Pre-clinical Evidence-based Neuroprotective Potential of Naringin against Alzheimer’s Disease-like Pathology: A Comprehensive Review


Cite item

Full Text

Abstract

Neurodegenerative disorders (NDs) are a group of progressive, chronic, and disabling disorders that are highly prevalent and the incidence is on a constant rise globally. Alzheimer’s disease (AD), one of the most common neurodegenerative disorders is hallmarked by cognitive impairment, amyloid-β (Aβ) deposition, hyperphosphorylation of tau protein, cholinergic dysfunction, mitochondrial toxicity, and neurodegeneration. Available therapeutic agents only provide symptomatic relief and their use are limited due to serious side effects. Recent research has recognized flavonoids as potential multi-target biomolecules that can reduce the pathogenesis of AD. Naringin, a natural citrus flavonoid has been traditionally used to treat various NDs including AD, and has gained special attention because exhibits a neuroprotective effect by affecting numerous signaling pathways with minimum adverse effects. Naringin reduces deposition of Aβ, hyperphosphorylation of tau protein, cholinergic dysfunction, oxidative stress burden, mitochondrial toxicity, the activity of glutamate receptors, and apoptosis of the neuronal cells. Additionally, it reduces the expression of phosphorylated-P38/P38 and the NF-κB signaling pathway, showing that a wide range of molecular targets is involved in naringin's neuroprotective action. The present study describes the possible pharmacological targets, signaling pathways, and molecular mechanisms of naringin involved in neuroprotection against AD-like pathology. Based on the above pre-clinical reports it can be concluded that naringin could be an alternative therapeutic agent for the management of AD-like manifestation. Thus, there is a strong recommendation to perform more preclinical and clinical studies to develop naringin as a novel molecule that could be a multi-target drug to counteract AD.

About the authors

Ashini Singh

Division of Pharmacology, Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Niraj Kumar Singh

Division of Pharmacology, Institute of Pharmaceutical Research, GLA University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Barthélemy, N.R.; Li, Y.; Joseph-Mathurin, N.; Gordon, B.A.; Hassenstab, J.; Benzinger, T.L.S.; Buckles, V.; Fagan, A.M.; Perrin, R.J.; Goate, A.M.; Morris, J.C.; Karch, C.M.; Xiong, C.; Allegri, R.; Mendez, P.C.; Berman, S.B.; Ikeuchi, T.; Mori, H.; Shimada, H.; Shoji, M.; Suzuki, K.; Noble, J.; Farlow, M.; Chhatwal, J.; Graff-Radford, N.R.; Salloway, S.; Schofield, P.R.; Masters, C.L.; Martins, R.N.; O’Connor, A.; Fox, N.C.; Levin, J.; Jucker, M.; Gabelle, A.; Lehmann, S.; Sato, C.; Bateman, R.J.; McDade, E. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease. Nat. Med., 2020, 26(3), 398-407. doi: 10.1038/s41591-020-0781-z PMID: 32161412
  2. Goyal, A.; Verma, A.; Agrawal, N. Dietary phytoestrogens: Neuroprotective role in Parkinson’s disease. Curr. Neurovasc. Res., 2021, 18(2), 254-267. doi: 10.2174/1567202618666210604121233 PMID: 34086550
  3. Singh, N.K.; Garabadu, D. Quercetin exhibits α7nAChR/Nrf2/HO-1-mediated neuroprotection against STZ-induced mitochondrial toxicity and cognitive impairments in experimental rodents. Neurotox. Res., 2021, 39(6), 1859-1879. doi: 10.1007/s12640-021-00410-5 PMID: 34554409
  4. Ballatore, C.; Lee, V.M.Y.; Trojanowski, J.Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci., 2007, 8(9), 663-672. doi: 10.1038/nrn2194 PMID: 17684513
  5. Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115. doi: 10.2174/1570159X13666150716165726 PMID: 26813123
  6. Medina, M. Recent developments in tau-based therapeutics for neurodegenerative diseases. Recent Patents CNS Drug Discov., 2011, 6(1), 20-30. doi: 10.2174/157488911794079091 PMID: 21118095
  7. Sharma, A.; Bhardwaj, P.; Arya, S.K. Naringin: A potential natural product in the field of biomedical applications. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100068. doi: 10.1016/j.carpta.2021.100068
  8. Guzior, N.; Wieckowska, A.; Panek, D.; Malawska, B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr. Med. Chem., 2015, 22(3), 373-404. doi: 10.2174/0929867321666141106122628 PMID: 25386820
  9. Yang, Z.; Kuboyama, T.; Tohda, C. A systematic strategy for discovering a therapeutic drug for Alzheimer’s disease and its target molecule. Front. Pharmacol., 2017, 8, 340. doi: 10.3389/fphar.2017.00340 PMID: 28674493
  10. Yang, W.; Zhou, K.; Zhou, Y.; An, Y.; Hu, T.; Lu, J.; Huang, S.; Pei, G. Naringin dihydrochalcone ameliorates cognitive deficits and neuropathology in APP/PS1 transgenic mice. Front. Aging Neurosci., 2018, 10, 169. doi: 10.3389/fnagi.2018.00169 PMID: 29922152
  11. Kuşi, M.; Becer, E.; Vatansever, H.S.; Yücecan, S. Neuroprotective effects of hesperidin and naringin in SK-N-AS cell as an in vitro model for Alzheimer's Disease. J. Am. Nutr. Assoc., 2022, 1-9. doi: 10.1080/07315724.2022.2062488
  12. Qi, Z.; Xu, Y.; Liang, Z.; Li, S.; Wang, J.; Wei, Y.; Dong, B. Naringin ameliorates cognitive deficits via oxidative stress, proinflammatory factors and the PPARγ signaling pathway in a type 2 diabetic rat model. Mol. Med. Rep., 2015, 12(5), 7093-7101. doi: 10.3892/mmr.2015.4232 PMID: 26300349
  13. Han, Y.; Su, J.; Liu, X.; Zhao, Y.; Wang, C.; Li, X. Naringin alleviates early brain injury after experimental subarachnoid hemorrhage by reducing oxidative stress and inhibiting apoptosis. Brain Res. Bull., 2017, 133, 42-50. doi: 10.1016/j.brainresbull.2016.12.008 PMID: 28011192
  14. Meng, X.; Fu, M.; Wang, S.; Chen, W.; Wang, J.; Zhang, N. Naringin ameliorates memory deficits and exerts neuroprotective effects in a mouse model of Alzheimer’s disease by regulating multiple metabolic pathways. Mol. Med. Rep., 2021, 23(5), 332. doi: 10.3892/mmr.2021.11971 PMID: 33760152
  15. Ross, J.A.; Kasum, C.M. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr., 2002, 22(1), 19-34. doi: 10.1146/annurev.nutr.22.111401.144957 PMID: 12055336
  16. Chen, R.; Qi, Q.L.; Wang, M.T.; Li, Q.Y. Therapeutic potential of naringin: An overview. Pharm. Biol., 2016, 54(12), 3203-3210. doi: 10.1080/13880209.2016.1216131 PMID: 27564838
  17. Xu, Z.L.; Xu, M.Y.; Wang, H.T.; Xu, Q.X.; Liu, M.Y.; Jia, C.P.; Geng, F.; Zhang, N. Pharmacokinetics of eight flavonoids in rats assayed by UPLC-MS/MS after oral administration of Drynariae rhizoma extract. J. Anal. Methods Chem., 2018, 2018, 1-11. doi: 10.1155/2018/4789196 PMID: 30662789
  18. Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int., 2020, 132, 109114. doi: 10.1016/j.foodres.2020.109114 PMID: 32331689
  19. Ho, P.C.; Saville, D.J.; Coville, P.F.; Wanwimolruk, S. Content of CYP3A4 inhibitors, naringin, naringenin and bergapten in grapefruit and grapefruit juice products. Pharm. Acta Helv., 2000, 74(4), 379-385. doi: 10.1016/S0031-6865(99)00062-X PMID: 10812937
  20. Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid composition of Citrus juices. Molecules, 2007, 12(8), 1641-1673. doi: 10.3390/12081641 PMID: 17960080
  21. Vallverdú-Queralt, A.; Odriozola-Serrano, I.; Oms-Oliu, G.; Lamuela-Raventós, R.M.; Elez-Martínez, P.; Martín-Belloso, O. Changes in the polyphenol profile of tomato juices processed by pulsed electric fields. J. Agric. Food Chem., 2012, 60(38), 9667-9672. doi: 10.1021/jf302791k PMID: 22957841
  22. Sánchez-Rabaneda, F.; Jáuregui, O.; Casals, I.; Andrés-Lacueva, C.; Izquierdo-Pulido, M.; Lamuela-Raventós, R.M. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J. Mass Spectrom., 2003, 38(1), 35-42. doi: 10.1002/jms.395 PMID: 12526004
  23. Alam, F.; Badruddeen, ; Kharya, A.K.; Juber, A.; Khan, M.I. Naringin: Sources, chemistry, toxicity, pharmacokinetics, pharmacological evidences, molecular docking and cell line study. Res. J. Pharm. Technol., 2020, 13(5), 2507. doi: 10.5958/0974-360X.2020.00447.3
  24. Chen, Z.; Zheng, S.; Li, L.; Jiang, H. Metabolism of flavonoids in human: a comprehensive review. Curr. Drug Metab., 2014, 15(1), 48-61. doi: 10.2174/138920021501140218125020 PMID: 24588554
  25. Chen, T.; Su, W.; Yan, Z.; Wu, H.; Zeng, X.; Peng, W.; Gan, L.; Zhang, Y.; Yao, H. Identification of naringin metabolites mediated by human intestinal microbes with stable isotope-labeling method and UFLC-Q-TOF-MS/MS. J. Pharm. Biomed. Anal., 2018, 161, 262-272. doi: 10.1016/j.jpba.2018.08.039 PMID: 30172881
  26. Zeng, X.; Su, W.; Zheng, Y.; He, Y.; He, Y.; Rao, H.; Peng, W.; Yao, H. Pharmacokinetics, tissue distribution, metabolism, and excretion of naringin in aged rats. Front. Pharmacol., 2019, 10, 34. doi: 10.3389/fphar.2019.00034 PMID: 30761003
  27. Zou, W.; Yang, C.; Liu, M.; Su, W. Tissue distribution study of naringin in rats by liquid chromatography-tandem mass spectrometry. Arzneimittelforschung, 2012, 62(4), 181-186. doi: 10.1055/s-0031-1299746 PMID: 22270844
  28. Tsai, Y.J.; Tsai, T.H. Mesenteric lymphatic absorption and the pharmacokinetics of naringin and naringenin in the rat. J. Agric. Food Chem., 2012, 60(51), 12435-12442. doi: 10.1021/jf301962g PMID: 23210543
  29. Liu, M.; Zou, W.; Yang, C.; Peng, W.; Su, W. Metabolism and excretion studies of oral administered naringin, a putative antitussive, in rats and dogs. Biopharm. Drug Dispos., 2012, 33(3), 123-134. doi: 10.1002/bdd.1775 PMID: 22374702
  30. Surampalli, G.; K Nanjwade, B.; Patil, P.A. Corroboration of naringin effects on the intestinal absorption and pharmacokinetic behavior of candesartan cilexetil solid dispersions using in-situ rat models. Drug Dev. Ind. Pharm., 2015, 41(7), 1057-1065. doi: 10.3109/03639045.2014.925918 PMID: 24918161
  31. Li, P.; Wang, S.; Guan, X.; Cen, X.; Hu, C.; Peng, W.; Wang, Y.; Su, W. Six months chronic toxicological evaluation of naringin in Sprague–Dawley rats. Food Chem. Toxicol., 2014, 66, 65-75. doi: 10.1016/j.fct.2014.01.023 PMID: 24462649
  32. Gao, Y.; Li, C.; Yin, J.; Shen, J.; Wang, H.; Wu, Y.; Jin, H. Fucoidan, a sulfated polysaccharide from brown algae, improves cognitive impairment induced by infusion of Aβ peptide in rats. Environ. Toxicol. Pharmacol., 2012, 33(2), 304-311. doi: 10.1016/j.etap.2011.12.022 PMID: 22301160
  33. Rajmohan, R.; Reddy, P.H. Amyloid-beta and phosphorylated Tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J. Alzheimers Dis., 2017, 57(4), 975-999. doi: 10.3233/JAD-160612 PMID: 27567878
  34. Kimura, A.; Hata, S.; Suzuki, T. Alternative selection of β-Site APP-Cleaving Enzyme 1 (BACE1) cleavage sites in amyloid β-Protein Precursor (APP) harboring protective and pathogenic mutations within the Aβ sequence. J. Biol. Chem., 2016, 291(46), 24041-24053. doi: 10.1074/jbc.M116.744722 PMID: 27687728
  35. Holtzman, D.M.; Morris, J.C.; Goate, A.M. Alzheimer’s disease: the challenge of the second century. Sci. Transl. Med., 2011, 3(77), 77sr1. doi: 10.1126/scitranslmed.3002369 PMID: 21471435
  36. Jahanshahi, M.; Khalili, M.; Margedari, A. Naringin chelates excessive iron and prevents the formation of amyloid-beta plaques in the hippocampus of iron-overloaded mice. Front. Pharmacol., 2021, 12, 651156. doi: 10.3389/fphar.2021.651156 PMID: 34276359
  37. Wang, D.; Gao, K.; Li, X.; Shen, X.; Zhang, X.; Ma, C.; Qin, C.; Zhang, L. Long-term naringin consumption reverses a glucose uptake defect and improves cognitive deficits in a mouse model of Alzheimer’s disease. Pharmacol. Biochem. Behav., 2012, 102(1), 13-20. doi: 10.1016/j.pbb.2012.03.013 PMID: 22741174
  38. Kaur, G.; Prakash, A. Involvement of the nitric oxide signaling in modulation of naringin against intranasal manganese and intracerbroventricular β-amyloid induced neurotoxicity in rats. J. Nutr. Biochem., 2020, 76, 108255. doi: 10.1016/j.jnutbio.2019.108255 PMID: 31759198
  39. Varshney, V.; Garabadu, D. Naringin exhibits mas receptor–mediated neuroprotection against amyloid beta–induced cognitive deficits and mitochondrial toxicity in rat brain. Neurotox. Res., 2021, 39(4), 1023-1043. doi: 10.1007/s12640-021-00336-y PMID: 33534126
  40. Medeiros, R.; Baglietto-Vargas, D.; LaFerla, F.M. The role of tau in Alzheimer’s disease and related disorders. CNS Neurosci. Ther., 2011, 17(5), 514-524. doi: 10.1111/j.1755-5949.2010.00177.x PMID: 20553310
  41. Saito, T.; Oba, T.; Shimizu, S.; Asada, A.; Iijima, K.M.; Ando, K. Cdk5 increases MARK4 activity and augments pathological tau accumulation and toxicity through tau phosphorylation at Ser262. Hum. Mol. Genet., 2019, 28(18), 3062-3071. doi: 10.1093/hmg/ddz120 PMID: 31174206
  42. Sachdeva, A.K.; Chopra, K. Naringin mitigate okadaic acid-induced cognitive impairment in an experimental paradigm of Alzheimer’s disease. J. Funct. Foods, 2015, 19, 110-125. doi: 10.1016/j.jff.2015.08.024
  43. Hassan, H.M.; Elnagar, M.R.; Abdelrazik, E.; Mahdi, M.R.; Hamza, E.; Elattar, E.M.; ElNashar, E.M.; Alghamdi, M.A.; Al-Qahtani, Z.; Al-Khater, K.M.; Aldahhan, R.A.; ELdesoqui, M. Neuroprotective effect of naringin against cerebellar changes in Alzheimer’s disease through modulation of autophagy, oxidative stress and tau expression: An experimental study. Front. Neuroanat., 2022, 16, 1012422. doi: 10.3389/fnana.2022.1012422 PMID: 36312298
  44. Zambrano, P.; Suwalsky, M.; Jemiola-Rzeminska, M.; Strzalka, K.; Sepúlveda, B.; Gallardo, M.J.; Aguilar, L.F. The acetylcholinesterase (AChE) inhibitor and anti-Alzheimer drug donepezil interacts with human erythrocytes. Biochim. Biophys. Acta Biomembr., 2019, 1861(6), 1078-1085. doi: 10.1016/j.bbamem.2019.03.014 PMID: 30904408
  45. Oladapo, O.M.; Ben-Azu, B.; Ajayi, A.M.; Emokpae, O.; Eneni, A.E.O.; Omogbiya, I.A.; Iwalewa, E.O. Naringin confers protection against psychosocial defeat stress-induced neurobehavioral deficits in mice: Involvement of glutamic acid decarboxylase isoform-67, oxido-nitrergic stress, and neuroinflammatory mechanisms. J. Mol. Neurosci., 2021, 71(3), 431-445. doi: 10.1007/s12031-020-01664-y PMID: 32767187
  46. Kumar, A.; Prakash, A.; Dogra, S. Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by d-galactose in mice. Food Chem. Toxicol., 2010, 48(2), 626-632. doi: 10.1016/j.fct.2009.11.043 PMID: 19941926
  47. Prakash, A.; Shur, B.; Kumar, A. Naringin protects memory impairment and mitochondrial oxidative damage against aluminum-induced neurotoxicity in rats. Int. J. Neurosci., 2013, 123(9), 636-645. doi: 10.3109/00207454.2013.785542 PMID: 23510099
  48. Sachdeva, A.K.; Kuhad, A.; Chopra, K. Naringin ameliorates memory deficits in experimental paradigm of Alzheimer’s disease by attenuating mitochondrial dysfunction. Pharmacol. Biochem. Behav., 2014, 127, 101-110. doi: 10.1016/j.pbb.2014.11.002 PMID: 25449356
  49. Liu, M.Y.; Zeng, F.; Shen, Y.; Wang, Y.Y.; Zhang, N.; Geng, F. Bioguided isolation and structure identification of acetylcholinesterase enzyme inhibitors from drynariae rhizome. J. Anal. Methods Chem., 2020, 2020, 1-9. doi: 10.1155/2020/2971841 PMID: 32185082
  50. Kumar, A.; Dogra, S.; Prakash, A. Protective effect of naringin, a citrus flavonoid, against colchicine-induced cognitive dysfunction and oxidative damage in rats. J. Med. Food, 2010, 13(4), 976-984. doi: 10.1089/jmf.2009.1251 PMID: 20673063
  51. Wang, D.; Yan, J.; Chen, J.; Wu, W.; Zhu, X.; Wang, Y. Naringin improves neuronal insulin signaling, brain mitochondrial function, and cognitive function in high-fat diet-induced obese mice. Cell. Mol. Neurobiol., 2015, 35(7), 1061-1071. doi: 10.1007/s10571-015-0201-y PMID: 25939427
  52. Bharti, S.; Rani, N.; Krishnamurthy, B.; Arya, D. Preclinical evidence for the pharmacological actions of naringin: A review. Planta Med., 2014, 80(6), 437-451. doi: 10.1055/s-0034-1368351 PMID: 24710903
  53. Jeong, K.H.; Jung, U.J.; Kim, S.R. Naringin attenuates autophagic stress and neuroinflammation in kainic acid-treated hippocampus in vivo. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-9. doi: 10.1155/2015/354326 PMID: 26124853
  54. Maratha, S.R.; Mahadevan, N. Memory enhancing activity of naringin in unstressed and stressed mice: Possible cholinergic and nitriergic modulation. Neurochem. Res., 2012, 37(10), 2206-2212. doi: 10.1007/s11064-012-0844-8 PMID: 22821418
  55. Snow, W.M.; Albensi, B.C. Neuronal gene targets of NF-κB and their dysregulation in Alzheimer’s Disease. Front. Mol. Neurosci., 2016, 9, 118. doi: 10.3389/fnmol.2016.00118 PMID: 27881951
  56. Bronzuoli, M.R.; Iacomino, A.; Steardo, L.; Scuderi, C. Targeting neuroinflammation in Alzheimer’s disease. J. Inflamm. Res., 2016, 9, 199-208. doi: 10.2147/JIR.S86958 PMID: 27843334
  57. Wang, R.; Chen, S.; Liu, Y.; Diao, S.; Xue, Y.; You, X.; Park, E.A.; Liao, F.F. All-trans-retinoic acid reduces BACE1 expression under inflammatory conditions via modulation of nuclear factor κB (NFκB) signaling. J. Biol. Chem., 2015, 290(37), 22532-22542. doi: 10.1074/jbc.M115.662908 PMID: 26240147
  58. Wang, W.Y.; Tan, M.S.; Yu, J.T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med., 2015, 3(10), 136. doi: 10.3978/j.issn.2305-5839.2015.03.49 PMID: 26207229
  59. Jha, N.K.; Jha, S.K.; Kar, R.; Nand, P.; Swati, K.; Goswami, V.K. Nuclear factor kappa β as a therapeutic target for Alzheimer’s disease. J. Neurochem., 2019, 150(2), 113-137. doi: 10.1111/jnc.14687 PMID: 30802950
  60. Fan, S.; Xian, X.; Li, L.; Yao, X.; Hu, Y.; Zhang, M.; Li, W. Ceftriaxone improves cognitive function and upregulates GLT-1-related glutamate-glutamine cycle in APP/PS1 mice. J. Alzheimers Dis., 2018, 66(4), 1731-1743. doi: 10.3233/JAD-180708 PMID: 30452416
  61. Ashpole, N.M.; Hudmon, A. Excitotoxic neuroprotection and vulnerability with CaMKII inhibition. Mol. Cell. Neurosci., 2011, 46(4), 720-730. doi: 10.1016/j.mcn.2011.02.003 PMID: 21316454
  62. Caricasole, A.; Copani, A.; Caraci, F.; Aronica, E.; Rozemuller, A.J.; Caruso, A.; Storto, M.; Gaviraghi, G.; Terstappen, G.C.; Nicoletti, F. Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer’s brain. J. Neurosci., 2004, 24(26), 6021-6027. doi: 10.1523/JNEUROSCI.1381-04.2004 PMID: 15229249
  63. Wang, D.M.; Yang, Y.J.; Zhang, L.; Zhang, X.; Guan, F.F.; Zhang, L.F. Naringin enhances CaMKII activity and improves long-term memory in a mouse model of Alzheimer’s Disease. Int. J. Mol. Sci., 2013, 14(3), 5576-5586. doi: 10.3390/ijms14035576 PMID: 23478434
  64. Long, J.; Chen, J.; Liao, Y.; Zhou, Y.; Liang, B.; Zhou, Y. Naringin provides neuroprotection in CCL2-induced cognition impairment by attenuating neuronal apoptosis in the hippocampus. Behav. Brain Funct., 2020, 16(1), 4. doi: 10.1186/s12993-020-00166-6 PMID: 32103758
  65. Ramakrishnan, A.; Vijayakumar, N.; Renuka, M. Naringin regulates glutamate-nitric oxide cGMP pathway in ammonium chloride induced neurotoxicity. Biomed. Pharmacother., 2016, 84, 1717-1726. doi: 10.1016/j.biopha.2016.10.080 PMID: 27836465
  66. Qin, H.; Roberts, K.L.; Niyongere, S.A.; Cong, Y.; Elson, C.O.; Benveniste, E.N. Molecular mechanism of lipopolysaccharide-induced SOCS-3 gene expression in macrophages and microglia. J. Immunol., 2007, 179(9), 5966-5976. doi: 10.4049/jimmunol.179.9.5966 PMID: 17947670
  67. Ahshin-Majd, S.; Zamani, S.; Kiamari, T.; Kiasalari, Z.; Baluchnejadmojarad, T.; Roghani, M. Carnosine ameliorates cognitive deficits in streptozotocin-induced diabetic rats: Possible involved mechanisms. Peptides, 2016, 86, 102-111. doi: 10.1016/j.peptides.2016.10.008 PMID: 27777064
  68. Tejera, D.; Heneka, M.T. Microglia in neurodegenerative disorders. Methods Mol. Biol., 2019, 2034, 57-67. doi: 10.1007/978-1-4939-9658-2_5 PMID: 31392677
  69. Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology, 2018, 154(2), 204-219. doi: 10.1111/imm.12922 PMID: 29513402
  70. Wang, H. Microglia heterogeneity in Alzheimer’s Disease: Insights from single-cell technologies. Front. Synaptic Neurosci., 2021, 13, 773590. doi: 10.3389/fnsyn.2021.773590 PMID: 35002670
  71. Li, L.; Liu, R.; He, J.; Li, J.; Guo, J.; Chen, Y.; Ji, K. Naringin regulates microglia BV-2 activation and inflammation via the JAK/STAT3 pathway. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-10. doi: 10.1155/2022/3492058 PMID: 35646153
  72. Vinayagam, M.M.; Sadiq, M.A. Flavonoid naringin inhibits microglial activation and exerts neuroprotection against deltamethrin induced neurotoxicity through Nrf2/ARE signaling in the cortex and hippocampus of rats. World J. Pharm. Sci, 2015, 3(12), 2410-2426.
  73. Wharton, W.; Gleason, C.E.; Lorenze, K.R.; Markgraf, T.S.; Ries, M.L.; Carlsson, C.M.; Asthana, S. Potential role of estrogen in the pathobiology and prevention of Alzheimer’s disease. Am. J. Transl. Res., 2009, 1(2), 131-147. PMID: 19956426
  74. Sahab-Negah, S.; Hajali, V.; Moradi, H.R.; Gorji, A. The Impact of estradiol on neurogenesis and functions in Alzheimer’s diseases. Cell. Mol. Neurobiol., 2020, 40(3), 283-299. doi: 10.1007/s10571-019-00733-0 PMID: 31502112
  75. Bagit, A.; Hayward, G.C.; MacPherson, R.E.K. Exercise and estrogen: common pathways in Alzheimer’s disease pathology. Am. J. Physiol. Endocrinol. Metab., 2021, 321(1), E164-E168. doi: 10.1152/ajpendo.00008.2021 PMID: 34056921
  76. Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H.Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; Holtzman, D.M.; Nathan, D.M. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat. Rev. Neurol., 2018, 14(3), 168-181. doi: 10.1038/nrneurol.2017.185 PMID: 29377010
  77. de la Monte, S.M.; Tong, M.; Daiello, L.A.; Ott, B.R. Early-stage Alzheimer’s disease is associated with simultaneous systemic and central nervous system dysregulation of insulin-linked metabolic pathways. J. Alzheimers Dis., 2019, 68(2), 657-668. doi: 10.3233/JAD-180906 PMID: 30775986
  78. Variya, B.C.; Bakrania, A.K.; Patel, S.S. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine, 2020, 73, 152906. doi: 10.1016/j.phymed.2019.152906 PMID: 31064680
  79. Feng, X.; Gao, X.; Jia, Y.; Zhang, H.; Pan, Q.; Yao, Z.; Yang, N.; Liu, J.; Xu, Y.; Wang, G.; Yang, X. PPAR- α agonist fenofibrate decreased serum irisin levels in type 2 diabetes patients with hypertriglyceridemia. PPAR Res., 2015, 2015, 1-8. doi: 10.1155/2015/924131 PMID: 26693220
  80. Liu, L.; Yan, T.; Jiang, L.; Hu, W.; Hu, M.; Wang, C.; Zhang, Q.; Long, Y.; Wang, J.; Li, Y.; Hu, M.; Hong, H. Pioglitazone ameliorates memory deficits in streptozotocin-induced diabetic mice by reducing brain β-amyloid through PPARγ activation. Acta Pharmacol. Sin., 2013, 34(4), 455-463. doi: 10.1038/aps.2013.11 PMID: 23524568
  81. Liu, X.; Liu, M.; Mo, Y.; Peng, H.; Gong, J.; Li, Z.; Chen, J.; Xie, J. Naringin ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Iran. J. Basic Med. Sci., 2016, 19(4), 417-422. PMID: 27279986
  82. Okuyama, S.; Nakashima, T.; Nakamura, K.; Shinoka, W.; Kotani, M.; Sawamoto, A.; Nakajima, M.; Furukawa, Y. Inhibitory effects of auraptene and naringin on astroglial activation, Tau hyperphosphorylation, and suppression of neurogenesis in the hippocampus of streptozotocin-induced hyperglycemic mice. Antioxidants, 2018, 7(8), 109. doi: 10.3390/antiox7080109 PMID: 30126250
  83. Goyal, A.; Verma, A.; Dubey, N.; Raghav, J.; Agrawal, A. Naringenin: A prospective therapeutic agent for Alzheimer’s and Parkinson’s disease. J. Food Biochem., 2022, 46(12), e14415. doi: 10.1111/jfbc.14415 PMID: 36106706
  84. Luo, Y.L.; Zhang, C.C.; Li, P.B.; Nie, Y.C.; Wu, H.; Shen, J.G.; Su, W.W. Naringin attenuates enhanced cough, airway hyperresponsiveness and airway inflammation in a guinea pig model of chronic bronchitis induced by cigarette smoke. Int. Immunopharmacol., 2012, 13(3), 301-307. doi: 10.1016/j.intimp.2012.04.019 PMID: 22575871
  85. Habauzit, V.; Sacco, S.M.; Gil-Izquierdo, A.; Trzeciakiewicz, A.; Morand, C.; Barron, D.; Pinaud, S.; Offord, E.; Horcajada, M.N. Differential effects of two citrus flavanones on bone quality in senescent male rats in relation to their bioavailability and metabolism. Bone, 2011, 49(5), 1108-1116. doi: 10.1016/j.bone.2011.07.030 PMID: 21820093
  86. Liu, Y.; Wu, H.; Nie, Y.; Chen, J.; Su, W.; Li, P. Naringin attenuates acute lung injury in LPS-treated mice by inhibiting NF-κB pathway. Int. Immunopharmacol., 2011, 11(10), 1606-1612. doi: 10.1016/j.intimp.2011.05.022 PMID: 21640201
  87. Gopinath, K.; Sudhandiran, G. Naringin modulates oxidative stress and inflammation in 3-nitropropionic acid-induced neurodegeneration through the activation of nuclear factor-erythroid 2-related factor-2 signalling pathway. Neuroscience, 2012, 227, 134-143. doi: 10.1016/j.neuroscience.2012.07.060 PMID: 22871521
  88. Chen, F.; Zhang, N.; Ma, X.; Huang, T.; Shao, Y.; Wu, C.; Wang, Q. Naringin alleviates diabetic kidney disease through inhibiting oxidative stress and inflammatory reaction. PLoS One, 2015, 10(11), e0143868. doi: 10.1371/journal.pone.0143868 PMID: 26619044
  89. Golechha, M.; Sarangal, V.; Bhatia, J.; Chaudhry, U.; Saluja, D.; Arya, D.S. Naringin ameliorates pentylenetetrazol-induced seizures and associated oxidative stress, inflammation, and cognitive impairment in rats: Possible mechanisms of neuroprotection. Epilepsy Behav., 2014, 41, 98-102. doi: 10.1016/j.yebeh.2014.09.058 PMID: 25461197
  90. Mahmoud, A.M.; Ashour, M.B.; Abdel-Moneim, A.; Ahmed, O.M. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J. Diabetes Complications, 2012, 26(6), 483-490. doi: 10.1016/j.jdiacomp.2012.06.001 PMID: 22809898
  91. Hassaan, Y.; Handoussa, H.; El-Khatib, A.H.; Linscheid, M.W.; El Sayed, N.; Ayoub, N. Evaluation of plant phenolic metabolites as a source of Alzheimer’s drug leads. BioMed Res. Int., 2014, 2014, 1-10. doi: 10.1155/2014/843263 PMID: 24999480
  92. Mokarrami, S.; Jahanshahi, M.; Elyasi, L.; Badelisarkala, H.; Khalili, M. Naringin prevents the reduction of the number of neurons and the volume of CA1 in a scopolamine-induced animal model of Alzheimer’s disease (AD): A stereological study. Int. J. Neurosci., 2022, 1-8. doi: 10.1080/00207454.2022.2102981 PMID: 35861379
  93. Nandakumar, K.; Ramalingayya, G.V.; Nampoothiri, M.; Nayak, P.G.; Kishore, A.; Shenoy, R.R.; Rao, C.M. Naringin and rutin alleviates episodic memory deficits in two differentially challenged object recognition tasks. Pharmacogn. Mag., 2016, 12(45)(Suppl. 1), 63. doi: 10.4103/0973-1296.176104 PMID: 27041861
  94. Si-Si, W.; Liao, L.; Ling, Z.; Yun-Xia, Y. Inhibition of TNF-α/IFN-γ induced RANTES expression in HaCaT cell by naringin. Pharm. Biol., 2011, 49(8), 810-814. doi: 10.3109/13880209.2010.550054 PMID: 21500970
  95. Dhanya, R.; Arun, K.B.; Nisha, V.M.; Syama, H.P.; Nisha, P.; Santhosh Kumar, T.R.; Jayamurthy, P. Preconditioning L6 muscle cells with naringin ameliorates oxidative stress and increases glucose uptake. PLoS One, 2015, 10(7), e0132429. doi: 10.1371/journal.pone.0132429 PMID: 26147673
  96. Guo, L.X.; Sun, B. N,N'-1,10-Bis(Naringin) triethylenetetraamine, synthesis and as a Cu(II) Chelator for Alzheimer’s Disease therapy. Biol. Pharm. Bull., 2021, 44(1), 51-56. doi: 10.1248/bpb.b20-00574 PMID: 33162492
  97. Feng, G.; Wang, W.; Qian, Y.; Jin, H. Anti-Aβ antibodies induced by Aβ-HBc virus-like particles prevent Aβ aggregation and protect PC12 cells against toxicity of Aβ1–40. J. Neurosci. Methods, 2013, 218(1), 48-54. doi: 10.1016/j.jneumeth.2013.05.006 PMID: 23701997
  98. Choi, G.Y.; Kim, H.B.; Hwang, E.S.; Park, H.S.; Cho, J.M.; Ham, Y.K.; Kim, J.H.; Mun, M.K.; Maeng, S.; Park, J.H. Naringin enhances long-term potentiation and recovers learning and memory deficits of amyloid-beta induced Alzheimer’s disease-like behavioral rat model. Neurotoxicology, 2023, 95, 35-45. doi: 10.1016/j.neuro.2022.12.007 PMID: 36549596

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers