; Shen, J.; Wang, H.; Wu, Y.; Jin, H. Fucoidan, a sulfated polysaccharide from brown algae, improves cognitive impairment induced by infusion of Aβ peptide in rats. Environ. Toxicol. Pharmacol., 2012, 33(2), 304-311. doi: 10.1016/j.etap.2011.12.022 PMID: 22301160
- Rajmohan, R.; Reddy, P.H. Amyloid-beta and phosphorylated Tau accumulations cause abnormalities at synapses of Alzheimers disease neurons. J. Alzheimers Dis., 2017, 57(4), 975-999. doi: 10.3233/JAD-160612 PMID: 27567878
- Kimura, A.; Hata, S.; Suzuki, T. Alternative selection of β-Site APP-Cleaving Enzyme 1 (BACE1) cleavage sites in amyloid β-Protein Precursor (APP) harboring protective and pathogenic mutations within the Aβ sequence. J. Biol. Chem., 2016, 291(46), 24041-24053. doi: 10.1074/jbc.M116.744722 PMID: 27687728
- Holtzman, D.M.; Morris, J.C.; Goate, A.M. Alzheimers disease: the challenge of the second century. Sci. Transl. Med., 2011, 3(77), 77sr1. doi: 10.1126/scitranslmed.3002369 PMID: 21471435
- Jahanshahi, M.; Khalili, M.; Margedari, A. Naringin chelates excessive iron and prevents the formation of amyloid-beta plaques in the hippocampus of iron-overloaded mice. Front. Pharmacol., 2021, 12, 651156. doi: 10.3389/fphar.2021.651156 PMID: 34276359
- Wang, D.; Gao, K.; Li, X.; Shen, X.; Zhang, X.; Ma, C.; Qin, C.; Zhang, L. Long-term naringin consumption reverses a glucose uptake defect and improves cognitive deficits in a mouse model of Alzheimers disease. Pharmacol. Biochem. Behav., 2012, 102(1), 13-20. doi: 10.1016/j.pbb.2012.03.013 PMID: 22741174
- Kaur, G.; Prakash, A. Involvement of the nitric oxide signaling in modulation of naringin against intranasal manganese and intracerbroventricular β-amyloid induced neurotoxicity in rats. J. Nutr. Biochem., 2020, 76, 108255. doi: 10.1016/j.jnutbio.2019.108255 PMID: 31759198
- Varshney, V.; Garabadu, D. Naringin exhibits mas receptormediated neuroprotection against amyloid betainduced cognitive deficits and mitochondrial toxicity in rat brain. Neurotox. Res., 2021, 39(4), 1023-1043. doi: 10.1007/s12640-021-00336-y PMID: 33534126
- Medeiros, R.; Baglietto-Vargas, D.; LaFerla, F.M. The role of tau in Alzheimers disease and related disorders. CNS Neurosci. Ther., 2011, 17(5), 514-524. doi: 10.1111/j.1755-5949.2010.00177.x PMID: 20553310
- Saito, T.; Oba, T.; Shimizu, S.; Asada, A.; Iijima, K.M.; Ando, K. Cdk5 increases MARK4 activity and augments pathological tau accumulation and toxicity through tau phosphorylation at Ser262. Hum. Mol. Genet., 2019, 28(18), 3062-3071. doi: 10.1093/hmg/ddz120 PMID: 31174206
- Sachdeva, A.K.; Chopra, K. Naringin mitigate okadaic acid-induced cognitive impairment in an experimental paradigm of Alzheimers disease. J. Funct. Foods, 2015, 19, 110-125. doi: 10.1016/j.jff.2015.08.024
- Hassan, H.M.; Elnagar, M.R.; Abdelrazik, E.; Mahdi, M.R.; Hamza, E.; Elattar, E.M.; ElNashar, E.M.; Alghamdi, M.A.; Al-Qahtani, Z.; Al-Khater, K.M.; Aldahhan, R.A.; ELdesoqui, M. Neuroprotective effect of naringin against cerebellar changes in Alzheimers disease through modulation of autophagy, oxidative stress and tau expression: An experimental study. Front. Neuroanat., 2022, 16, 1012422. doi: 10.3389/fnana.2022.1012422 PMID: 36312298
- Zambrano, P.; Suwalsky, M.; Jemiola-Rzeminska, M.; Strzalka, K.; Sepúlveda, B.; Gallardo, M.J.; Aguilar, L.F. The acetylcholinesterase (AChE) inhibitor and anti-Alzheimer drug donepezil interacts with human erythrocytes. Biochim. Biophys. Acta Biomembr., 2019, 1861(6), 1078-1085. doi: 10.1016/j.bbamem.2019.03.014 PMID: 30904408
- Oladapo, O.M.; Ben-Azu, B.; Ajayi, A.M.; Emokpae, O.; Eneni, A.E.O.; Omogbiya, I.A.; Iwalewa, E.O. Naringin confers protection against psychosocial defeat stress-induced neurobehavioral deficits in mice: Involvement of glutamic acid decarboxylase isoform-67, oxido-nitrergic stress, and neuroinflammatory mechanisms. J. Mol. Neurosci., 2021, 71(3), 431-445. doi: 10.1007/s12031-020-01664-y PMID: 32767187
- Kumar, A.; Prakash, A.; Dogra, S. Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by d-galactose in mice. Food Chem. Toxicol., 2010, 48(2), 626-632. doi: 10.1016/j.fct.2009.11.043 PMID: 19941926
- Prakash, A.; Shur, B.; Kumar, A. Naringin protects memory impairment and mitochondrial oxidative damage against aluminum-induced neurotoxicity in rats. Int. J. Neurosci., 2013, 123(9), 636-645. doi: 10.3109/00207454.2013.785542 PMID: 23510099
- Sachdeva, A.K.; Kuhad, A.; Chopra, K. Naringin ameliorates memory deficits in experimental paradigm of Alzheimers disease by attenuating mitochondrial dysfunction. Pharmacol. Biochem. Behav., 2014, 127, 101-110. doi: 10.1016/j.pbb.2014.11.002 PMID: 25449356
- Liu, M.Y.; Zeng, F.; Shen, Y.; Wang, Y.Y.; Zhang, N.; Geng, F. Bioguided isolation and structure identification of acetylcholinesterase enzyme inhibitors from drynariae rhizome. J. Anal. Methods Chem., 2020, 2020, 1-9. doi: 10.1155/2020/2971841 PMID: 32185082
- Kumar, A.; Dogra, S.; Prakash, A. Protective effect of naringin, a citrus flavonoid, against colchicine-induced cognitive dysfunction and oxidative damage in rats. J. Med. Food, 2010, 13(4), 976-984. doi: 10.1089/jmf.2009.1251 PMID: 20673063
- Wang, D.; Yan, J.; Chen, J.; Wu, W.; Zhu, X.; Wang, Y. Naringin improves neuronal insulin signaling, brain mitochondrial function, and cognitive function in high-fat diet-induced obese mice. Cell. Mol. Neurobiol., 2015, 35(7), 1061-1071. doi: 10.1007/s10571-015-0201-y PMID: 25939427
- Bharti, S.; Rani, N.; Krishnamurthy, B.; Arya, D. Preclinical evidence for the pharmacological actions of naringin: A review. Planta Med., 2014, 80(6), 437-451. doi: 10.1055/s-0034-1368351 PMID: 24710903
- Jeong, K.H.; Jung, U.J.; Kim, S.R. Naringin attenuates autophagic stress and neuroinflammation in kainic acid-treated hippocampus in vivo. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-9. doi: 10.1155/2015/354326 PMID: 26124853
- Maratha, S.R.; Mahadevan, N. Memory enhancing activity of naringin in unstressed and stressed mice: Possible cholinergic and nitriergic modulation. Neurochem. Res., 2012, 37(10), 2206-2212. doi: 10.1007/s11064-012-0844-8 PMID: 22821418
- Snow, W.M.; Albensi, B.C. Neuronal gene targets of NF-κB and their dysregulation in Alzheimers Disease. Front. Mol. Neurosci., 2016, 9, 118. doi: 10.3389/fnmol.2016.00118 PMID: 27881951
- Bronzuoli, M.R.; Iacomino, A.; Steardo, L.; Scuderi, C. Targeting neuroinflammation in Alzheimers disease. J. Inflamm. Res., 2016, 9, 199-208. doi: 10.2147/JIR.S86958 PMID: 27843334
- Wang, R.; Chen, S.; Liu, Y.; Diao, S.; Xue, Y.; You, X.; Park, E.A.; Liao, F.F. All-trans-retinoic acid reduces BACE1 expression under inflammatory conditions via modulation of nuclear factor κB (NFκB) signaling. J. Biol. Chem., 2015, 290(37), 22532-22542. doi: 10.1074/jbc.M115.662908 PMID: 26240147
- Wang, W.Y.; Tan, M.S.; Yu, J.T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimers disease. Ann. Transl. Med., 2015, 3(10), 136. doi: 10.3978/j.issn.2305-5839.2015.03.49 PMID: 26207229
- Jha, N.K.; Jha, S.K.; Kar, R.; Nand, P.; Swati, K.; Goswami, V.K. Nuclear factor kappa β as a therapeutic target for Alzheimers disease. J. Neurochem., 2019, 150(2), 113-137. doi: 10.1111/jnc.14687 PMID: 30802950
- Fan, S.; Xian, X.; Li, L.; Yao, X.; Hu, Y.; Zhang, M.; Li, W. Ceftriaxone improves cognitive function and upregulates GLT-1-related glutamate-glutamine cycle in APP/PS1 mice. J. Alzheimers Dis., 2018, 66(4), 1731-1743. doi: 10.3233/JAD-180708 PMID: 30452416
- Ashpole, N.M.; Hudmon, A. Excitotoxic neuroprotection and vulnerability with CaMKII inhibition. Mol. Cell. Neurosci., 2011, 46(4), 720-730. doi: 10.1016/j.mcn.2011.02.003 PMID: 21316454
- Caricasole, A.; Copani, A.; Caraci, F.; Aronica, E.; Rozemuller, A.J.; Caruso, A.; Storto, M.; Gaviraghi, G.; Terstappen, G.C.; Nicoletti, F. Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimers brain. J. Neurosci., 2004, 24(26), 6021-6027. doi: 10.1523/JNEUROSCI.1381-04.2004 PMID: 15229249
- Wang, D.M.; Yang, Y.J.; Zhang, L.; Zhang, X.; Guan, F.F.; Zhang, L.F. Naringin enhances CaMKII activity and improves long-term memory in a mouse model of Alzheimers Disease. Int. J. Mol. Sci., 2013, 14(3), 5576-5586. doi: 10.3390/ijms14035576 PMID: 23478434
- Long, J.; Chen, J.; Liao, Y.; Zhou, Y.; Liang, B.; Zhou, Y. Naringin provides neuroprotection in CCL2-induced cognition impairment by attenuating neuronal apoptosis in the hippocampus. Behav. Brain Funct., 2020, 16(1), 4. doi: 10.1186/s12993-020-00166-6 PMID: 32103758
- Ramakrishnan, A.; Vijayakumar, N.; Renuka, M. Naringin regulates glutamate-nitric oxide cGMP pathway in ammonium chloride induced neurotoxicity. Biomed. Pharmacother., 2016, 84, 1717-1726. doi: 10.1016/j.biopha.2016.10.080 PMID: 27836465
- Qin, H.; Roberts, K.L.; Niyongere, S.A.; Cong, Y.; Elson, C.O.; Benveniste, E.N. Molecular mechanism of lipopolysaccharide-induced SOCS-3 gene expression in macrophages and microglia. J. Immunol., 2007, 179(9), 5966-5976. doi: 10.4049/jimmunol.179.9.5966 PMID: 17947670
- Ahshin-Majd, S.; Zamani, S.; Kiamari, T.; Kiasalari, Z.; Baluchnejadmojarad, T.; Roghani, M. Carnosine ameliorates cognitive deficits in streptozotocin-induced diabetic rats: Possible involved mechanisms. Peptides, 2016, 86, 102-111. doi: 10.1016/j.peptides.2016.10.008 PMID: 27777064
- Tejera, D.; Heneka, M.T. Microglia in neurodegenerative disorders. Methods Mol. Biol., 2019, 2034, 57-67. doi: 10.1007/978-1-4939-9658-2_5 PMID: 31392677
- Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology, 2018, 154(2), 204-219. doi: 10.1111/imm.12922 PMID: 29513402
- Wang, H. Microglia heterogeneity in Alzheimers Disease: Insights from single-cell technologies. Front. Synaptic Neurosci., 2021, 13, 773590. doi: 10.3389/fnsyn.2021.773590 PMID: 35002670
- Li, L.; Liu, R.; He, J.; Li, J.; Guo, J.; Chen, Y.; Ji, K. Naringin regulates microglia BV-2 activation and inflammation via the JAK/STAT3 pathway. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-10. doi: 10.1155/2022/3492058 PMID: 35646153
- Vinayagam, M.M.; Sadiq, M.A. Flavonoid naringin inhibits microglial activation and exerts neuroprotection against deltamethrin induced neurotoxicity through Nrf2/ARE signaling in the cortex and hippocampus of rats. World J. Pharm. Sci, 2015, 3(12), 2410-2426.
- Wharton, W.; Gleason, C.E.; Lorenze, K.R.; Markgraf, T.S.; Ries, M.L.; Carlsson, C.M.; Asthana, S. Potential role of estrogen in the pathobiology and prevention of Alzheimers disease. Am. J. Transl. Res., 2009, 1(2), 131-147. PMID: 19956426
- Sahab-Negah, S.; Hajali, V.; Moradi, H.R.; Gorji, A. The Impact of estradiol on neurogenesis and functions in Alzheimers diseases. Cell. Mol. Neurobiol., 2020, 40(3), 283-299. doi: 10.1007/s10571-019-00733-0 PMID: 31502112
- Bagit, A.; Hayward, G.C.; MacPherson, R.E.K. Exercise and estrogen: common pathways in Alzheimers disease pathology. Am. J. Physiol. Endocrinol. Metab., 2021, 321(1), E164-E168. doi: 10.1152/ajpendo.00008.2021 PMID: 34056921
- Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H.Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; Holtzman, D.M.; Nathan, D.M. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat. Rev. Neurol., 2018, 14(3), 168-181. doi: 10.1038/nrneurol.2017.185 PMID: 29377010
- de la Monte, S.M.; Tong, M.; Daiello, L.A.; Ott, B.R. Early-stage Alzheimers disease is associated with simultaneous systemic and central nervous system dysregulation of insulin-linked metabolic pathways. J. Alzheimers Dis., 2019, 68(2), 657-668. doi: 10.3233/JAD-180906 PMID: 30775986
- Variya, B.C.; Bakrania, A.K.; Patel, S.S. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine, 2020, 73, 152906. doi: 10.1016/j.phymed.2019.152906 PMID: 31064680
- Feng, X.; Gao, X.; Jia, Y.; Zhang, H.; Pan, Q.; Yao, Z.; Yang, N.; Liu, J.; Xu, Y.; Wang, G.; Yang, X. PPAR- α agonist fenofibrate decreased serum irisin levels in type 2 diabetes patients with hypertriglyceridemia. PPAR Res., 2015, 2015, 1-8. doi: 10.1155/2015/924131 PMID: 26693220
- Liu, L.; Yan, T.; Jiang, L.; Hu, W.; Hu, M.; Wang, C.; Zhang, Q.; Long, Y.; Wang, J.; Li, Y.; Hu, M.; Hong, H. Pioglitazone ameliorates memory deficits in streptozotocin-induced diabetic mice by reducing brain β-amyloid through PPARγ activation. Acta Pharmacol. Sin., 2013, 34(4), 455-463. doi: 10.1038/aps.2013.11 PMID: 23524568
- Liu, X.; Liu, M.; Mo, Y.; Peng, H.; Gong, J.; Li, Z.; Chen, J.; Xie, J. Naringin ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Iran. J. Basic Med. Sci., 2016, 19(4), 417-422. PMID: 27279986
- Okuyama, S.; Nakashima, T.; Nakamura, K.; Shinoka, W.; Kotani, M.; Sawamoto, A.; Nakajima, M.; Furukawa, Y. Inhibitory effects of auraptene and naringin on astroglial activation, Tau hyperphosphorylation, and suppression of neurogenesis in the hippocampus of streptozotocin-induced hyperglycemic mice. Antioxidants, 2018, 7(8), 109. doi: 10.3390/antiox7080109 PMID: 30126250
- Goyal, A.; Verma, A.; Dubey, N.; Raghav, J.; Agrawal, A. Naringenin: A prospective therapeutic agent for Alzheimers and Parkinsons disease. J. Food Biochem., 2022, 46(12), e14415. doi: 10.1111/jfbc.14415 PMID: 36106706
- Luo, Y.L.; Zhang, C.C.; Li, P.B.; Nie, Y.C.; Wu, H.; Shen, J.G.; Su, W.W. Naringin attenuates enhanced cough, airway hyperresponsiveness and airway inflammation in a guinea pig model of chronic bronchitis induced by cigarette smoke. Int. Immunopharmacol., 2012, 13(3), 301-307. doi: 10.1016/j.intimp.2012.04.019 PMID: 22575871
- Habauzit, V.; Sacco, S.M.; Gil-Izquierdo, A.; Trzeciakiewicz, A.; Morand, C.; Barron, D.; Pinaud, S.; Offord, E.; Horcajada, M.N. Differential effects of two citrus flavanones on bone quality in senescent male rats in relation to their bioavailability and metabolism. Bone, 2011, 49(5), 1108-1116. doi: 10.1016/j.bone.2011.07.030 PMID: 21820093
- Liu, Y.; Wu, H.; Nie, Y.; Chen, J.; Su, W.; Li, P. Naringin attenuates acute lung injury in LPS-treated mice by inhibiting NF-κB pathway. Int. Immunopharmacol., 2011, 11(10), 1606-1612. doi: 10.1016/j.intimp.2011.05.022 PMID: 21640201
- Gopinath, K.; Sudhandiran, G. Naringin modulates oxidative stress and inflammation in 3-nitropropionic acid-induced neurodegeneration through the activation of nuclear factor-erythroid 2-related factor-2 signalling pathway. Neuroscience, 2012, 227, 134-143. doi: 10.1016/j.neuroscience.2012.07.060 PMID: 22871521
- Chen, F.; Zhang, N.; Ma, X.; Huang, T.; Shao, Y.; Wu, C.; Wang, Q. Naringin alleviates diabetic kidney disease through inhibiting oxidative stress and inflammatory reaction. PLoS One, 2015, 10(11), e0143868. doi: 10.1371/journal.pone.0143868 PMID: 26619044
- Golechha, M.; Sarangal, V.; Bhatia, J.; Chaudhry, U.; Saluja, D.; Arya, D.S. Naringin ameliorates pentylenetetrazol-induced seizures and associated oxidative stress, inflammation, and cognitive impairment in rats: Possible mechanisms of neuroprotection. Epilepsy Behav., 2014, 41, 98-102. doi: 10.1016/j.yebeh.2014.09.058 PMID: 25461197
- Mahmoud, A.M.; Ashour, M.B.; Abdel-Moneim, A.; Ahmed, O.M. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J. Diabetes Complications, 2012, 26(6), 483-490. doi: 10.1016/j.jdiacomp.2012.06.001 PMID: 22809898
- Hassaan, Y.; Handoussa, H.; El-Khatib, A.H.; Linscheid, M.W.; El Sayed, N.; Ayoub, N. Evaluation of plant phenolic metabolites as a source of Alzheimers drug leads. BioMed Res. Int., 2014, 2014, 1-10. doi: 10.1155/2014/843263 PMID: 24999480
- Mokarrami, S.; Jahanshahi, M.; Elyasi, L.; Badelisarkala, H.; Khalili, M. Naringin prevents the reduction of the number of neurons and the volume of CA1 in a scopolamine-induced animal model of Alzheimers disease (AD): A stereological study. Int. J. Neurosci., 2022, 1-8. doi: 10.1080/00207454.2022.2102981 PMID: 35861379
- Nandakumar, K.; Ramalingayya, G.V.; Nampoothiri, M.; Nayak, P.G.; Kishore, A.; Shenoy, R.R.; Rao, C.M. Naringin and rutin alleviates episodic memory deficits in two differentially challenged object recognition tasks. Pharmacogn. Mag., 2016, 12(45)(Suppl. 1), 63. doi: 10.4103/0973-1296.176104 PMID: 27041861
- Si-Si, W.; Liao, L.; Ling, Z.; Yun-Xia, Y. Inhibition of TNF-α/IFN-γ induced RANTES expression in HaCaT cell by naringin. Pharm. Biol., 2011, 49(8), 810-814. doi: 10.3109/13880209.2010.550054 PMID: 21500970
- Dhanya, R.; Arun, K.B.; Nisha, V.M.; Syama, H.P.; Nisha, P.; Santhosh Kumar, T.R.; Jayamurthy, P. Preconditioning L6 muscle cells with naringin ameliorates oxidative stress and increases glucose uptake. PLoS One, 2015, 10(7), e0132429. doi: 10.1371/journal.pone.0132429 PMID: 26147673
- Guo, L.X.; Sun, B. N,N'-1,10-Bis(Naringin) triethylenetetraamine, synthesis and as a Cu(II) Chelator for Alzheimers Disease therapy. Biol. Pharm. Bull., 2021, 44(1), 51-56. doi: 10.1248/bpb.b20-00574 PMID: 33162492
- Feng, G.; Wang, W.; Qian, Y.; Jin, H. Anti-Aβ antibodies induced by Aβ-HBc virus-like particles prevent Aβ aggregation and protect PC12 cells against toxicity of Aβ140. J. Neurosci. Methods, 2013, 218(1), 48-54. doi: 10.1016/j.jneumeth.2013.05.006 PMID: 23701997
- Choi, G.Y.; Kim, H.B.; Hwang, E.S.; Park, H.S.; Cho, J.M.; Ham, Y.K.; Kim, J.H.; Mun, M.K.; Maeng, S.; Park, J.H. Naringin enhances long-term potentiation and recovers learning and memory deficits of amyloid-beta induced Alzheimers disease-like behavioral rat model. Neurotoxicology, 2023, 95, 35-45. doi: 10.1016/j.neuro.2022.12.007 PMID: 36549596
Supplementary files
