Progression in the Relationship between Exosome Production and Atherosclerosis
- Authors: Yang Y.1, Luo J.1, Kang Y.2, Wu W.1, Lu Y.1, Fu J.3, Zhang X.4, Cheng M.1, Cui X.3
-
Affiliations:
- Clinical Medical School, Weifang Medical University
- College of Anesthesiology, Weifang Medical University
- School of Basic Medicine Sciences, Weifang Medical University
- School of Basic Medial Medicine, Weifang Medical University
- Issue: Vol 25, No 9 (2024)
- Pages: 1099-1111
- Section: Biotechnology
- URL: https://rjeid.com/1389-2010/article/view/644951
- DOI: https://doi.org/10.2174/1389201024666230726114920
- ID: 644951
Cite item
Full Text
Abstract
Atherosclerosis (AS) is the leading cause of cardiovascular disease, causing a major burden on patients as well as families and society. Exosomes generally refer to various lipid bilayer microvesicles originating from different cells that deliver various bioactive molecules to the recipient cells, exerting biological effects in cellular communication and thereby changing the internal environment of the body. The mechanisms of correlation between exosomes and the disease process of atherosclerosis have been recently clarified. Exosomes are rich in nucleic acid molecules and proteins. For example, the exosome miRNAs reportedly play important roles in the progression of atherosclerotic diseases. In this review, we focus on the composition of exosomes, the mechanism of their biogenesis and release, and the commonly used methods for exosome extraction. By summarizing the latest research progress on exosomes and atherosclerosis, we can explore the advances in the roles of exosomes in atherosclerosis to provide new ideas and targets for atherosclerosis prevention, diagnosis, and treatment.
About the authors
Yi Yang
Clinical Medical School, Weifang Medical University
Email: info@benthamscience.net
Jinxi Luo
Clinical Medical School, Weifang Medical University
Email: info@benthamscience.net
Yunan Kang
College of Anesthesiology, Weifang Medical University
Email: info@benthamscience.net
Wenqian Wu
Clinical Medical School, Weifang Medical University
Email: info@benthamscience.net
Yajie Lu
Clinical Medical School, Weifang Medical University
Email: info@benthamscience.net
Jie Fu
School of Basic Medicine Sciences, Weifang Medical University
Email: info@benthamscience.net
Xiaoyun Zhang
School of Basic Medial Medicine, Weifang Medical University
Email: info@benthamscience.net
Min Cheng
Clinical Medical School, Weifang Medical University
Author for correspondence.
Email: info@benthamscience.net
Xiaodong Cui
School of Basic Medicine Sciences, Weifang Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers, 2019, 5(1), 56. doi: 10.1038/s41572-019-0106-z PMID: 31420554
- Petty, R.G.; Pearson, J.D. Endothelium--the axis of vascular health and disease. J. R. Coll. Physicians Lond., 1989, 23(2), 92-102. PMID: 2659784
- Bartling, B.; Tostlebe, H.; Darmer, D.; Holtz, J.; Silber, R.E.; Morawietz, H. Shear stress-dependent expression of apoptosis-regulating genes in endothelial cells. Biochem. Biophys. Res. Commun., 2000, 278(3), 740-746. doi: 10.1006/bbrc.2000.3873 PMID: 11095978
- Wang, C.; Li, Z.; Liu, Y.; Yuan, L. Exosomes in atherosclerosis: performers, bystanders, biomarkers, and therapeutic targets. Theranostics, 2021, 11(8), 3996-4010. doi: 10.7150/thno.56035 PMID: 33664877
- Gurung, S.; Perocheau, D.; Touramanidou, L.; Baruteau, J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun. Signal., 2021, 19(1), 47. doi: 10.1186/s12964-021-00730-1 PMID: 33892745
- Peinado, H.; Alečković, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, G.; Hergueta-Redondo, M.; Williams, C.; García-Santos, G.; Ghajar, C.M.; Nitadori-Hoshino, A.; Hoffman, C.; Badal, K.; Garcia, B.A.; Callahan, M.K.; Yuan, J.; Martins, V.R.; Skog, J.; Kaplan, R.N.; Brady, M.S.; Wolchok, J.D.; Chapman, P.B.; Kang, Y.; Bromberg, J.; Lyden, D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med., 2012, 18(6), 883-891. doi: 10.1038/nm.2753 PMID: 22635005
- Wang, H.; Xie, Y.; Salvador, A.M.; Zhang, Z.; Chen, K.; Li, G.; Xiao, J. Exosomes: Multifaceted messengers in atherosclerosis. Curr. Atheroscler. Rep., 2020, 22(10), 57. doi: 10.1007/s11883-020-00871-7 PMID: 32772195
- Nguyen, M.A.; Karunakaran, D.; Geoffrion, M.; Cheng, H.S.; Tandoc, K.; Perisic Matic, L.; Hedin, U.; Maegdefessel, L.; Fish, J.E.; Rayner, K.J. Extracellular vesicles secreted by atherogenic macrophages transfer MicroRNA to inhibit cell migration. Arterioscler. Thromb. Vasc. Biol., 2018, 38(1), 49-63. doi: 10.1161/ATVBAHA.117.309795 PMID: 28882869
- Zhu, J.; Liu, B.; Wang, Z.; Wang, D.; Ni, H.; Zhang, L.; Wang, Y. Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics, 2019, 9(23), 6901-6919. doi: 10.7150/thno.37357 PMID: 31660076
- Men, Y.; Yelick, J.; Jin, S.; Tian, Y.; Chiang, M.S.R.; Higashimori, H.; Brown, E.; Jarvis, R.; Yang, Y. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS. Nat. Commun., 2019, 10(1), 4136. doi: 10.1038/s41467-019-11534-w PMID: 31515491
- DSouza-Schorey, C.; Schorey, J.S. Regulation and mechanisms of extracellular vesicle biogenesis and secretion. Essays Biochem., 2018, 62(2), 125-133. doi: 10.1042/EBC20170078 PMID: 29666210
- Davies, B.A.; Lee, J.R.E.; Oestreich, A.J.; Katzmann, D.J. Membrane protein targeting to the MVB/lysosome. Chem. Rev., 2009, 109(4), 1575-1586. doi: 10.1021/cr800473s PMID: 19243135
- Wei, D.; Zhan, W.; Gao, Y.; Huang, L.; Gong, R.; Wang, W.; Zhang, R.; Wu, Y.; Gao, S.; Kang, T. RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res., 2021, 31(2), 157-177. doi: 10.1038/s41422-020-00409-1 PMID: 32958903
- Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol., 2019, 21(1), 9-17. doi: 10.1038/s41556-018-0250-9 PMID: 30602770
- Rana, S.; Zöller, M. Exosome target cell selection and the importance of exosomal tetraspanins: a hypothesis. Biochem. Soc. Trans., 2011, 39(2), 559-562. doi: 10.1042/BST0390559 PMID: 21428939
- Zhao, L.; Gu, C.; Gan, Y.; Shao, L.; Chen, H.; Zhu, H. Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis. J. Control. Release, 2020, 318, 1-15.
- Mathieu, M.; Névo, N.; Jouve, M.; Valenzuela, J.I.; Maurin, M.; Verweij, F.J.; Palmulli, R.; Lankar, D.; Dingli, F.; Loew, D.; Rubinstein, E.; Boncompain, G.; Perez, F.; Théry, C. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat. Commun., 2021, 12(1), 4389. doi: 10.1038/s41467-021-24384-2 PMID: 34282141
- Larios, J.; Mercier, V.; Roux, A.; Gruenberg, J. ALIX- and ESCRT-IIIdependent sorting of tetraspanins to exosomes. J. Cell Biol., 2020, 219(3), e201904113. doi: 10.1083/jcb.201904113 PMID: 32049272
- Lin, T.H.; Bis-Brewer, D.M.; Sheehan, A.E.; Townsend, L.N.; Maddison, D.C.; Züchner, S.; Smith, G.A.; Freeman, M.R. TSG101 negatively regulates mitochondrial biogenesis in axons. Proc. Natl. Acad. Sci. USA, 2021, 118(20), e2018770118. doi: 10.1073/pnas.2018770118 PMID: 33972422
- Yan, C.; Tian, X.; Li, J.; Liu, D.; Ye, D.; Xie, Z.; Han, Y.; Zou, M.H. A high-fat diet attenuates AMPK α1 in adipocytes to induce exosome shedding and nonalcoholic fatty liver development in vivo. Diabetes, 2021, 70(2), 577-588. doi: 10.2337/db20-0146 PMID: 33262120
- Costa Verdera, H.; Gitz-Francois, J.J.; Schiffelers, R.M.; Vader, P. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J. Control. Release, 2017, 266, 100-108.
- Zhang, H.; Freitas, D.; Kim, H.S.; Fabijanic, K.; Li, Z.; Chen, H.; Mark, M.T.; Molina, H.; Martin, A.B.; Bojmar, L.; Fang, J.; Rampersaud, S.; Hoshino, A.; Matei, I.; Kenific, C.M.; Nakajima, M.; Mutvei, A.P.; Sansone, P.; Buehring, W.; Wang, H.; Jimenez, J.P.; Cohen-Gould, L.; Paknejad, N.; Brendel, M.; Manova-Todorova, K.; Magalhães, A.; Ferreira, J.A.; Osório, H.; Silva, A.M.; Massey, A.; Cubillos-Ruiz, J.R.; Galletti, G.; Giannakakou, P.; Cuervo, A.M.; Blenis, J.; Schwartz, R.; Brady, M.S.; Peinado, H.; Bromberg, J.; Matsui, H.; Reis, C.A.; Lyden, D. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol., 2018, 20(3), 332-343. doi: 10.1038/s41556-018-0040-4 PMID: 29459780
- Vietri, M.; Radulovic, M.; Stenmark, H. The many functions of ESCRTs. Nat. Rev. Mol. Cell Biol., 2020, 21(1), 25-42. doi: 10.1038/s41580-019-0177-4 PMID: 31705132
- Skotland, T.; Hessvik, N.P.; Sandvig, K.; Llorente, A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J. Lipid Res., 2019, 60(1), 9-18. doi: 10.1194/jlr.R084343 PMID: 30076207
- Guay, C.; Regazzi, R. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes. Metab., 2017, 19(Suppl. 1), 137-146. doi: 10.1111/dom.13027 PMID: 28880477
- Castaño, C.; Kalko, S.; Novials, A.; Párrizas, M. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc. Natl. Acad. Sci. USA, 2018, 115(48), 12158-12163. doi: 10.1073/pnas.1808855115 PMID: 30429322
- Zhu, W.; Sun, L.; Zhao, P.; Liu, Y.; Zhang, J.; Zhang, Y.; Hong, Y.; Zhu, Y.; Lu, Y.; Zhao, W.; Chen, X.; Zhang, F. Macrophage migration inhibitory factor facilitates the therapeutic efficacy of mesenchymal stem cells derived exosomes in acute myocardial infarction through upregulating miR-133a-3p. J. Nanobiotechnology, 2021, 19(1), 61. doi: 10.1186/s12951-021-00808-5 PMID: 33639970
- Roth, T.F.; Porter, K.R. Yolk protein uptake in the oocyte of the mosquito aedes aegypti. L. J. Cell Biol., 1964, 20(2), 313-332. doi: 10.1083/jcb.20.2.313 PMID: 14126875
- Schmid, E.M.; McMahon, H.T. Integrating molecular and network biology to decode endocytosis. Nature, 2007, 448(7156), 883-888. doi: 10.1038/nature06031 PMID: 17713526
- Nishimura, T.; Morone, N.; Suetsugu, S. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors. Biochem. Soc. Trans., 2018, 46(2), 379-389. doi: 10.1042/BST20170322 PMID: 29540508
- Roux, A.; Uyhazi, K.; Frost, A.; De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature, 2006, 441(7092), 528-531. doi: 10.1038/nature04718 PMID: 16648839
- Doherty, G.J.; McMahon, H.T. Mechanisms of endocytosis. Annu. Rev. Biochem., 2009, 78(1), 857-902. doi: 10.1146/annurev.biochem.78.081307.110540 PMID: 19317650
- Klumperman, J.; Raposo, G. The complex ultrastructure of the endolysosomal system. Cold Spring Harb. Perspect. Biol., 2014, 6(10), a016857. doi: 10.1101/cshperspect.a016857 PMID: 24851870
- Shafaq-Zadah, M.; Dransart, E.; Johannes, L. Clathrin-independent endocytosis, retrograde trafficking, and cell polarity. Curr. Opin. Cell Biol., 2020, 65, 112-121. doi: 10.1016/j.ceb.2020.05.009 PMID: 32688213
- Frühbeis, C.; Fröhlich, D.; Kuo, W.P.; Amphornrat, J.; Thilemann, S.; Saab, A.S.; Kirchhoff, F.; Möbius, W.; Goebbels, S.; Nave, K.A.; Schneider, A.; Simons, M.; Klugmann, M.; Trotter, J.; Krämer-Albers, E.M. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol., 2013, 11(7), e1001604. doi: 10.1371/journal.pbio.1001604 PMID: 23874151
- Nolan, J.P.; Duggan, E. Analysis of individual extracellular vesicles by flow cytometry. Methods Mol. Biol., 2018, 1678, 79-92. doi: 10.1007/978-1-4939-7346-0_5 PMID: 29071676
- Mashouri, L.; Yousefi, H.; Aref, A.R.; Ahadi, A.; Molaei, F.; Alahari, S.K. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol. Cancer, 2019, 18(1), 75. doi: 10.1186/s12943-019-0991-5 PMID: 30940145
- Raiborg, C.; Wesche, J.; Malerød, L.; Stenmark, H. Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains. J. Cell Sci., 2006, 119(12), 2414-2424. doi: 10.1242/jcs.02978 PMID: 16720641
- Takahashi, H.; Mayers, J.R.; Wang, L.; Edwardson, J.M.; Audhya, A. Hrs and STAM function synergistically to bind ubiquitin-modified cargoes in vitro. Biophys. J., 2015, 108(1), 76-84. doi: 10.1016/j.bpj.2014.11.004 PMID: 25564854
- Ju, Y.; Bai, H.; Ren, L.; Zhang, L. The role of exosome and the ESCRT pathway on enveloped virus infection. Int. J. Mol. Sci., 2021, 22(16), 9060. doi: 10.3390/ijms22169060 PMID: 34445766
- Raiborg, C.; Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature, 2009, 458(7237), 445-452. doi: 10.1038/nature07961 PMID: 19325624
- Slagsvold, T.; Aasland, R.; Hirano, S.; Bache, K.G.; Raiborg, C.; Trambaiolo, D.; Wakatsuki, S.; Stenmark, H. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. J. Biol. Chem., 2005, 280(20), 19600-19606. doi: 10.1074/jbc.M501510200 PMID: 15755741
- Gill, D.J.; Teo, H.; Sun, J.; Perisic, O.; Veprintsev, D.B.; Emr, S.D.; Williams, R.L. Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. EMBO J., 2007, 26(2), 600-612. doi: 10.1038/sj.emboj.7601501 PMID: 17215868
- Han, H.; Hill, C.P. Structure and mechanism of the ESCRT pathway AAA+ ATPase Vps4. Biochem. Soc. Trans., 2019, 47(1), 37-45. doi: 10.1042/BST20180260 PMID: 30647138
- Harker-Kirschneck, L.; Baum, B.; arić, A. Changes in ESCRT-III filament geometry drive membrane remodelling and fission in silico. BMC Biol., 2019, 17(1), 82. doi: 10.1186/s12915-019-0700-2 PMID: 31640700
- van Niel, G.; Charrin, S.; Simoes, S.; Romao, M.; Rochin, L.; Saftig, P.; Marks, M.S.; Rubinstein, E.; Raposo, G. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev. Cell, 2011, 21(4), 708-721. doi: 10.1016/j.devcel.2011.08.019 PMID: 21962903
- Cheng, Q.; Li, X.; Wang, Y.; Dong, M.; Zhan, F.; Liu, J. The ceramide pathway is involved in the survival, apoptosis and exosome functions of human multiple myeloma cells in vitro. Acta Pharmacol. Sin., 2018, 39(4), 561-568. doi: 10.1038/aps.2017.118 PMID: 28858294
- Charrin, S.; Jouannet, S.; Boucheix, C.; Rubinstein, E. Tetraspanins at a glance. J. Cell Sci., 2014, 127(Pt 17), 3641-3648. PMID: 25128561
- Ferreira, J.V.; da Rosa Soares, A.; Ramalho, J.; Máximo Carvalho, C.; Cardoso, M.H.; Pintado, P.; Carvalho, A.S.; Beck, H.C.; Matthiesen, R.; Zuzarte, M.; Girão, H.; van Niel, G.; Pereira, P. LAMP2A regulates the loading of proteins into exosomes. Sci. Adv., 2022, 8(12), eabm1140. doi: 10.1126/sciadv.abm1140 PMID: 35333565
- Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, 30(1), 255-289. doi: 10.1146/annurev-cellbio-101512-122326 PMID: 25288114
- Hoshino, D.; Kirkbride, K.C.; Costello, K.; Clark, E.S.; Sinha, S.; Grega-Larson, N.; Tyska, M.J.; Weaver, A.M. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep., 2013, 5(5), 1159-1168. doi: 10.1016/j.celrep.2013.10.050 PMID: 24290760
- Baixauli, F.; López-Otín, C.; Mittelbrunn, M. Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front. Immunol., 2014, 5, 403. doi: 10.3389/fimmu.2014.00403 PMID: 25191326
- Kanemoto, S.; Nitani, R.; Murakami, T.; Kaneko, M.; Asada, R.; Matsuhisa, K.; Saito, A.; Imaizumi, K. Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress. Biochem. Biophys. Res. Commun., 2016, 480(2), 166-172. doi: 10.1016/j.bbrc.2016.10.019 PMID: 27725157
- Savina, A.; Vidal, M.; Colombo, M.I. The exosome pathway in K562 cells is regulated by Rab11. J. Cell Sci., 2002, 115(12), 2505-2515. doi: 10.1242/jcs.115.12.2505 PMID: 12045221
- Ostrowski, M.; Carmo, N.B.; Krumeich, S.; Fanget, I.; Raposo, G.; Savina, A.; Moita, C.F.; Schauer, K.; Hume, A.N.; Freitas, R.P.; Goud, B.; Benaroch, P.; Hacohen, N.; Fukuda, M.; Desnos, C.; Seabra, M.C.; Darchen, F.; Amigorena, S.; Moita, L.F.; Thery, C. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol., 2010, 12(1), 1-13. doi: 10.1038/ncb2000
- Hsu, C.; Morohashi, Y.; Yoshimura, S.; Manrique-Hoyos, N.; Jung, S.; Lauterbach, M.A.; Bakhti, M.; Grønborg, M.; Möbius, W.; Rhee, J.; Barr, F.A.; Simons, M. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10AC. J. Cell Biol., 2010, 189(2), 223-232. doi: 10.1083/jcb.200911018 PMID: 20404108
- Koles, K.; Nunnari, J.; Korkut, C.; Barria, R.; Brewer, C.; Li, Y.; Leszyk, J.; Zhang, B.; Budnik, V. Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J. Biol. Chem., 2012, 287(20), 16820-16834. doi: 10.1074/jbc.M112.342667 PMID: 22437826
- Baietti, M.F.; Zhang, Z.; Mortier, E.; Melchior, A.; Degeest, G.; Geeraerts, A.; Ivarsson, Y.; Depoortere, F.; Coomans, C.; Vermeiren, E.; Zimmermann, P.; David, G. SyndecansynteninALIX regulates the biogenesis of exosomes. Nat. Cell Biol., 2012, 14(7), 677-685. doi: 10.1038/ncb2502 PMID: 22660413
- Bonifacino, J.S.; Glick, B.S. The mechanisms of vesicle budding and fusion. Cell, 2004, 116(2), 153-166. doi: 10.1016/S0092-8674(03)01079-1 PMID: 14744428
- Fader, C.M.; Sánchez, D.G.; Mestre, M.B.; Colombo, M.I. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim. Biophys. Acta Mol. Cell Res., 2009, 1793(12), 1901-1916. doi: 10.1016/j.bbamcr.2009.09.011 PMID: 19781582
- Gross, J.C.; Chaudhary, V.; Bartscherer, K.; Boutros, M. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol., 2012, 14(10), 1036-1045. doi: 10.1038/ncb2574 PMID: 22983114
- Savina, A.; Furlán, M.; Vidal, M.; Colombo, M.I. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J. Biol. Chem., 2003, 278(22), 20083-20090. doi: 10.1074/jbc.M301642200 PMID: 12639953
- Phuyal, S.; Skotland, T.; Hessvik, N.P.; Simolin, H.; Øverbye, A.; Brech, A.; Parton, R.G.; Ekroos, K.; Sandvig, K.; Llorente, A. The ether lipid precursor hexadecylglycerol stimulates the release and changes the composition of exosomes derived from PC-3 cells. J. Biol. Chem., 2015, 290(7), 4225-4237. doi: 10.1074/jbc.M114.593962 PMID: 25519911
- Wang, T.; Li, L.; Hong, W. SNARE proteins in membrane trafficking. Traffic, 2017, 18(12), 767-775. doi: 10.1111/tra.12524 PMID: 28857378
- Shao, H.; Im, H.; Castro, C.M.; Breakefield, X.; Weissleder, R.; Lee, H. New technologies for analysis of extracellular vesicles. Chem. Rev., 2018, 118(4), 1917-1950. doi: 10.1021/acs.chemrev.7b00534 PMID: 29384376
- Jia, Y.; Yu, L.; Ma, T.; Xu, W.; Qian, H.; Sun, Y.; Shi, H. Small extracellular vesicles isolation and separation: Current techniques, pending questions and clinical applications. Theranostics, 2022, 12(15), 6548-6575. doi: 10.7150/thno.74305 PMID: 36185597
- Gardiner, C.; Vizio, D.D.; Sahoo, S.; Théry, C.; Witwer, K.W.; Wauben, M.; Hill, A.F. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J. Extracell. Vesicles, 2016, 5(1), 32945. doi: 10.3402/jev.v5.32945 PMID: 27802845
- Royo, F.; Théry, C.; Falcón-Pérez, J.M.; Nieuwland, R.; Witwer, K.W. Methods for separation and characterization of extracellular vesicles: Results of a worldwide survey performed by the ISEV rigor and standardization subcommittee. Cells, 2020, 9(9), 1955. doi: 10.3390/cells9091955 PMID: 32854228
- Alzhrani, G.N.; Alanazi, S.T.; Alsharif, S.Y.; Albalawi, A.M.; Alsharif, A.A.; Abdel-Maksoud, M.S.; Elsherbiny, N. Exosomes: Isolation, characterization, and biomedical applications. Cell Biol. Int., 2021, 45(9), 1807-1831. doi: 10.1002/cbin.11620 PMID: 33913604
- Purushothaman, A. Exosomes from cell culture-conditioned medium: isolation by ultracentrifugation and characterization. Methods Mol. Biol., 2019, 1952, 233-244. doi: 10.1007/978-1-4939-9133-4_19 PMID: 30825179
- Jeppesen, D.K.; Hvam, M.L.; Primdahl-Bengtson, B.; Boysen, A.T.; Whitehead, B.; Dyrskjøt, L.; Ørntoft, T.F.; Howard, K.A.; Ostenfeld, M.S. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J. Extracell. Vesicles, 2014, 3(1), 25011. doi: 10.3402/jev.v3.25011 PMID: 25396408
- Zhu, L.; Sun, H.T.; Wang, S.; Huang, S.L.; Zheng, Y.; Wang, C.Q.; Hu, B.Y.; Qin, W.; Zou, T.T.; Fu, Y.; Shen, X.T.; Zhu, W.W.; Geng, Y.; Lu, L.; Jia, H.; Qin, L.X.; Dong, Q.Z. Isolation and characterization of exosomes for cancer research. J. Hematol. Oncol., 2020, 13(1), 152. doi: 10.1186/s13045-020-00987-y PMID: 33168028
- Langevin, S.M.; Kuhnell, D.; Orr-Asman, M.A.; Biesiada, J.; Zhang, X.; Medvedovic, M.; Thomas, H.E. Balancing yield, purity and practicality: a modified differential ultracentrifugation protocol for efficient isolation of small extracellular vesicles from human serum. RNA Biol., 2019, 16(1), 5-12. doi: 10.1080/15476286.2018.1564465 PMID: 30604646
- Li, P.; Kaslan, M.; Lee, S.H.; Yao, J.; Gao, Z. Progress in exosome isolation techniques. Theranostics, 2017, 7(3), 789-804. doi: 10.7150/thno.18133 PMID: 28255367
- Liangsupree, T.; Multia, E.; Riekkola, M.L. Modern isolation and separation techniques for extracellular vesicles. J. Chromatogr. A, 2021, 1636461773. doi: 10.1016/j.chroma.2020.461773 PMID: 33316564
- Lamparski, H.G.; Metha-Damani, A.; Yao, J.Y.; Patel, S.; Hsu, D.H.; Ruegg, C.; Le Pecq, J.B. Production and characterization of clinical grade exosomes derived from dendritic cells. J. Immunol. Methods, 2002, 270(2), 211-226. doi: 10.1016/S0022-1759(02)00330-7 PMID: 12379326
- Wang, J.; Ma, P.; Kim, D.H.; Liu, B.F.; Demirci, U. Towards microfluidic-based exosome isolation and detection for tumor therapy. Nano Today, 2021, 37101066. doi: 10.1016/j.nantod.2020.101066 PMID: 33777166
- Busatto, S.; Vilanilam, G.; Ticer, T.; Lin, W.L.; Dickson, D.; Shapiro, S.; Bergese, P.; Wolfram, J. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells, 2018, 7(12), 273. doi: 10.3390/cells7120273 PMID: 30558352
- Zeng, X.; Yi, X.; Chen, L.; Zhang, H.; Zhou, R.; Wu, J.; Chen, Y.; Huang, W.; Zhang, L.; Zheng, J.; Xiao, Y.; Yang, F. Characterization and bioassays of extracellular vesicles extracted by tangential flow filtration. Regen. Med., 2022, 17(3), 141-154. doi: 10.2217/rme-2021-0038 PMID: 35073731
- Rho, J.; Chung, J.; Im, H.; Liong, M.; Shao, H.; Castro, C.M.; Weissleder, R.; Lee, H. Magnetic nanosensor for detection and profiling of erythrocyte-derived microvesicles. ACS Nano, 2013, 7(12), 11227-11233. doi: 10.1021/nn405016y PMID: 24295203
- Vlassov, A.V.; Magdaleno, S.; Setterquist, R.; Conrad, R. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta, Gen. Subj., 2012, 1820(7), 940-948. doi: 10.1016/j.bbagen.2012.03.017 PMID: 22503788
- Soares Martins, T.; Catita, J.; Martins Rosa, I.; A B da Cruz E Silva, O.; Henriques, A.G. Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One, 2018, 13(6), e0198820. doi: 10.1371/journal.pone.0198820 PMID: 29889903
- Niu, Z.; Pang, R.T.K.; Liu, W.; Li, Q.; Cheng, R.; Yeung, W.S.B. Polymer-based precipitation preserves biological activities of extracellular vesicles from an endometrial cell line. PLoS One, 2017, 12(10), e0186534. doi: 10.1371/journal.pone.0186534 PMID: 29023592
- Rekker, K.; Saare, M.; Roost, A.M.; Kubo, A.L.; Zarovni, N.; Chiesi, A.; Salumets, A.; Peters, M. Comparison of serum exosome isolation methods for microRNA profiling. Clin. Biochem., 2014, 47(1-2), 135-138. doi: 10.1016/j.clinbiochem.2013.10.020 PMID: 24183884
- Zhu, J.; Zhang, J.; Ji, X.; Tan, Z.; Lubman, D.M. Column-based Technology for CD9-HPLC immunoaffinity isolation of serum extracellular vesicles. J. Proteome Res., 2021, 20(10), 4901-4911. doi: 10.1021/acs.jproteome.1c00549 PMID: 34473505
- Oksvold, M.P.; Neurauter, A.; Pedersen, K.W. Magnetic bead-based isolation of exosomes. Methods Mol. Biol., 2015, 1218, 465-481. doi: 10.1007/978-1-4939-1538-5_27 PMID: 25319668
- Tauro, B.J.; Greening, D.W.; Mathias, R.A.; Ji, H.; Mathivanan, S.; Scott, A.M.; Simpson, R.J. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods, 2012, 56(2), 293-304. doi: 10.1016/j.ymeth.2012.01.002 PMID: 22285593
- Yoo, C.E.; Kim, G.; Kim, M.; Park, D.; Kang, H.J.; Lee, M.; Huh, N. A direct extraction method for microRNAs from exosomes captured by immunoaffinity beads. Anal. Biochem., 2012, 431(2), 96-98. doi: 10.1016/j.ab.2012.09.008 PMID: 22982508
- Greening, D.W.; Xu, R.; Ji, H.; Tauro, B.J.; Simpson, R.J. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol. Biol., 2015, 1295, 179-209. doi: 10.1007/978-1-4939-2550-6_15 PMID: 25820723
- Shtam, T.A.; Burdakov, V.S.; Landa, S.B.; Naryzhny, S.N.; Bairamukov, V.Y.; Malek, A.V.; Orlov, Y.N.; Filatov, M.V. Aggregation by lectin-methodical approach for effective isolation of exosomes from cell culture supernatant for proteome profiling. Tsitologiia, 2017, 59(1), 5-12. PMID: 30188097
- Groot Kormelink, T.; Arkesteijn, G.J.; Nauwelaers, F.A.; van den Engh, G.; Nolte-'t Hoen, E.N.; Wauben, M.H. Prerequisites for the analysis and sorting of extracellular vesicle subpopulations by high-resolution flow cytometry. Cytometry, 2016, 89(2), 135-147.
- Lin, B.; Yang, J.; Song, Y.; Dang, G.; Feng, J. Exosomes and Atherogenesis. Front. Cardiovasc. Med., 2021, 8738031. doi: 10.3389/fcvm.2021.738031 PMID: 34513963
- Patel, N.; Chin, D.D.; Chung, E.J. Exosomes in atherosclerosis, a double-edged sword: their role in disease pathogenesis and their potential as novel therapeutics. AAPS J., 2021, 23(5), 95. doi: 10.1208/s12248-021-00621-w PMID: 34312734
- Hergenreider, E.; Heydt, S.; Tréguer, K.; Boettger, T.; Horrevoets, A.J.G.; Zeiher, A.M.; Scheffer, M.P.; Frangakis, A.S.; Yin, X.; Mayr, M.; Braun, T.; Urbich, C.; Boon, R.A.; Dimmeler, S. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat. Cell Biol., 2012, 14(3), 249-256. doi: 10.1038/ncb2441 PMID: 22327366
- Cordes, K.R.; Sheehy, N.T.; White, M.P.; Berry, E.C.; Morton, S.U.; Muth, A.N.; Lee, T.H.; Miano, J.M.; Ivey, K.N.; Srivastava, D. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 2009, 460(7256), 705-710. doi: 10.1038/nature08195 PMID: 19578358
- Boettger, T.; Beetz, N.; Kostin, S.; Schneider, J.; Krüger, M.; Hein, L.; Braun, T. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Invest., 2009, 119(9), 2634-2647. doi: 10.1172/JCI38864 PMID: 19690389
- Zernecke, A.; Bidzhekov, K.; Noels, H.; Shagdarsuren, E.; Gan, L.; Denecke, B.; Hristov, M.; Köppel, T.; Jahantigh, M.N.; Lutgens, E.; Wang, S.; Olson, E.N.; Schober, A.; Weber, C. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal., 2009, 2(100), ra81. doi: 10.1126/scisignal.2000610 PMID: 19996457
- Chistiakov, D.; Orekhov, A.; Bobryshev, Y. Cardiac extracellular vesicles in normal and infarcted heart. Int. J. Mol. Sci., 2016, 17(1), 63. doi: 10.3390/ijms17010063 PMID: 26742038
- Li, L.; Wen, J.; Li, H.; He, Y.; Cui, X.; Zhang, X.; Guan, X.; Li, Z.; Cheng, M. Exosomal circ-1199 derived from EPCs exposed to oscillating shear stress acts as a sponge of let-7g-5p to promote endothelial-mesenchymal transition of EPCs by increasing HMGA2 expression. Life Sci., 2023, 312121223. doi: 10.1016/j.lfs.2022.121223 PMID: 36435223
- Gao, S.; Wassler, M.; Zhang, L.; Li, Y.; Wang, J.; Zhang, Y.; Shelat, H.; Williams, J.; Geng, Y.J. MicroRNA-133a regulates insulin-like growth factor-1 receptor expression and vascular smooth muscle cell proliferation in murine atherosclerosis. Atherosclerosis, 2014, 232(1), 171-179. doi: 10.1016/j.atherosclerosis.2013.11.029 PMID: 24401233
- Goettsch, C.; Hutcheson, J.D.; Aikawa, M.; Iwata, H.; Pham, T.; Nykjaer, A.; Kjolby, M.; Rogers, M.; Michel, T.; Shibasaki, M.; Hagita, S.; Kramann, R.; Rader, D.J.; Libby, P.; Singh, S.A.; Aikawa, E. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. J. Clin. Invest., 2016, 126(4), 1323-1336. doi: 10.1172/JCI80851 PMID: 26950419
- Xie, Z.; Wang, X.; Liu, X.; Du, H.; Sun, C.; Shao, X.; Tian, J.; Gu, X.; Wang, H.; Tian, J.; Yu, B. Adipose-derived exosomes exert proatherogenic effects by regulating macrophage foam cell formation and polarization. J. Am. Heart Assoc., 2018, 7(5), e007442. doi: 10.1161/JAHA.117.007442 PMID: 29502100
- Jansen, F.; Yang, X.; Proebsting, S.; Hoelscher, M.; Przybilla, D.; Baumann, K.; Schmitz, T.; Dolf, A.; Endl, E.; Franklin, B.S.; Sinning, J.M.; Vasa-Nicotera, M.; Nickenig, G.; Werner, N. MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J. Am. Heart Assoc., 2014, 3(6), e001249. doi: 10.1161/JAHA.114.001249 PMID: 25349183
- Zheng, B.; Yin, W.N.; Suzuki, T.; Zhang, X.H.; Zhang, Y.; Song, L.L.; Jin, L.S.; Zhan, H.; Zhang, H.; Li, J.S.; Wen, J.K. Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Mol. Ther., 2017, 25(6), 1279-1294.
- Li, L.; Wang, Z.; Hu, X.; Wan, T.; Wu, H.; Jiang, W.; Hu, R. Human aortic smooth muscle cell-derived exosomal miR-221/222 inhibits autophagy via a PTEN/Akt signaling pathway in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun., 2016, 479(2), 343-350. doi: 10.1016/j.bbrc.2016.09.078 PMID: 27644883
- Gao, W.; Liu, H.; Yuan, J.; Wu, C.; Huang, D.; Ma, Y.; Zhu, J.; Ma, L.; Guo, J.; Shi, H.; Zou, Y.; Ge, J. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF α mediated NF κB pathway. J. Cell. Mol. Med., 2016, 20(12), 2318-2327. doi: 10.1111/jcmm.12923 PMID: 27515767
- Chen, L.; Yang, W.; Guo, Y.; Chen, W.; Zheng, P.; Zeng, J.; Tong, W. Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis. PLoS One, 2017, 12(9), e0185406. doi: 10.1371/journal.pone.0185406 PMID: 28945793
- Li, J.; Tan, M.; Xiang, Q.; Zhou, Z.; Yan, H. Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response. Thromb. Res., 2017, 154, 96-105. doi: 10.1016/j.thromres.2017.04.016 PMID: 28460288
- Yang, W.; Yin, R.; Zhu, X.; Yang, S.; Wang, J.; Zhou, Z.; Pan, X.; Ma, A. Mesenchymal stem-cell-derived exosomal miR-145 inhibits atherosclerosis by targeting JAM-A. Mol. Ther. Nucleic Acids, 2021, 23, 119-131. doi: 10.1016/j.omtn.2020.10.037 PMID: 33335797
- Li, J.; Xue, H.; Li, T.; Chu, X.; Xin, D.; Xiong, Y.; Qiu, W.; Gao, X.; Qian, M.; Xu, J.; Wang, Z.; Li, G. Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE−/- mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem. Biophys. Res. Commun., 2019, 510(4), 565-572. doi: 10.1016/j.bbrc.2019.02.005 PMID: 30739785
- Bouchareychas, L.; Duong, P.; Covarrubias, S.; Alsop, E.; Phu, T.A.; Chung, A.; Gomes, M.; Wong, D.; Meechoovet, B.; Capili, A.; Yamamoto, R.; Nakauchi, H.; McManus, M.T.; Carpenter, S.; Van Keuren-Jensen, K.; Raffai, R.L. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via MicroRNA cargo. Cell Rep., 2020, 32(2), 107881. doi: 10.1016/j.celrep.2020.107881 PMID: 32668250
- Basatemur, G.L.; Jørgensen, H.F.; Clarke, M.C.H.; Bennett, M.R.; Mallat, Z. Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol., 2019, 16(12), 727-744. doi: 10.1038/s41569-019-0227-9 PMID: 31243391
- Wang, C.; Liu, C.; Shi, J.; Li, H.; Jiang, S.; Zhao, P.; Zhang, M.; Du, G.; Fu, S.; Li, S.; Wang, Z.; Wang, X.; Gao, F.; Sun, P.; Tian, J. Nicotine exacerbates endothelial dysfunction and drives atherosclerosis via extracellular vesicle-miRNA. Cardiovasc. Res., 2022. PMID: 36006370
- Goetzl, E.J.; Schwartz, J.B.; Mustapic, M.; Lobach, I.V.; Daneman, R.; Abner, E.L.; Jicha, G.A. Altered cargo proteins of human plasma endothelial cellderived exosomes in atherosclerotic cerebrovascular disease. FASEB J., 2017, 31(8), 3689-3694. doi: 10.1096/fj.201700149 PMID: 28476896
- Al-Rawaf, H.A. Circulating microRNAs and adipokines as markers of metabolic syndrome in adolescents with obesity. Clin. Nutr., 2019, 38(5), 2231-2238. doi: 10.1016/j.clnu.2018.09.024 PMID: 30309709
- Lu, M.; Yuan, S.; Li, S.; Li, L.; Liu, M.; Wan, S. The exosome-derived biomarker in atherosclerosis and its clinical application. J. Cardiovasc. Transl. Res., 2019, 12(1), 68-74. doi: 10.1007/s12265-018-9796-y PMID: 29802541
- Li, X.; He, X.; Wang, J.; Wang, D.; Cong, P.; Zhu, A.; Chen, W. The regulation of exosome-derived miRNA on heterogeneity of macrophages in atherosclerotic plaques. Front. Immunol., 2020, 11, 2175. doi: 10.3389/fimmu.2020.02175 PMID: 33013913
- Wu, W.; Pan, Y.; Cai, M.; Cen, J.; Chen, C.; Zheng, L.; Liu, X.; Xiong, X. Plasma-derived exosomal circular RNA hsa_circ_0005540 as a novel diagnostic biomarker for coronary artery disease. Dis. Markers, 2020, 2020, 1-7. doi: 10.1155/2020/3178642 PMID: 32670434
- Wiklander, O.P.B.; Brennan, M.Á.; Lötvall, J.; Breakefield, X.O.; EL Andaloussi, S. Advances in therapeutic applications of extracellular vesicles. Sci. Transl. Med., 2019, 11(492), eaav8521. doi: 10.1126/scitranslmed.aav8521 PMID: 31092696
- Shi, C.; Ulke-Lemée, A.; Deng, J.; Batulan, Z.; OBrien, E.R. Characterization of heat shock protein 27 in extracellular vesicles: a potential anti-inflammatory therapy. FASEB J., 2019, 33(2), 1617-1630. doi: 10.1096/fj.201800987R PMID: 30188755
- Guo, Z.; Zhao, Z.; Yang, C.; Song, C. Transfer of microRNA-221 from mesenchymal stem cell-derived extracellular vesicles inhibits atherosclerotic plaque formation. Transl. Res., 2020, 226, 83-95. doi: 10.1016/j.trsl.2020.07.003 PMID: 32659442
- Venkat, P.; Cui, C.; Chopp, M.; Zacharek, A.; Wang, F.; Landschoot-Ward, J.; Shen, Y.; Chen, J. MiR-126 mediates brain endothelial cell exosome treatmentinduced neurorestorative effects after stroke in type 2 diabetes mellitus mice. Stroke, 2019, 50(10), 2865-2874. doi: 10.1161/STROKEAHA.119.025371 PMID: 31394992
- Milano, G.; Biemmi, V.; Lazzarini, E.; Balbi, C.; Ciullo, A.; Bolis, S.; Ameri, P.; Di Silvestre, D.; Mauri, P.; Barile, L.; Vassalli, G. Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity. Cardiovasc. Res., 2020, 116(2), 383-392. PMID: 31098627
- Casado-Díaz, A.; Quesada-Gómez, J.M.; Dorado, G. Extracellular vesicles derived from mesenchymal stem cells (MSC) in regenerative medicine: applications in skin wound healing. Front. Bioeng. Biotechnol., 2020, 8, 146. doi: 10.3389/fbioe.2020.00146 PMID: 32195233
- Cui, G.H.; Guo, H.D.; Li, H.; Zhai, Y.; Gong, Z.B.; Wu, J.; Liu, J.S.; Dong, Y.R.; Hou, S.X.; Liu, J.R. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer's disease. Immun. Ageing, 2019, 16, 10.
- Villata, S.; Canta, M.; Cauda, V. EVs and bioengineering: from cellular products to engineered nanomachines. Int. J. Mol. Sci., 2020, 21(17), 6048. doi: 10.3390/ijms21176048 PMID: 32842627
- Sun, D.; Zhuang, X.; Xiang, X.; Liu, Y.; Zhang, S.; Liu, C.; Barnes, S.; Grizzle, W.; Miller, D.; Zhang, H.G. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther., 2010, 18(9), 1606-1614.
- Ma, Q.; Fan, Q.; Han, X.; Dong, Z.; Xu, J.; Bai, J.; Tao, W.; Sun, D.; Wang, C. Platelet-derived extracellular vesicles to target plaque inflammation for effective anti-atherosclerotic therapy. J. Control. Release, 2021, 329, 445-453.
- Zhang, Y.; Bi, J.; Huang, J.; Tang, Y.; Du, S.; Li, P. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int. J. Nanomedicine, 2020, 15, 6917-6934. doi: 10.2147/IJN.S264498 PMID: 33061359
- Antimisiaris, S.; Mourtas, S.; Marazioti, A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics, 2018, 10(4), 218. doi: 10.3390/pharmaceutics10040218 PMID: 30404188
- Tian, Y.; Li, S.; Song, J.; Ji, T.; Zhu, M.; Anderson, G.J.; Wei, J.; Nie, G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 2014, 35(7), 2383-2390. doi: 10.1016/j.biomaterials.2013.11.083 PMID: 24345736
- Zhu, Q.; Ling, X.; Yang, Y.; Zhang, J.; Li, Q.; Niu, X.; Hu, G.; Chen, B.; Li, H.; Wang, Y.; Deng, Z. Embryonic stem cells-derived exosomes endowed with targeting properties as chemotherapeutics delivery vehicles for glioblastoma therapy. Adv. Sci. (Weinh.), 2019, 6(6), 1801899. doi: 10.1002/advs.201801899 PMID: 30937268
Supplementary files
