Progression in the Relationship between Exosome Production and Atherosclerosis


Cite item

Full Text

Abstract

Atherosclerosis (AS) is the leading cause of cardiovascular disease, causing a major burden on patients as well as families and society. Exosomes generally refer to various lipid bilayer microvesicles originating from different cells that deliver various bioactive molecules to the recipient cells, exerting biological effects in cellular communication and thereby changing the internal environment of the body. The mechanisms of correlation between exosomes and the disease process of atherosclerosis have been recently clarified. Exosomes are rich in nucleic acid molecules and proteins. For example, the exosome miRNAs reportedly play important roles in the progression of atherosclerotic diseases. In this review, we focus on the composition of exosomes, the mechanism of their biogenesis and release, and the commonly used methods for exosome extraction. By summarizing the latest research progress on exosomes and atherosclerosis, we can explore the advances in the roles of exosomes in atherosclerosis to provide new ideas and targets for atherosclerosis prevention, diagnosis, and treatment.

About the authors

Yi Yang

Clinical Medical School, Weifang Medical University

Email: info@benthamscience.net

Jinxi Luo

Clinical Medical School, Weifang Medical University

Email: info@benthamscience.net

Yunan Kang

College of Anesthesiology, Weifang Medical University

Email: info@benthamscience.net

Wenqian Wu

Clinical Medical School, Weifang Medical University

Email: info@benthamscience.net

Yajie Lu

Clinical Medical School, Weifang Medical University

Email: info@benthamscience.net

Jie Fu

School of Basic Medicine Sciences, Weifang Medical University

Email: info@benthamscience.net

Xiaoyun Zhang

School of Basic Medial Medicine, Weifang Medical University

Email: info@benthamscience.net

Min Cheng

Clinical Medical School, Weifang Medical University

Author for correspondence.
Email: info@benthamscience.net

Xiaodong Cui

School of Basic Medicine Sciences, Weifang Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers, 2019, 5(1), 56. doi: 10.1038/s41572-019-0106-z PMID: 31420554
  2. Petty, R.G.; Pearson, J.D. Endothelium--the axis of vascular health and disease. J. R. Coll. Physicians Lond., 1989, 23(2), 92-102. PMID: 2659784
  3. Bartling, B.; Tostlebe, H.; Darmer, D.; Holtz, J.; Silber, R.E.; Morawietz, H. Shear stress-dependent expression of apoptosis-regulating genes in endothelial cells. Biochem. Biophys. Res. Commun., 2000, 278(3), 740-746. doi: 10.1006/bbrc.2000.3873 PMID: 11095978
  4. Wang, C.; Li, Z.; Liu, Y.; Yuan, L. Exosomes in atherosclerosis: performers, bystanders, biomarkers, and therapeutic targets. Theranostics, 2021, 11(8), 3996-4010. doi: 10.7150/thno.56035 PMID: 33664877
  5. Gurung, S.; Perocheau, D.; Touramanidou, L.; Baruteau, J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun. Signal., 2021, 19(1), 47. doi: 10.1186/s12964-021-00730-1 PMID: 33892745
  6. Peinado, H.; Alečković, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, G.; Hergueta-Redondo, M.; Williams, C.; García-Santos, G.; Ghajar, C.M.; Nitadori-Hoshino, A.; Hoffman, C.; Badal, K.; Garcia, B.A.; Callahan, M.K.; Yuan, J.; Martins, V.R.; Skog, J.; Kaplan, R.N.; Brady, M.S.; Wolchok, J.D.; Chapman, P.B.; Kang, Y.; Bromberg, J.; Lyden, D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med., 2012, 18(6), 883-891. doi: 10.1038/nm.2753 PMID: 22635005
  7. Wang, H.; Xie, Y.; Salvador, A.M.; Zhang, Z.; Chen, K.; Li, G.; Xiao, J. Exosomes: Multifaceted messengers in atherosclerosis. Curr. Atheroscler. Rep., 2020, 22(10), 57. doi: 10.1007/s11883-020-00871-7 PMID: 32772195
  8. Nguyen, M.A.; Karunakaran, D.; Geoffrion, M.; Cheng, H.S.; Tandoc, K.; Perisic Matic, L.; Hedin, U.; Maegdefessel, L.; Fish, J.E.; Rayner, K.J. Extracellular vesicles secreted by atherogenic macrophages transfer MicroRNA to inhibit cell migration. Arterioscler. Thromb. Vasc. Biol., 2018, 38(1), 49-63. doi: 10.1161/ATVBAHA.117.309795 PMID: 28882869
  9. Zhu, J.; Liu, B.; Wang, Z.; Wang, D.; Ni, H.; Zhang, L.; Wang, Y. Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics, 2019, 9(23), 6901-6919. doi: 10.7150/thno.37357 PMID: 31660076
  10. Men, Y.; Yelick, J.; Jin, S.; Tian, Y.; Chiang, M.S.R.; Higashimori, H.; Brown, E.; Jarvis, R.; Yang, Y. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS. Nat. Commun., 2019, 10(1), 4136. doi: 10.1038/s41467-019-11534-w PMID: 31515491
  11. D’Souza-Schorey, C.; Schorey, J.S. Regulation and mechanisms of extracellular vesicle biogenesis and secretion. Essays Biochem., 2018, 62(2), 125-133. doi: 10.1042/EBC20170078 PMID: 29666210
  12. Davies, B.A.; Lee, J.R.E.; Oestreich, A.J.; Katzmann, D.J. Membrane protein targeting to the MVB/lysosome. Chem. Rev., 2009, 109(4), 1575-1586. doi: 10.1021/cr800473s PMID: 19243135
  13. Wei, D.; Zhan, W.; Gao, Y.; Huang, L.; Gong, R.; Wang, W.; Zhang, R.; Wu, Y.; Gao, S.; Kang, T. RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res., 2021, 31(2), 157-177. doi: 10.1038/s41422-020-00409-1 PMID: 32958903
  14. Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol., 2019, 21(1), 9-17. doi: 10.1038/s41556-018-0250-9 PMID: 30602770
  15. Rana, S.; Zöller, M. Exosome target cell selection and the importance of exosomal tetraspanins: a hypothesis. Biochem. Soc. Trans., 2011, 39(2), 559-562. doi: 10.1042/BST0390559 PMID: 21428939
  16. Zhao, L.; Gu, C.; Gan, Y.; Shao, L.; Chen, H.; Zhu, H. Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis. J. Control. Release, 2020, 318, 1-15.
  17. Mathieu, M.; Névo, N.; Jouve, M.; Valenzuela, J.I.; Maurin, M.; Verweij, F.J.; Palmulli, R.; Lankar, D.; Dingli, F.; Loew, D.; Rubinstein, E.; Boncompain, G.; Perez, F.; Théry, C. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat. Commun., 2021, 12(1), 4389. doi: 10.1038/s41467-021-24384-2 PMID: 34282141
  18. Larios, J.; Mercier, V.; Roux, A.; Gruenberg, J. ALIX- and ESCRT-III–dependent sorting of tetraspanins to exosomes. J. Cell Biol., 2020, 219(3), e201904113. doi: 10.1083/jcb.201904113 PMID: 32049272
  19. Lin, T.H.; Bis-Brewer, D.M.; Sheehan, A.E.; Townsend, L.N.; Maddison, D.C.; Züchner, S.; Smith, G.A.; Freeman, M.R. TSG101 negatively regulates mitochondrial biogenesis in axons. Proc. Natl. Acad. Sci. USA, 2021, 118(20), e2018770118. doi: 10.1073/pnas.2018770118 PMID: 33972422
  20. Yan, C.; Tian, X.; Li, J.; Liu, D.; Ye, D.; Xie, Z.; Han, Y.; Zou, M.H. A high-fat diet attenuates AMPK α1 in adipocytes to induce exosome shedding and nonalcoholic fatty liver development in vivo. Diabetes, 2021, 70(2), 577-588. doi: 10.2337/db20-0146 PMID: 33262120
  21. Costa Verdera, H.; Gitz-Francois, J.J.; Schiffelers, R.M.; Vader, P. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J. Control. Release, 2017, 266, 100-108.
  22. Zhang, H.; Freitas, D.; Kim, H.S.; Fabijanic, K.; Li, Z.; Chen, H.; Mark, M.T.; Molina, H.; Martin, A.B.; Bojmar, L.; Fang, J.; Rampersaud, S.; Hoshino, A.; Matei, I.; Kenific, C.M.; Nakajima, M.; Mutvei, A.P.; Sansone, P.; Buehring, W.; Wang, H.; Jimenez, J.P.; Cohen-Gould, L.; Paknejad, N.; Brendel, M.; Manova-Todorova, K.; Magalhães, A.; Ferreira, J.A.; Osório, H.; Silva, A.M.; Massey, A.; Cubillos-Ruiz, J.R.; Galletti, G.; Giannakakou, P.; Cuervo, A.M.; Blenis, J.; Schwartz, R.; Brady, M.S.; Peinado, H.; Bromberg, J.; Matsui, H.; Reis, C.A.; Lyden, D. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol., 2018, 20(3), 332-343. doi: 10.1038/s41556-018-0040-4 PMID: 29459780
  23. Vietri, M.; Radulovic, M.; Stenmark, H. The many functions of ESCRTs. Nat. Rev. Mol. Cell Biol., 2020, 21(1), 25-42. doi: 10.1038/s41580-019-0177-4 PMID: 31705132
  24. Skotland, T.; Hessvik, N.P.; Sandvig, K.; Llorente, A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J. Lipid Res., 2019, 60(1), 9-18. doi: 10.1194/jlr.R084343 PMID: 30076207
  25. Guay, C.; Regazzi, R. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes. Metab., 2017, 19(Suppl. 1), 137-146. doi: 10.1111/dom.13027 PMID: 28880477
  26. Castaño, C.; Kalko, S.; Novials, A.; Párrizas, M. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc. Natl. Acad. Sci. USA, 2018, 115(48), 12158-12163. doi: 10.1073/pnas.1808855115 PMID: 30429322
  27. Zhu, W.; Sun, L.; Zhao, P.; Liu, Y.; Zhang, J.; Zhang, Y.; Hong, Y.; Zhu, Y.; Lu, Y.; Zhao, W.; Chen, X.; Zhang, F. Macrophage migration inhibitory factor facilitates the therapeutic efficacy of mesenchymal stem cells derived exosomes in acute myocardial infarction through upregulating miR-133a-3p. J. Nanobiotechnology, 2021, 19(1), 61. doi: 10.1186/s12951-021-00808-5 PMID: 33639970
  28. Roth, T.F.; Porter, K.R. Yolk protein uptake in the oocyte of the mosquito aedes aegypti. L. J. Cell Biol., 1964, 20(2), 313-332. doi: 10.1083/jcb.20.2.313 PMID: 14126875
  29. Schmid, E.M.; McMahon, H.T. Integrating molecular and network biology to decode endocytosis. Nature, 2007, 448(7156), 883-888. doi: 10.1038/nature06031 PMID: 17713526
  30. Nishimura, T.; Morone, N.; Suetsugu, S. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors. Biochem. Soc. Trans., 2018, 46(2), 379-389. doi: 10.1042/BST20170322 PMID: 29540508
  31. Roux, A.; Uyhazi, K.; Frost, A.; De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature, 2006, 441(7092), 528-531. doi: 10.1038/nature04718 PMID: 16648839
  32. Doherty, G.J.; McMahon, H.T. Mechanisms of endocytosis. Annu. Rev. Biochem., 2009, 78(1), 857-902. doi: 10.1146/annurev.biochem.78.081307.110540 PMID: 19317650
  33. Klumperman, J.; Raposo, G. The complex ultrastructure of the endolysosomal system. Cold Spring Harb. Perspect. Biol., 2014, 6(10), a016857. doi: 10.1101/cshperspect.a016857 PMID: 24851870
  34. Shafaq-Zadah, M.; Dransart, E.; Johannes, L. Clathrin-independent endocytosis, retrograde trafficking, and cell polarity. Curr. Opin. Cell Biol., 2020, 65, 112-121. doi: 10.1016/j.ceb.2020.05.009 PMID: 32688213
  35. Frühbeis, C.; Fröhlich, D.; Kuo, W.P.; Amphornrat, J.; Thilemann, S.; Saab, A.S.; Kirchhoff, F.; Möbius, W.; Goebbels, S.; Nave, K.A.; Schneider, A.; Simons, M.; Klugmann, M.; Trotter, J.; Krämer-Albers, E.M. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol., 2013, 11(7), e1001604. doi: 10.1371/journal.pbio.1001604 PMID: 23874151
  36. Nolan, J.P.; Duggan, E. Analysis of individual extracellular vesicles by flow cytometry. Methods Mol. Biol., 2018, 1678, 79-92. doi: 10.1007/978-1-4939-7346-0_5 PMID: 29071676
  37. Mashouri, L.; Yousefi, H.; Aref, A.R.; Ahadi, A.; Molaei, F.; Alahari, S.K. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol. Cancer, 2019, 18(1), 75. doi: 10.1186/s12943-019-0991-5 PMID: 30940145
  38. Raiborg, C.; Wesche, J.; Malerød, L.; Stenmark, H. Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains. J. Cell Sci., 2006, 119(12), 2414-2424. doi: 10.1242/jcs.02978 PMID: 16720641
  39. Takahashi, H.; Mayers, J.R.; Wang, L.; Edwardson, J.M.; Audhya, A. Hrs and STAM function synergistically to bind ubiquitin-modified cargoes in vitro. Biophys. J., 2015, 108(1), 76-84. doi: 10.1016/j.bpj.2014.11.004 PMID: 25564854
  40. Ju, Y.; Bai, H.; Ren, L.; Zhang, L. The role of exosome and the ESCRT pathway on enveloped virus infection. Int. J. Mol. Sci., 2021, 22(16), 9060. doi: 10.3390/ijms22169060 PMID: 34445766
  41. Raiborg, C.; Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature, 2009, 458(7237), 445-452. doi: 10.1038/nature07961 PMID: 19325624
  42. Slagsvold, T.; Aasland, R.; Hirano, S.; Bache, K.G.; Raiborg, C.; Trambaiolo, D.; Wakatsuki, S.; Stenmark, H. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. J. Biol. Chem., 2005, 280(20), 19600-19606. doi: 10.1074/jbc.M501510200 PMID: 15755741
  43. Gill, D.J.; Teo, H.; Sun, J.; Perisic, O.; Veprintsev, D.B.; Emr, S.D.; Williams, R.L. Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. EMBO J., 2007, 26(2), 600-612. doi: 10.1038/sj.emboj.7601501 PMID: 17215868
  44. Han, H.; Hill, C.P. Structure and mechanism of the ESCRT pathway AAA+ ATPase Vps4. Biochem. Soc. Trans., 2019, 47(1), 37-45. doi: 10.1042/BST20180260 PMID: 30647138
  45. Harker-Kirschneck, L.; Baum, B.; Šarić, A. Changes in ESCRT-III filament geometry drive membrane remodelling and fission in silico. BMC Biol., 2019, 17(1), 82. doi: 10.1186/s12915-019-0700-2 PMID: 31640700
  46. van Niel, G.; Charrin, S.; Simoes, S.; Romao, M.; Rochin, L.; Saftig, P.; Marks, M.S.; Rubinstein, E.; Raposo, G. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev. Cell, 2011, 21(4), 708-721. doi: 10.1016/j.devcel.2011.08.019 PMID: 21962903
  47. Cheng, Q.; Li, X.; Wang, Y.; Dong, M.; Zhan, F.; Liu, J. The ceramide pathway is involved in the survival, apoptosis and exosome functions of human multiple myeloma cells in vitro. Acta Pharmacol. Sin., 2018, 39(4), 561-568. doi: 10.1038/aps.2017.118 PMID: 28858294
  48. Charrin, S.; Jouannet, S.; Boucheix, C.; Rubinstein, E. Tetraspanins at a glance. J. Cell Sci., 2014, 127(Pt 17), 3641-3648. PMID: 25128561
  49. Ferreira, J.V.; da Rosa Soares, A.; Ramalho, J.; Máximo Carvalho, C.; Cardoso, M.H.; Pintado, P.; Carvalho, A.S.; Beck, H.C.; Matthiesen, R.; Zuzarte, M.; Girão, H.; van Niel, G.; Pereira, P. LAMP2A regulates the loading of proteins into exosomes. Sci. Adv., 2022, 8(12), eabm1140. doi: 10.1126/sciadv.abm1140 PMID: 35333565
  50. Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, 30(1), 255-289. doi: 10.1146/annurev-cellbio-101512-122326 PMID: 25288114
  51. Hoshino, D.; Kirkbride, K.C.; Costello, K.; Clark, E.S.; Sinha, S.; Grega-Larson, N.; Tyska, M.J.; Weaver, A.M. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep., 2013, 5(5), 1159-1168. doi: 10.1016/j.celrep.2013.10.050 PMID: 24290760
  52. Baixauli, F.; López-Otín, C.; Mittelbrunn, M. Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front. Immunol., 2014, 5, 403. doi: 10.3389/fimmu.2014.00403 PMID: 25191326
  53. Kanemoto, S.; Nitani, R.; Murakami, T.; Kaneko, M.; Asada, R.; Matsuhisa, K.; Saito, A.; Imaizumi, K. Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress. Biochem. Biophys. Res. Commun., 2016, 480(2), 166-172. doi: 10.1016/j.bbrc.2016.10.019 PMID: 27725157
  54. Savina, A.; Vidal, M.; Colombo, M.I. The exosome pathway in K562 cells is regulated by Rab11. J. Cell Sci., 2002, 115(12), 2505-2515. doi: 10.1242/jcs.115.12.2505 PMID: 12045221
  55. Ostrowski, M.; Carmo, N.B.; Krumeich, S.; Fanget, I.; Raposo, G.; Savina, A.; Moita, C.F.; Schauer, K.; Hume, A.N.; Freitas, R.P.; Goud, B.; Benaroch, P.; Hacohen, N.; Fukuda, M.; Desnos, C.; Seabra, M.C.; Darchen, F.; Amigorena, S.; Moita, L.F.; Thery, C. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol., 2010, 12(1), 1-13. doi: 10.1038/ncb2000
  56. Hsu, C.; Morohashi, Y.; Yoshimura, S.; Manrique-Hoyos, N.; Jung, S.; Lauterbach, M.A.; Bakhti, M.; Grønborg, M.; Möbius, W.; Rhee, J.; Barr, F.A.; Simons, M. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A–C. J. Cell Biol., 2010, 189(2), 223-232. doi: 10.1083/jcb.200911018 PMID: 20404108
  57. Koles, K.; Nunnari, J.; Korkut, C.; Barria, R.; Brewer, C.; Li, Y.; Leszyk, J.; Zhang, B.; Budnik, V. Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J. Biol. Chem., 2012, 287(20), 16820-16834. doi: 10.1074/jbc.M112.342667 PMID: 22437826
  58. Baietti, M.F.; Zhang, Z.; Mortier, E.; Melchior, A.; Degeest, G.; Geeraerts, A.; Ivarsson, Y.; Depoortere, F.; Coomans, C.; Vermeiren, E.; Zimmermann, P.; David, G. Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nat. Cell Biol., 2012, 14(7), 677-685. doi: 10.1038/ncb2502 PMID: 22660413
  59. Bonifacino, J.S.; Glick, B.S. The mechanisms of vesicle budding and fusion. Cell, 2004, 116(2), 153-166. doi: 10.1016/S0092-8674(03)01079-1 PMID: 14744428
  60. Fader, C.M.; Sánchez, D.G.; Mestre, M.B.; Colombo, M.I. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim. Biophys. Acta Mol. Cell Res., 2009, 1793(12), 1901-1916. doi: 10.1016/j.bbamcr.2009.09.011 PMID: 19781582
  61. Gross, J.C.; Chaudhary, V.; Bartscherer, K.; Boutros, M. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol., 2012, 14(10), 1036-1045. doi: 10.1038/ncb2574 PMID: 22983114
  62. Savina, A.; Furlán, M.; Vidal, M.; Colombo, M.I. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J. Biol. Chem., 2003, 278(22), 20083-20090. doi: 10.1074/jbc.M301642200 PMID: 12639953
  63. Phuyal, S.; Skotland, T.; Hessvik, N.P.; Simolin, H.; Øverbye, A.; Brech, A.; Parton, R.G.; Ekroos, K.; Sandvig, K.; Llorente, A. The ether lipid precursor hexadecylglycerol stimulates the release and changes the composition of exosomes derived from PC-3 cells. J. Biol. Chem., 2015, 290(7), 4225-4237. doi: 10.1074/jbc.M114.593962 PMID: 25519911
  64. Wang, T.; Li, L.; Hong, W. SNARE proteins in membrane trafficking. Traffic, 2017, 18(12), 767-775. doi: 10.1111/tra.12524 PMID: 28857378
  65. Shao, H.; Im, H.; Castro, C.M.; Breakefield, X.; Weissleder, R.; Lee, H. New technologies for analysis of extracellular vesicles. Chem. Rev., 2018, 118(4), 1917-1950. doi: 10.1021/acs.chemrev.7b00534 PMID: 29384376
  66. Jia, Y.; Yu, L.; Ma, T.; Xu, W.; Qian, H.; Sun, Y.; Shi, H. Small extracellular vesicles isolation and separation: Current techniques, pending questions and clinical applications. Theranostics, 2022, 12(15), 6548-6575. doi: 10.7150/thno.74305 PMID: 36185597
  67. Gardiner, C.; Vizio, D.D.; Sahoo, S.; Théry, C.; Witwer, K.W.; Wauben, M.; Hill, A.F. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J. Extracell. Vesicles, 2016, 5(1), 32945. doi: 10.3402/jev.v5.32945 PMID: 27802845
  68. Royo, F.; Théry, C.; Falcón-Pérez, J.M.; Nieuwland, R.; Witwer, K.W. Methods for separation and characterization of extracellular vesicles: Results of a worldwide survey performed by the ISEV rigor and standardization subcommittee. Cells, 2020, 9(9), 1955. doi: 10.3390/cells9091955 PMID: 32854228
  69. Alzhrani, G.N.; Alanazi, S.T.; Alsharif, S.Y.; Albalawi, A.M.; Alsharif, A.A.; Abdel-Maksoud, M.S.; Elsherbiny, N. Exosomes: Isolation, characterization, and biomedical applications. Cell Biol. Int., 2021, 45(9), 1807-1831. doi: 10.1002/cbin.11620 PMID: 33913604
  70. Purushothaman, A. Exosomes from cell culture-conditioned medium: isolation by ultracentrifugation and characterization. Methods Mol. Biol., 2019, 1952, 233-244. doi: 10.1007/978-1-4939-9133-4_19 PMID: 30825179
  71. Jeppesen, D.K.; Hvam, M.L.; Primdahl-Bengtson, B.; Boysen, A.T.; Whitehead, B.; Dyrskjøt, L.; Ørntoft, T.F.; Howard, K.A.; Ostenfeld, M.S. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J. Extracell. Vesicles, 2014, 3(1), 25011. doi: 10.3402/jev.v3.25011 PMID: 25396408
  72. Zhu, L.; Sun, H.T.; Wang, S.; Huang, S.L.; Zheng, Y.; Wang, C.Q.; Hu, B.Y.; Qin, W.; Zou, T.T.; Fu, Y.; Shen, X.T.; Zhu, W.W.; Geng, Y.; Lu, L.; Jia, H.; Qin, L.X.; Dong, Q.Z. Isolation and characterization of exosomes for cancer research. J. Hematol. Oncol., 2020, 13(1), 152. doi: 10.1186/s13045-020-00987-y PMID: 33168028
  73. Langevin, S.M.; Kuhnell, D.; Orr-Asman, M.A.; Biesiada, J.; Zhang, X.; Medvedovic, M.; Thomas, H.E. Balancing yield, purity and practicality: a modified differential ultracentrifugation protocol for efficient isolation of small extracellular vesicles from human serum. RNA Biol., 2019, 16(1), 5-12. doi: 10.1080/15476286.2018.1564465 PMID: 30604646
  74. Li, P.; Kaslan, M.; Lee, S.H.; Yao, J.; Gao, Z. Progress in exosome isolation techniques. Theranostics, 2017, 7(3), 789-804. doi: 10.7150/thno.18133 PMID: 28255367
  75. Liangsupree, T.; Multia, E.; Riekkola, M.L. Modern isolation and separation techniques for extracellular vesicles. J. Chromatogr. A, 2021, 1636461773. doi: 10.1016/j.chroma.2020.461773 PMID: 33316564
  76. Lamparski, H.G.; Metha-Damani, A.; Yao, J.Y.; Patel, S.; Hsu, D.H.; Ruegg, C.; Le Pecq, J.B. Production and characterization of clinical grade exosomes derived from dendritic cells. J. Immunol. Methods, 2002, 270(2), 211-226. doi: 10.1016/S0022-1759(02)00330-7 PMID: 12379326
  77. Wang, J.; Ma, P.; Kim, D.H.; Liu, B.F.; Demirci, U. Towards microfluidic-based exosome isolation and detection for tumor therapy. Nano Today, 2021, 37101066. doi: 10.1016/j.nantod.2020.101066 PMID: 33777166
  78. Busatto, S.; Vilanilam, G.; Ticer, T.; Lin, W.L.; Dickson, D.; Shapiro, S.; Bergese, P.; Wolfram, J. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells, 2018, 7(12), 273. doi: 10.3390/cells7120273 PMID: 30558352
  79. Zeng, X.; Yi, X.; Chen, L.; Zhang, H.; Zhou, R.; Wu, J.; Chen, Y.; Huang, W.; Zhang, L.; Zheng, J.; Xiao, Y.; Yang, F. Characterization and bioassays of extracellular vesicles extracted by tangential flow filtration. Regen. Med., 2022, 17(3), 141-154. doi: 10.2217/rme-2021-0038 PMID: 35073731
  80. Rho, J.; Chung, J.; Im, H.; Liong, M.; Shao, H.; Castro, C.M.; Weissleder, R.; Lee, H. Magnetic nanosensor for detection and profiling of erythrocyte-derived microvesicles. ACS Nano, 2013, 7(12), 11227-11233. doi: 10.1021/nn405016y PMID: 24295203
  81. Vlassov, A.V.; Magdaleno, S.; Setterquist, R.; Conrad, R. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta, Gen. Subj., 2012, 1820(7), 940-948. doi: 10.1016/j.bbagen.2012.03.017 PMID: 22503788
  82. Soares Martins, T.; Catita, J.; Martins Rosa, I.; A B da Cruz E Silva, O.; Henriques, A.G. Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One, 2018, 13(6), e0198820. doi: 10.1371/journal.pone.0198820 PMID: 29889903
  83. Niu, Z.; Pang, R.T.K.; Liu, W.; Li, Q.; Cheng, R.; Yeung, W.S.B. Polymer-based precipitation preserves biological activities of extracellular vesicles from an endometrial cell line. PLoS One, 2017, 12(10), e0186534. doi: 10.1371/journal.pone.0186534 PMID: 29023592
  84. Rekker, K.; Saare, M.; Roost, A.M.; Kubo, A.L.; Zarovni, N.; Chiesi, A.; Salumets, A.; Peters, M. Comparison of serum exosome isolation methods for microRNA profiling. Clin. Biochem., 2014, 47(1-2), 135-138. doi: 10.1016/j.clinbiochem.2013.10.020 PMID: 24183884
  85. Zhu, J.; Zhang, J.; Ji, X.; Tan, Z.; Lubman, D.M. Column-based Technology for CD9-HPLC immunoaffinity isolation of serum extracellular vesicles. J. Proteome Res., 2021, 20(10), 4901-4911. doi: 10.1021/acs.jproteome.1c00549 PMID: 34473505
  86. Oksvold, M.P.; Neurauter, A.; Pedersen, K.W. Magnetic bead-based isolation of exosomes. Methods Mol. Biol., 2015, 1218, 465-481. doi: 10.1007/978-1-4939-1538-5_27 PMID: 25319668
  87. Tauro, B.J.; Greening, D.W.; Mathias, R.A.; Ji, H.; Mathivanan, S.; Scott, A.M.; Simpson, R.J. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods, 2012, 56(2), 293-304. doi: 10.1016/j.ymeth.2012.01.002 PMID: 22285593
  88. Yoo, C.E.; Kim, G.; Kim, M.; Park, D.; Kang, H.J.; Lee, M.; Huh, N. A direct extraction method for microRNAs from exosomes captured by immunoaffinity beads. Anal. Biochem., 2012, 431(2), 96-98. doi: 10.1016/j.ab.2012.09.008 PMID: 22982508
  89. Greening, D.W.; Xu, R.; Ji, H.; Tauro, B.J.; Simpson, R.J. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol. Biol., 2015, 1295, 179-209. doi: 10.1007/978-1-4939-2550-6_15 PMID: 25820723
  90. Shtam, T.A.; Burdakov, V.S.; Landa, S.B.; Naryzhny, S.N.; Bairamukov, V.Y.; Malek, A.V.; Orlov, Y.N.; Filatov, M.V. Aggregation by lectin-methodical approach for effective isolation of exosomes from cell culture supernatant for proteome profiling. Tsitologiia, 2017, 59(1), 5-12. PMID: 30188097
  91. Groot Kormelink, T.; Arkesteijn, G.J.; Nauwelaers, F.A.; van den Engh, G.; Nolte-'t Hoen, E.N.; Wauben, M.H. Prerequisites for the analysis and sorting of extracellular vesicle subpopulations by high-resolution flow cytometry. Cytometry, 2016, 89(2), 135-147.
  92. Lin, B.; Yang, J.; Song, Y.; Dang, G.; Feng, J. Exosomes and Atherogenesis. Front. Cardiovasc. Med., 2021, 8738031. doi: 10.3389/fcvm.2021.738031 PMID: 34513963
  93. Patel, N.; Chin, D.D.; Chung, E.J. Exosomes in atherosclerosis, a double-edged sword: their role in disease pathogenesis and their potential as novel therapeutics. AAPS J., 2021, 23(5), 95. doi: 10.1208/s12248-021-00621-w PMID: 34312734
  94. Hergenreider, E.; Heydt, S.; Tréguer, K.; Boettger, T.; Horrevoets, A.J.G.; Zeiher, A.M.; Scheffer, M.P.; Frangakis, A.S.; Yin, X.; Mayr, M.; Braun, T.; Urbich, C.; Boon, R.A.; Dimmeler, S. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat. Cell Biol., 2012, 14(3), 249-256. doi: 10.1038/ncb2441 PMID: 22327366
  95. Cordes, K.R.; Sheehy, N.T.; White, M.P.; Berry, E.C.; Morton, S.U.; Muth, A.N.; Lee, T.H.; Miano, J.M.; Ivey, K.N.; Srivastava, D. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 2009, 460(7256), 705-710. doi: 10.1038/nature08195 PMID: 19578358
  96. Boettger, T.; Beetz, N.; Kostin, S.; Schneider, J.; Krüger, M.; Hein, L.; Braun, T. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Invest., 2009, 119(9), 2634-2647. doi: 10.1172/JCI38864 PMID: 19690389
  97. Zernecke, A.; Bidzhekov, K.; Noels, H.; Shagdarsuren, E.; Gan, L.; Denecke, B.; Hristov, M.; Köppel, T.; Jahantigh, M.N.; Lutgens, E.; Wang, S.; Olson, E.N.; Schober, A.; Weber, C. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal., 2009, 2(100), ra81. doi: 10.1126/scisignal.2000610 PMID: 19996457
  98. Chistiakov, D.; Orekhov, A.; Bobryshev, Y. Cardiac extracellular vesicles in normal and infarcted heart. Int. J. Mol. Sci., 2016, 17(1), 63. doi: 10.3390/ijms17010063 PMID: 26742038
  99. Li, L.; Wen, J.; Li, H.; He, Y.; Cui, X.; Zhang, X.; Guan, X.; Li, Z.; Cheng, M. Exosomal circ-1199 derived from EPCs exposed to oscillating shear stress acts as a sponge of let-7g-5p to promote endothelial-mesenchymal transition of EPCs by increasing HMGA2 expression. Life Sci., 2023, 312121223. doi: 10.1016/j.lfs.2022.121223 PMID: 36435223
  100. Gao, S.; Wassler, M.; Zhang, L.; Li, Y.; Wang, J.; Zhang, Y.; Shelat, H.; Williams, J.; Geng, Y.J. MicroRNA-133a regulates insulin-like growth factor-1 receptor expression and vascular smooth muscle cell proliferation in murine atherosclerosis. Atherosclerosis, 2014, 232(1), 171-179. doi: 10.1016/j.atherosclerosis.2013.11.029 PMID: 24401233
  101. Goettsch, C.; Hutcheson, J.D.; Aikawa, M.; Iwata, H.; Pham, T.; Nykjaer, A.; Kjolby, M.; Rogers, M.; Michel, T.; Shibasaki, M.; Hagita, S.; Kramann, R.; Rader, D.J.; Libby, P.; Singh, S.A.; Aikawa, E. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. J. Clin. Invest., 2016, 126(4), 1323-1336. doi: 10.1172/JCI80851 PMID: 26950419
  102. Xie, Z.; Wang, X.; Liu, X.; Du, H.; Sun, C.; Shao, X.; Tian, J.; Gu, X.; Wang, H.; Tian, J.; Yu, B. Adipose-derived exosomes exert proatherogenic effects by regulating macrophage foam cell formation and polarization. J. Am. Heart Assoc., 2018, 7(5), e007442. doi: 10.1161/JAHA.117.007442 PMID: 29502100
  103. Jansen, F.; Yang, X.; Proebsting, S.; Hoelscher, M.; Przybilla, D.; Baumann, K.; Schmitz, T.; Dolf, A.; Endl, E.; Franklin, B.S.; Sinning, J.M.; Vasa-Nicotera, M.; Nickenig, G.; Werner, N. MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J. Am. Heart Assoc., 2014, 3(6), e001249. doi: 10.1161/JAHA.114.001249 PMID: 25349183
  104. Zheng, B.; Yin, W.N.; Suzuki, T.; Zhang, X.H.; Zhang, Y.; Song, L.L.; Jin, L.S.; Zhan, H.; Zhang, H.; Li, J.S.; Wen, J.K. Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Mol. Ther., 2017, 25(6), 1279-1294.
  105. Li, L.; Wang, Z.; Hu, X.; Wan, T.; Wu, H.; Jiang, W.; Hu, R. Human aortic smooth muscle cell-derived exosomal miR-221/222 inhibits autophagy via a PTEN/Akt signaling pathway in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun., 2016, 479(2), 343-350. doi: 10.1016/j.bbrc.2016.09.078 PMID: 27644883
  106. Gao, W.; Liu, H.; Yuan, J.; Wu, C.; Huang, D.; Ma, Y.; Zhu, J.; Ma, L.; Guo, J.; Shi, H.; Zou, Y.; Ge, J. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF α mediated NF κB pathway. J. Cell. Mol. Med., 2016, 20(12), 2318-2327. doi: 10.1111/jcmm.12923 PMID: 27515767
  107. Chen, L.; Yang, W.; Guo, Y.; Chen, W.; Zheng, P.; Zeng, J.; Tong, W. Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis. PLoS One, 2017, 12(9), e0185406. doi: 10.1371/journal.pone.0185406 PMID: 28945793
  108. Li, J.; Tan, M.; Xiang, Q.; Zhou, Z.; Yan, H. Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response. Thromb. Res., 2017, 154, 96-105. doi: 10.1016/j.thromres.2017.04.016 PMID: 28460288
  109. Yang, W.; Yin, R.; Zhu, X.; Yang, S.; Wang, J.; Zhou, Z.; Pan, X.; Ma, A. Mesenchymal stem-cell-derived exosomal miR-145 inhibits atherosclerosis by targeting JAM-A. Mol. Ther. Nucleic Acids, 2021, 23, 119-131. doi: 10.1016/j.omtn.2020.10.037 PMID: 33335797
  110. Li, J.; Xue, H.; Li, T.; Chu, X.; Xin, D.; Xiong, Y.; Qiu, W.; Gao, X.; Qian, M.; Xu, J.; Wang, Z.; Li, G. Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE−/- mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem. Biophys. Res. Commun., 2019, 510(4), 565-572. doi: 10.1016/j.bbrc.2019.02.005 PMID: 30739785
  111. Bouchareychas, L.; Duong, P.; Covarrubias, S.; Alsop, E.; Phu, T.A.; Chung, A.; Gomes, M.; Wong, D.; Meechoovet, B.; Capili, A.; Yamamoto, R.; Nakauchi, H.; McManus, M.T.; Carpenter, S.; Van Keuren-Jensen, K.; Raffai, R.L. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via MicroRNA cargo. Cell Rep., 2020, 32(2), 107881. doi: 10.1016/j.celrep.2020.107881 PMID: 32668250
  112. Basatemur, G.L.; Jørgensen, H.F.; Clarke, M.C.H.; Bennett, M.R.; Mallat, Z. Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol., 2019, 16(12), 727-744. doi: 10.1038/s41569-019-0227-9 PMID: 31243391
  113. Wang, C.; Liu, C.; Shi, J.; Li, H.; Jiang, S.; Zhao, P.; Zhang, M.; Du, G.; Fu, S.; Li, S.; Wang, Z.; Wang, X.; Gao, F.; Sun, P.; Tian, J. Nicotine exacerbates endothelial dysfunction and drives atherosclerosis via extracellular vesicle-miRNA. Cardiovasc. Res., 2022. PMID: 36006370
  114. Goetzl, E.J.; Schwartz, J.B.; Mustapic, M.; Lobach, I.V.; Daneman, R.; Abner, E.L.; Jicha, G.A. Altered cargo proteins of human plasma endothelial cell–derived exosomes in atherosclerotic cerebrovascular disease. FASEB J., 2017, 31(8), 3689-3694. doi: 10.1096/fj.201700149 PMID: 28476896
  115. Al-Rawaf, H.A. Circulating microRNAs and adipokines as markers of metabolic syndrome in adolescents with obesity. Clin. Nutr., 2019, 38(5), 2231-2238. doi: 10.1016/j.clnu.2018.09.024 PMID: 30309709
  116. Lu, M.; Yuan, S.; Li, S.; Li, L.; Liu, M.; Wan, S. The exosome-derived biomarker in atherosclerosis and its clinical application. J. Cardiovasc. Transl. Res., 2019, 12(1), 68-74. doi: 10.1007/s12265-018-9796-y PMID: 29802541
  117. Li, X.; He, X.; Wang, J.; Wang, D.; Cong, P.; Zhu, A.; Chen, W. The regulation of exosome-derived miRNA on heterogeneity of macrophages in atherosclerotic plaques. Front. Immunol., 2020, 11, 2175. doi: 10.3389/fimmu.2020.02175 PMID: 33013913
  118. Wu, W.; Pan, Y.; Cai, M.; Cen, J.; Chen, C.; Zheng, L.; Liu, X.; Xiong, X. Plasma-derived exosomal circular RNA hsa_circ_0005540 as a novel diagnostic biomarker for coronary artery disease. Dis. Markers, 2020, 2020, 1-7. doi: 10.1155/2020/3178642 PMID: 32670434
  119. Wiklander, O.P.B.; Brennan, M.Á.; Lötvall, J.; Breakefield, X.O.; EL Andaloussi, S. Advances in therapeutic applications of extracellular vesicles. Sci. Transl. Med., 2019, 11(492), eaav8521. doi: 10.1126/scitranslmed.aav8521 PMID: 31092696
  120. Shi, C.; Ulke-Lemée, A.; Deng, J.; Batulan, Z.; O’Brien, E.R. Characterization of heat shock protein 27 in extracellular vesicles: a potential anti-inflammatory therapy. FASEB J., 2019, 33(2), 1617-1630. doi: 10.1096/fj.201800987R PMID: 30188755
  121. Guo, Z.; Zhao, Z.; Yang, C.; Song, C. Transfer of microRNA-221 from mesenchymal stem cell-derived extracellular vesicles inhibits atherosclerotic plaque formation. Transl. Res., 2020, 226, 83-95. doi: 10.1016/j.trsl.2020.07.003 PMID: 32659442
  122. Venkat, P.; Cui, C.; Chopp, M.; Zacharek, A.; Wang, F.; Landschoot-Ward, J.; Shen, Y.; Chen, J. MiR-126 mediates brain endothelial cell exosome treatment–induced neurorestorative effects after stroke in type 2 diabetes mellitus mice. Stroke, 2019, 50(10), 2865-2874. doi: 10.1161/STROKEAHA.119.025371 PMID: 31394992
  123. Milano, G.; Biemmi, V.; Lazzarini, E.; Balbi, C.; Ciullo, A.; Bolis, S.; Ameri, P.; Di Silvestre, D.; Mauri, P.; Barile, L.; Vassalli, G. Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity. Cardiovasc. Res., 2020, 116(2), 383-392. PMID: 31098627
  124. Casado-Díaz, A.; Quesada-Gómez, J.M.; Dorado, G. Extracellular vesicles derived from mesenchymal stem cells (MSC) in regenerative medicine: applications in skin wound healing. Front. Bioeng. Biotechnol., 2020, 8, 146. doi: 10.3389/fbioe.2020.00146 PMID: 32195233
  125. Cui, G.H.; Guo, H.D.; Li, H.; Zhai, Y.; Gong, Z.B.; Wu, J.; Liu, J.S.; Dong, Y.R.; Hou, S.X.; Liu, J.R. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer's disease. Immun. Ageing, 2019, 16, 10.
  126. Villata, S.; Canta, M.; Cauda, V. EVs and bioengineering: from cellular products to engineered nanomachines. Int. J. Mol. Sci., 2020, 21(17), 6048. doi: 10.3390/ijms21176048 PMID: 32842627
  127. Sun, D.; Zhuang, X.; Xiang, X.; Liu, Y.; Zhang, S.; Liu, C.; Barnes, S.; Grizzle, W.; Miller, D.; Zhang, H.G. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther., 2010, 18(9), 1606-1614.
  128. Ma, Q.; Fan, Q.; Han, X.; Dong, Z.; Xu, J.; Bai, J.; Tao, W.; Sun, D.; Wang, C. Platelet-derived extracellular vesicles to target plaque inflammation for effective anti-atherosclerotic therapy. J. Control. Release, 2021, 329, 445-453.
  129. Zhang, Y.; Bi, J.; Huang, J.; Tang, Y.; Du, S.; Li, P. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int. J. Nanomedicine, 2020, 15, 6917-6934. doi: 10.2147/IJN.S264498 PMID: 33061359
  130. Antimisiaris, S.; Mourtas, S.; Marazioti, A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics, 2018, 10(4), 218. doi: 10.3390/pharmaceutics10040218 PMID: 30404188
  131. Tian, Y.; Li, S.; Song, J.; Ji, T.; Zhu, M.; Anderson, G.J.; Wei, J.; Nie, G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 2014, 35(7), 2383-2390. doi: 10.1016/j.biomaterials.2013.11.083 PMID: 24345736
  132. Zhu, Q.; Ling, X.; Yang, Y.; Zhang, J.; Li, Q.; Niu, X.; Hu, G.; Chen, B.; Li, H.; Wang, Y.; Deng, Z. Embryonic stem cells-derived exosomes endowed with targeting properties as chemotherapeutics delivery vehicles for glioblastoma therapy. Adv. Sci. (Weinh.), 2019, 6(6), 1801899. doi: 10.1002/advs.201801899 PMID: 30937268

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers