Review on Nutritional Potential of Underutilized Millets as a Miracle Grain


Cite item

Full Text

Abstract

The current situation, which includes changes in eating habits, an increasing population, and the unrestricted use of natural resources, has resulted in a lack of resources that could be used to provide nourishing food to everyone. Natural plant resources are quickly being depleted, so it is necessary to consider new alternatives. In addition to the staple grains of rice and wheat, many other crops are being consumed that need to be utilized to their full potential and have the potential to replace the staple crops. Millets are one of the most important underutilized crops that have the potential to be used as a nutricereal. Millets have a high nutritional value, do not produce acids, do not contain gluten, and can contribute to a healthy diet. Due to a lack of awareness regarding the nutritional value of millets, their consumption is still restricted to the population that adheres to conventional diets and is economically disadvantaged even though millets contain a significant amount of nutrients. Millets are becoming increasingly unpopular due to a lack of processing technologies, food subsidies, and the inconvenience of preparing food with millets. Millets are a Nutricereal rich in carbohydrates, dietary fibers, energy, essential fatty acids, proteins, vitamin B, and minerals such as calcium, iron, magnesium, potassium, and zinc. These nutrients help to protect against post-translational diseases such as diabetes, cancer, cardiovascular disease, and celiac disease, among others. Millets are beneficial for controlling blood pressure, blood sugar level, and thyroid function; however, despite these functional properties, millets consumption has declined. Utilizing millets and other staple food crops to develop alternative food sources has become a new area of focus for businesses in the food industry. In addition, millet consumption can help foster immunity and health, which is essential in strengthening our fight against malnutrition in children and adolescents. In this article, the authors examine the potential of millets in terms of their nutricereal qualities.

About the authors

Sonia Singh

Institute of Pharmaceutical Research, GLA University

Author for correspondence.
Email: info@benthamscience.net

Himanshu Sharma

Department of Computer Engineering & Applications, GLA University

Email: info@benthamscience.net

Raghavan Ramankutty

, Datha Ayuryoga International Health Institute

Email: info@benthamscience.net

Sarada Ramaswamy

, Datha Ayuryoga International Health Institute

Email: info@benthamscience.net

References

  1. McKevith, B. Nutritional aspects of cereals. Nutr. Bull., 2004, 29(2), 111-142. doi: 10.1111/j.1467-3010.2004.00418.x
  2. Latham, M.C. Human nutrition in the developing world; Food & Agriculture Org: Ithaca, New York, USA, 1997.
  3. Lu, H.; Yang, X.; Ye, M.; Liu, K.B.; Xia, Z.; Ren, X.; Cai, L.; Wu, N.; Liu, T.S. Culinary archaeology: Millet noodles in Late Neolithic China. Nature, 2005, 437(7061), 967-968. doi: 10.1038/437967a PMID: 16222289
  4. Shahidi, F.; Chandrasekara, A. Millet grain phenolics and their role in disease risk reduction and health promotion: A review. J. Funct. Foods, 2013, 5(2), 570-581. doi: 10.1016/j.jff.2013.02.004
  5. Slavin, J. Why whole grains are protective: Biological mechanisms. Proc. Nutr. Soc., 2003, 62(1), 129-134. doi: 10.1079/PNS2002221 PMID: 12740067
  6. Nicodemus, K.K.; Jacobs, D.R., Jr; Folsom, A.R. Whole and refined grain intake and risk of incident postmenopausal breast cancer (United States). Cancer Causes Control, 2001, 12(10), 917-925. doi: 10.1023/A:1013746719385 PMID: 11808711
  7. Meyer, K.A.; Kushi, L.H.; Jacobs, D.R., Jr; Slavin, J.; Sellers, T.A.; Folsom, A.R. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am. J. Clin. Nutr., 2000, 71(4), 921-930. doi: 10.1093/ajcn/71.4.921 PMID: 10731498
  8. Fung, T.T.; Hu, F.B.; Pereira, M.A.; Liu, S.; Stampfer, M.J.; Colditz, G.A.; Willett, W.C. Whole-grain intake and the risk of type 2 diabetes: A prospective study in men. Am. J. Clin. Nutr., 2002, 76(3), 535-540. doi: 10.1093/ajcn/76.3.535 PMID: 12197996
  9. Liu, S.; Buring, J.E.; Sesso, H.D.; Rimm, E.B.; Willett, W.C.; Manson, J.E. A prospective study of dietary fiber intake and risk of cardiovascular disease among women. J. Am. Coll. Cardiol., 2002, 39(1), 49-56. doi: 10.1016/S0735-1097(01)01695-3 PMID: 11755286
  10. Anderson, J.W.; Hanna, T.J.; Peng, X.; Kryscio, R.J. Whole grain foods and heart disease risk. J. Am. Coll. Nutr., 2000, 19(3), 291S-299S.
  11. Chinchole, M; Pathak, RK; Singh, UM; Kumar, A Molecular characterization of EcCIPK 24 gene of finger millet (Eleusine coracana) for investigating its regulatory role in calcium transport. 3 Biotech, 2017, 7, 1-10.
  12. Yang, X.; Wan, Z.; Perry, L.; Lu, H.; Wang, Q.; Zhao, C.; Li, J.; Xie, F.; Yu, J.; Cui, T.; Wang, T.; Li, M.; Ge, Q. Early millet use in northern China. Proc. Natl. Acad. Sci., 2012, 109(10), 3726-3730. doi: 10.1073/pnas.1115430109 PMID: 22355109
  13. Nithiyanantham, S.; Kalaiselvi, P.; Mahomoodally, M.F.; Zengin, G.; Abirami, A.; Srinivasan, G. Nutritional and functional roles of millets—A review. J. Food Biochem., 2019, 43(7), e12859. doi: 10.1111/jfbc.12859 PMID: 31353706
  14. Palaniswamy, S.K.; Govindaswamy, V. In-vitro probiotic characteristics assessment of feruloyl esterase and glutamate decarboxylase producing Lactobacillus spp. isolated from traditional fermented millet porridge (kambu koozh). Lebensm. Wiss. Technol., 2016, 68, 208-216. doi: 10.1016/j.lwt.2015.12.024
  15. Sharma, R.; Sharma, S.; Dar, B.N.; Singh, B. Millets as potential nutri‐cereals: A review of nutrient composition, phytochemical profile and techno‐functionality. Int. J. Food Sci. Technol., 2021, 56(8), 3703-3718. doi: 10.1111/ijfs.15044
  16. Taylor, J.R.; Emmambux, M.N. Gluten-free foods and beverages from millets.Gluten-free cereal products and beverages; Academic Press, 2008, pp. 119-V. doi: 10.1016/B978-012373739-7.50008-3
  17. Lu, H.; Zhang, J.; Liu, K.; Wu, N.; Li, Y.; Zhou, K.; Ye, M.; Zhang, T.; Zhang, H.; Yang, X.; Shen, L.; Xu, D.; Li, Q. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc. Natl. Acad. Sci. USA, 2009, 106(18), 7367-7372. doi: 10.1073/pnas.0900158106 PMID: 19383791
  18. Amadou, I.; Gbadamosi, O.S.; Le, G.W. Millet-based traditional processed foods and beverages—A review. Cereal Foods World, 2011, 56(3), 115. doi: 10.1094/CFW-56-3-0115
  19. Bhattacharjee, R.; Khairwal, I.S.; Bramel, P.J.; Reddy, K.N. Establishment of a pearl millet Pennisetum glaucum (L.) R. Br. core collection based on geographical distribution and quantitative traits. Euphytica, 2007, 155(1-2), 35-45. doi: 10.1007/s10681-006-9298-x
  20. Himanshu, K.; Sonawane, S.K.; Arya, S.S. Nutritional and nutraceutical properties of millets: A review. Clin J Nutr Diet., 2018, 1(1), 1-0.
  21. Serna-Saldivar, S.O.; Espinosa-Ramírez, J. Grain structure and grain chemical composition.Sorghum and millets; AACC International Press, 2019, pp. 85-129. doi: 10.1016/B978-0-12-811527-5.00005-8
  22. Patil, J.V., Ed.; Millets and Sorghum: biology and genetic improvement; John Wiley & Sons, 2016.
  23. Zhu, F. Structure, physicochemical properties, and uses of millet starch. Food Res. Int., 2014, 64, 200-211. doi: 10.1016/j.foodres.2014.06.026 PMID: 30011641
  24. Amponsah, A.G.; Massimo, M.; Eric, B.; Koushik, S. Physical and molecular characterization of millet starches. Cereal Chem., 2014, 91, 280-292.
  25. Veena Bharati, B.; Chimmad, V.; Naik, R.K.; Shanthakumar, G. Physico-chemical and nutritional studies in barnyard millet. Karnataka J. Agric. Sci., 2010, 18(1)
  26. Balasubramanian, S. Processing of millets. Madurai Symposium, Thamukkam Grounds, Madurai, 2013, 13.
  27. Bean, SR; Zhu, L; Smith, BM; Wilson, JD; Ioerger, BP; Tilley, M Starch and protein chemistry and functional properties. Sorghum and millets, 2019, 1, 131-170. doi: 10.1016/B978-0-12-811527-5.00006-X
  28. Taylor, J.R.; Taylor, J. Proteins from sorghum and millets. Sustainable protein sources; Academic Press, 2017, pp. 79-104. doi: 10.1016/B978-0-12-802778-3.00005-6
  29. Shobana, S.; Krishnaswamy, K.; Sudha, V.; Malleshi, N.G.; Anjana, R.M.; Palaniappan, L.; Mohan, V. Finger millet (Ragi, Eleusine coracana L.): A review of its nutritional properties, processing, and plausible health benefits. Adv. Food Nutr. Res., 2013, 69, 1-39. doi: 10.1016/B978-0-12-410540-9.00001-6 PMID: 23522794
  30. Slama, A.; Cherif, A.; Sakouhi, F.; Boukhchina, S.; Radhouane, L. Fatty acids, phytochemical composition and antioxidant potential of pearl millet oil. J. Verbraucherschutz Lebensmsicherh., 2020, 15(2), 145-151. doi: 10.1007/s00003-019-01250-4
  31. Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci., 2010, 4(5), 200-222.
  32. Vali Pasha, K.; Ratnavathi, C.V.; Ajani, J.; Raju, D.; Manoj Kumar, S.; Beedu, S.R. Proximate, mineral composition and antioxidant activity of traditional small millets cultivated and consumed in Rayalaseema region of south India. J. Sci. Food Agric., 2018, 98(2), 652-660. doi: 10.1002/jsfa.8510 PMID: 28665516
  33. Gilani, G.S.; Cockell, K.A.; Sepehr, E. Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J. AOAC Int., 2005, 88(3), 967-987. doi: 10.1093/jaoac/88.3.967 PMID: 16001874
  34. Serna Saldivar, S.O. Cereals dietary importance, encyclopedia of food sciences and nutrition. In: J. Sci. Di; , 2003; 2, .
  35. Oghbaei, M.; Prakash, J. Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review. Cogent Food Agric., 2016, 2(1), 1136015. doi: 10.1080/23311932.2015.1136015
  36. Rasane, P.; Jha, A.; Kumar, A.; Sharma, N. Reduction in phytic acid content and enhancement of antioxidant properties of nutricereals by processing for developing a fermented baby food. J. Food Sci. Technol., 2015, 52(6), 3219-3234. PMID: 26028703
  37. Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol., 2015, 52(2), 676-684. doi: 10.1007/s13197-013-0978-y PMID: 25694676
  38. Vinoth, A.; Ravindhran, R. Biofortification in millets: A sustainable approach for nutritional security. Front. Plant Sci., 2017, 8, 29. doi: 10.3389/fpls.2017.00029 PMID: 28167953
  39. Asharani, V.T.; Jayadeep, A.; Malleshi, N.G. Natural antioxidants in edible flours of selected small millets. Int. J. Food Prop., 2010, 13(1), 41-50. doi: 10.1080/10942910802163105
  40. McDonough, C.M.; Rooney, L.W.; Serna-Saldivar, S.O. The millets. Handbook of cereal science and technology; CRC Press, 2000, pp. 177-201.
  41. Miller, H.E.; Rigelhof, F.; Marquart, L.; Prakash, A.; Kanter, M. Antioxidant content of whole grain breakfast cereals, fruits and vegetables. J. Am. Coll. Nutr., 2000, 19(3), 312S-319S.
  42. Tian, S.; Nakamura, K.; Kayahara, H. Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. J. Agric. Food Chem., 2004, 52(15), 4808-4813. doi: 10.1021/jf049446f PMID: 15264919
  43. Chandrasekara, A.; Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J. Funct. Foods, 2011, 3(3), 144-158. doi: 10.1016/j.jff.2011.03.007
  44. Chethan, S.; Malleshi, N. Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability. Food Chem., 2007, 105(2), 862-870. doi: 10.1016/j.foodchem.2007.02.012
  45. Sartelet, H.; Serghat, S.; Lobstein, A.; Ingenbleek, Y.; Anton, R.; Petitfrère, E.; Aguie-Aguie, G.; Martiny, L.; Haye, B. Flavonoids extracted from fonio millet (Digitaria exilis) reveal potent antithyroid properties. Nutrition, 1996, 12(2), 100-106. doi: 10.1016/0899-9007(96)90707-8 PMID: 8724380
  46. Watanabe, M. Antioxidative phenolic compounds from Japanese barnyard millet (Echinochloa utilis) grains. J. Agric. Food Chem., 1999, 47(11), 4500-4505. doi: 10.1021/jf990498s PMID: 10552841
  47. Pradeep, S.R.; Guha, M. Effect of processing methods on the nutraceutical and antioxidant properties of little millet (Panicum sumatrense) extracts. Food Chem., 2011, 126(4), 1643-1647. doi: 10.1016/j.foodchem.2010.12.047 PMID: 25213939
  48. Xiang, J.; Apea-Bah, F.B.; Ndolo, V.U.; Katundu, M.C.; Beta, T. Profile of phenolic compounds and antioxidant activity of finger millet varieties. Food Chem., 2019, 275, 361-368. doi: 10.1016/j.foodchem.2018.09.120 PMID: 30724208
  49. Moreau, R.A.; Nyström, L.; Whitaker, B.D.; Winkler-Moser, J.K.; Baer, D.J.; Gebauer, S.K.; Hicks, K.B. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog. Lipid Res., 2018, 70, 35-61. doi: 10.1016/j.plipres.2018.04.001 PMID: 29627611
  50. Bhandari, S.R.; Lee, Y.S. The contents of phytosterols, squalene, and vitamin E and the composition of fatty acids of korean landrace setaria italica and Sorghum bicolar seeds. Hangug. Jaweon Sigmul Haghoeji, 2013, 26(6), 663-672. doi: 10.7732/kjpr.2013.26.6.663
  51. Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum. Nutr., 2007, 62(3), 85-91. doi: 10.1007/s11130-007-0046-8 PMID: 17594521
  52. Pang, M.; He, S.; Wang, L.; Cao, X.; Cao, L.; Jiang, S. Physicochemical properties, antioxidant activities and protective effect against acute ethanol-induced hepatic injury in mice of foxtail millet (Setaria italica) bran oil. Food Funct., 2014, 5(8), 1763-1770. doi: 10.1039/C4FO00106K PMID: 24909671
  53. Duodu, K.G.; Awika, J.M. Phytochemical-related health-promoting attributes of sorghum and millets.Sorghum and millets; AACC International Press, 2019, pp. 225-258. doi: 10.1016/B978-0-12-811527-5.00008-3
  54. Ji, J.; Liu, Y.; Ge, Z.; Zhang, Y.; Wang, X. Oleochemical properties for different fractions of foxtail millet bran. J. Oleo Sci., 2019, 68(8), 709-718. doi: 10.5650/jos.ess19063 PMID: 31292341
  55. Radhajeyalakshmi, R.; Yamunarani, K.; Seetharaman, K.; Velazhahan, R. Existence of thaumatin-like proteins (TLPs) in seeds of cereals. Acta Phytopathol. Entomol. Hung., 2003, 38(3-4), 251-257. doi: 10.1556/APhyt.38.2003.3-4.5
  56. Banerjee, S.; Sanjay, K.R.; Chethan, S.; Malleshi, N.G. Finger millet (Eleusine coracana) polyphenols: Investigation of their antioxidant capacity and antimicrobial activity. Afr. J. Food Sci., 2012, 6(13), 362-374. doi: 10.5897/AJFS12.031
  57. Siwela, M.; Taylor, J.R.N.; de Milliano, W.A.J.; Duodu, K.G. Influence of phenolics in finger millet on grain and malt fungal load, and malt quality. Food Chem., 2010, 121(2), 443-449. doi: 10.1016/j.foodchem.2009.12.062
  58. Shi, J.; Shan, S.; Li, H.; Song, G.; Li, Z. Anti-inflammatory effects of millet bran derived-bound polyphenols in LPS-induced HT-29 cell via ROS/miR-149/Akt/NF-κB signaling pathway. Oncotarget, 2017, 8(43), 74582-74594. doi: 10.18632/oncotarget.20216 PMID: 29088809
  59. Lakshmi Kumari, P.; Sumathi, S. Effect of consumption of finger millet on hyperglycemia in non-insulin dependent diabetes mellitus (NIDDM) subjects. Plant Foods Hum. Nutr., 2002, 57(3/4), 205-213. doi: 10.1023/A:1021805028738 PMID: 12602929
  60. Choi, Y.Y.; Osada, K.; Ito, Y.; Nagasawa, T.; Choi, M.R.; Nishizawa, N. Effects of dietary protein of Korean foxtail millet on plasma adiponectin, HDL-cholesterol, and insulin levels in genetically type 2 diabetic mice. Biosci. Biotechnol. Biochem., 2005, 69(1), 31-37. doi: 10.1271/bbb.69.31 PMID: 15665464
  61. Park, K.O.; Ito, Y.; Nagasawa, T.; Choi, M.R.; Nishizawa, N. Effects of dietary Korean proso-millet protein on plasma adiponectin, HDL cholesterol, insulin levels, and gene expression in obese type 2 diabetic mice. Biosci. Biotechnol. Biochem., 2008, 72(11), 2918-2925. doi: 10.1271/bbb.80395 PMID: 18997420
  62. Ito, K.; Ozasa, H.; Noda, Y.; Arii, S.; Horikawa, S. Effects of free radical scavenger on acute liver injury induced by d-galactosamine and lipopolysaccharide in rats. Hepatol. Res., 2008, 38(2), 194-201. PMID: 17727650
  63. Sireesha, Y.; Kasetti, R.B.; Nabi, S.A.; Swapna, S.; Apparao, C. Antihyperglycemic and hypolipidemic activities of Setaria italica seeds in STZ diabetic rats. Pathophysiology, 2011, 18(2), 159-164. doi: 10.1016/j.pathophys.2010.08.003 PMID: 20869855
  64. Lee, S.H.; Chung, I.M.; Cha, Y.S.; Park, Y. Millet consumption decreased serum concentration of triglyceride and C-reactive protein but not oxidative status in hyperlipidemic rats. Nutr. Res., 2010, 30(4), 290-296. doi: 10.1016/j.nutres.2010.04.007 PMID: 20534332
  65. Shobana, S.; Sreerama, Y.N.; Malleshi, N.G. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of α-glucosidase and pancreatic amylase. Food Chem., 2009, 115(4), 1268-1273. doi: 10.1016/j.foodchem.2009.01.042
  66. Jain, S.; Bhatia, G.; Barik, R.; Kumar, P.; Jain, A.; Dixit, V.K. Antidiabetic activity of Paspalum scrobiculatum Linn. in alloxan induced diabetic rats. J. Ethnopharmacol., 2010, 127(2), 325-328. doi: 10.1016/j.jep.2009.10.038 PMID: 19900528
  67. Spiller, G.A. CRC handbook of dietary fiber in human nutrition; CRC press, 2001. doi: 10.1201/9781420038514
  68. Devi, P.B.; Vijayabharathi, R.; Sathyabama, S.; Malleshi, N.G.; Priyadarisini, V.B. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: A review. J. Food Sci. Technol., 2014, 51(6), 1021-1040. doi: 10.1007/s13197-011-0584-9 PMID: 24876635
  69. Mohamed, T.K.; Issoufou, A.; Zhou, H. Antioxidant activity of fractionated foxtail millet protein hydrolysate. Int. Food Res. J., 2012, 19(1)
  70. Quesada, S.; Azofeifa, G.; Jatunov, S.; Jiménez, G. Carotenoids composition, antioxidant activity and glycemic index of two varieties of Bactris Gasipaes. Emir. J. Food Agric., 2011, 482-489.
  71. Hegde, P.S.; Rajasekaran, N.S.; Chandra, T.S. Effects of the antioxidant properties of millet species on oxidative stress and glycemic status in alloxan-induced rats. Nutr. Res., 2005, 25(12), 1109-1120. doi: 10.1016/j.nutres.2005.09.020
  72. Viswanath, V.; Urooj, A.; Malleshi, N.G. Evaluation of antioxidant and antimicrobial properties of finger millet polyphenols (Eleusine coracana). Food Chem., 2009, 114(1), 340-346. doi: 10.1016/j.foodchem.2008.09.053
  73. Bellato, S.; Ciccoritti, R.; Del Frate, V.; Sgrulletta, D.; Carbone, K. Influence of genotype and environment on the content of 5-n alkylresorcinols, total phenols and on the antiradical activity of whole durum wheat grains. J. Cereal Sci., 2013, 57(2), 162-169. doi: 10.1016/j.jcs.2012.11.003
  74. Wei, S.; Cheng, D.; Yu, H.; Wang, X.; Song, S.; Wang, C. Millet-enriched diets attenuate high salt-induced hypertension and myocardial damage in male rats. J. Funct. Foods, 2018, 44, 304-312. doi: 10.1016/j.jff.2018.03.028
  75. Shan, S.; Shi, J.; Li, Z.; Gao, H.; Shi, T.; Li, Z.; Li, Z. Targeted anti-colon cancer activities of a millet bran-derived peroxidase were mediated by elevated ROS generation. Food Funct., 2015, 6(7), 2331-2338. doi: 10.1039/C5FO00260E PMID: 26075747
  76. Shan, S.; Niu, J.; Yin, R.; Shi, J.; Zhang, L.; Wu, C.; Li, H.; Li, Z. Peroxidase from foxtail millet bran exerts anti-colorectal cancer activity via targeting cell-surface GRP78 to inactivate STAT3 pathway. Acta Pharm. Sin. B, 2022, 12(3), 1254-1270. doi: 10.1016/j.apsb.2021.10.004 PMID: 35530132
  77. Zhang, L.; Liu, R.; Niu, W. Phytochemical and antiproliferative activity of proso millet. PLoS One, 2014, 9(8), e104058. doi: 10.1371/journal.pone.0104058 PMID: 25098952
  78. Sivalingam, N.; Ramadoss, D.P. Vanillin extracted from proso and barnyard millets induces cell cycle inhibition and apoptotic cell death in MCF-7 cell line. J. Cancer Res. Ther., 2021, 17(6), 1425-1433. doi: 10.4103/jcrt.JCRT_1128_19 PMID: 34916373
  79. Chandra, D.; Chandra, S.; Pallavi, ; Sharma, A.K. Review of Finger millet (Eleusine coracana (L.) Gaertn): A power house of health benefiting nutrients. Food Sci. Hum. Wellness, 2016, 5(3), 149-155. doi: 10.1016/j.fshw.2016.05.004
  80. Zhang, B.; Xu, Y.; Liu, S.; Lv, H.; Hu, Y.; Wang, Y.; Li, Z.; Wang, J.; Ji, X.; Ma, H.; Wang, X.; Wang, S. Dietary supplementation of foxtail millet ameliorates colitis-associated colorectal cancer in mice via activation of gut receptors and suppression of the STAT3 pathway. Nutrients, 2020, 12(8), 2367. doi: 10.3390/nu12082367 PMID: 32784751
  81. Shobana, S.; Usha Kumari, S.R.; Malleshi, N.G.; Ali, S.Z. Glycemic response of rice, wheat and finger millet based diabetic food formulations in normoglycemic subjects. Int. J. Food Sci. Nutr., 2007, 58(5), 363-372. doi: 10.1080/09637480701252229 PMID: 17558728
  82. Shobana, S.; Harsha, M.R.; Platel, K.; Srinivasan, K.; Malleshi, N.G. Amelioration of hyperglycaemia and its associated complications by finger millet (Eleusine coracana L.) seed coat matter in streptozotocin-induced diabetic rats. Br. J. Nutr., 2010, 104(12), 1787-1795. doi: 10.1017/S0007114510002977 PMID: 20979682
  83. Rohn, S.; Rawel, H.M.; Kroll, J. Inhibitory effects of plant phenols on the activity of selected enzymes. J. Agric. Food Chem., 2002, 50(12), 3566-3571. doi: 10.1021/jf011714b PMID: 12033830
  84. Bailey, CJ New approaches to the pharmacotherapy of diabetes. Textbook of diabetes, 2003, 2, 73-71.
  85. Chethan, S.; Dharmesh, S.M.; Malleshi, N.G. Inhibition of aldose reductase from cataracted eye lenses by finger millet (Eleusine coracana) polyphenols. Bioorg. Med. Chem., 2008, 16(23), 10085-10090. doi: 10.1016/j.bmc.2008.10.003 PMID: 18976928
  86. Chethan, S.; Sreerama, Y.N.; Malleshi, N.G. Mode of inhibition of finger millet malt amylases by the millet phenolics. Food Chem., 2008, 111(1), 187-191. doi: 10.1016/j.foodchem.2008.03.063 PMID: 26050182
  87. Annor, G.A.; Tyl, C.; Marcone, M.; Ragaee, S.; Marti, A. Why do millets have slower starch and protein digestibility than other cereals? Trends Food Sci. Technol., 2017, 66, 73-83. doi: 10.1016/j.tifs.2017.05.012
  88. Mbithi-Mwikya, S.; Van Camp, J.; Yiru, Y.; Huyghebaert, A. Nutrient and antinutrient changes in finger millet (Eleusine coracan) during sprouting. Lebensm. Wiss. Technol., 2000, 33(1), 9-14. doi: 10.1006/fstl.1999.0605
  89. Chavan, J.K.; Kadam, S.S.; Beuchat, L.R. Nutritional improvement of cereals by fermentation. Crit. Rev. Food Sci. Nutr., 1989, 28(5), 349-400. doi: 10.1080/10408398909527507 PMID: 2692608
  90. Hassan, A.B.; Ahmed, I.A.; Osman, N.M.; Eltayeb, M.M.; Osman, G.A.; Babiker, E.E. Effect of processing treatments followed by fermentation on protein content and digestibility of pearl millet (Pennisetum typhoideum) cultivars. Pak. J. Nutr., 2006, 5(1), 86-89.
  91. Alaunyte, I.; Stojceska, V.; Plunkett, A.; Ainsworth, P.; Derbyshire, E. Improving the quality of nutrient-rich Teff (Eragrostis tef) breads by combination of enzymes in straight dough and sourdough breadmaking. J. Cereal Sci., 2012, 55(1), 22-30. doi: 10.1016/j.jcs.2011.09.005
  92. Mancebo, C.M.; Picón, J.; Gómez, M. Effect of flour properties on the quality characteristics of gluten free sugar-snap cookies. Lebensm. Wiss. Technol., 2015, 64(1), 264-269. doi: 10.1016/j.lwt.2015.05.057
  93. Omoba, O.S.; Taylor, J.R.N.; de Kock, H.L. Sensory and nutritive profiles of biscuits from whole grain sorghum and pearl millet plus soya flour with and without sourdough fermentation. Int. J. Food Sci. Technol., 2015, 50(12), 2554-2561. doi: 10.1111/ijfs.12923
  94. Anju, T., Jr; Sarita, S. Suitability of foxtail millet (Setaria italica) and barnyard millet (Echinochloa frumentacea) for development of low glycemic index biscuits. Malays. J. Nutr., 2010, 16(3), 361-368. PMID: 22691989
  95. Subbulakshmi, B.; Malathi, D. Formulation of multi millet cookies anf evaluate its hypoglycaemic effect in albino rats. J. Crop Weed, 2017, 13(3), 112-116.
  96. Vijayakumar, T.P.; Mohankumar, J.B.; Srinivasan, T. Quality evaluation of noodles from millet flour blend incorporated composite flour. J. Sci. Ind. Res., 2010, 69, 84-89.
  97. Collar, C. Impact of visco-metric profile of composite dough matrices on starch digestibility and firming and retrogradation kinetics of breads thereof: Additive and interactive effects of non-wheat flours. J. Cereal Sci., 2016, 69, 32-39. doi: 10.1016/j.jcs.2016.02.006
  98. Čukelj Mustač, N.; Novotni, D.; Habuš, M.; Drakula, S.; Nanjara, L.; Voučko, B.; Benković, M.; Ćurić, D. Storage stability, micronisation, and application of nutrient-dense fraction of proso millet bran in gluten-free bread. J. Cereal Sci., 2020, 91, 102864. doi: 10.1016/j.jcs.2019.102864
  99. Collar, C.; Angioloni, A. Pseudocereals and teff in complex breadmaking matrices: Impact on lipid dynamics. J. Cereal Sci., 2014, 59(2), 145-154. doi: 10.1016/j.jcs.2013.12.008
  100. Jalgaonkar, K.; Jha, S.K. Influence of particle size and blend composition on quality of wheat semolina-pearl millet pasta. J. Cereal Sci., 2016, 71, 239-245. doi: 10.1016/j.jcs.2016.09.007
  101. Gull, A.; Prasad, K.; Kumar, P. Optimization and functionality of millet supplemented pasta. Food Sci. Technol., 2015, 35(4), 626-632. doi: 10.1590/1678-457X.6745
  102. Giuberti, G.; Gallo, A.; Fiorentini, L.; Fortunati, P.; Masoero, F. In vitro starch digestibility and quality attributes of gluten free ‘tagliatelle’ prepared with teff flour and increasing levels of a new developed bean cultivar. Stärke, 2016, 68(3-4), 374-378. doi: 10.1002/star.201500007
  103. Banerjee, D.; Bag, P.; Chowdhury, R.; Bhattacharya, P. Sustainability of the probiotic lactobacillus casei in fortified indian milk cakes under different preservation conditions-effects of co-immobilization of L. casei and commercial prebiotic inulin (chicory based) and millet inulin. Int. J. Pharm. Pharm. Sci., 2016, 9(1), 152-157. doi: 10.22159/ijpps.2017v9i1.15305
  104. Rajyalakshmi, K.; Roopa, B.; Saikat, D.M.; Priyanka, D.; Vadlamudi, S.; Subramaniam, G. Characterization of potential probiotic bacteria isolated from sorghum and pearl millet of the semi-arid tropics. Afr. J. Biotechnol., 2016, 15(16), 613-621. doi: 10.5897/AJB2016.15212
  105. Tripathi, J.; Gupta, A.; Prasad, R.; Puranik, V. Enhancing micronutrient content of beverage powder by incorporating malted finger millet. Indian J. Community Health, 2014, 26(2), 339-342.
  106. Adam, A.; Leuillet, M.; Crespy, V.; Levrat-Verny, M-A.; Leenhardt, F.; Demigné, C.; Rémésy, C. The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. J. Nutr., 2002, 132(7), 1962-1968. doi: 10.1093/jn/132.7.1962 PMID: 12097677
  107. Chen, C.Y.; Milbury, P.E.; Kwak, H.K.; Blumberg, J.B.; Collins, F.W.; Samuel, P. Avenanthramides and phenolic acids from oats are bioavailable and act synergistically with vitamin C to enhance hamster and human LDL resistance to oxidation. J. Nutr., 2004, 134(6), 1459-1466. doi: 10.1093/jn/134.6.1459 PMID: 15173412
  108. Lafay, S.; Gil-Izquierdo, A.; Manach, C.; Morand, C.; Besson, C.; Scalbert, A. Chlorogenic acid is absorbed in its intact form in the stomach of rats. J. Nutr., 2006, 136(5), 1192-1197. doi: 10.1093/jn/136.5.1192 PMID: 16614403
  109. Olthof, M.R.; Hollman, P.C.H.; Buijsman, M.N.C.P.; van Amelsvoort, J.M.M.; Katan, M.B. Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. J. Nutr., 2003, 133(6), 1806-1814. doi: 10.1093/jn/133.6.1806 PMID: 12771321
  110. Rondini, L.; Peyrat-Maillard, M.N.; Marsset-Baglieri, A.; Fromentin, G.; Durand, P.; Tomé, D.; Prost, M.; Berset, C. Bound ferulic acid from bran is more bioavailable than the free compound in rat. J. Agric. Food Chem., 2004, 52(13), 4338-4343. doi: 10.1021/jf0348323 PMID: 15212489
  111. Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 2005, 81(1), 230S-242S. doi: 10.1093/ajcn/81.1.230S PMID: 15640486
  112. Zhao, Z.; Egashira, Y.; Sanada, H. Ferulic acid is quickly absorbed from rat stomach as the free form and then conjugated mainly in liver. J. Nutr., 2004, 134(11), 3083-3088. doi: 10.1093/jn/134.11.3083 PMID: 15514279
  113. Hollman, P.C.; de Vries, J.H.; van Leeuwen, S.D.; Mengelers, M.J.; Katan, M.B. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr., 1995, 62(6), 1276-1282. doi: 10.1093/ajcn/62.6.1276 PMID: 7491892
  114. Bourne, L.C.; Rice-Evans, C. Bioavailability of ferulic acid. Biochem. Biophys. Res. Commun., 1998, 253(2), 222-227. doi: 10.1006/bbrc.1998.9681 PMID: 9878519
  115. Chandrasekara, A.; Shahidi, F. Antiproliferative potential and DNA scission inhibitory activity of phenolics from whole millet grains. J. Funct. Foods, 2011, 3(3), 159-170. doi: 10.1016/j.jff.2011.03.008
  116. Murti, Y.; Pathak, D.; Pathak, K. Green chemistry approaches to the synthesis of flavonoids. Curr. Org. Chem., 2021, 25(17), 2005-2027. doi: 10.2174/1385272825666210728095624
  117. Jain, D.; Murti, Y.; Khan, W.U.; Hossain, R.; Hossain, M.N.; Agrawal, K.K.; Ashraf, R.A.; Islam, M.T.; Janmeda, P.; Taheri, Y.; Alshehri, M.M.; Daştan, S.D.; Yeskaliyeva, B.; Kipchakbayeva, A.; Sharifi-Rad, J.; Cho, W.C. Roles of therapeutic bioactive compounds in hepatocellular carcinoma. Oxid. Med. Cell. Longev., 2021, 2021, 1-31. doi: 10.1155/2021/9068850 PMID: 34754365
  118. Murti, Y.; Semwal, B.C.; Goyal, A.; Mishra, P. Naringenin scaffold as a template for drug designing. Curr. Tradit. Med., 2021, 7(1), 28-44. doi: 10.2174/2215083805666190617144652
  119. Murti, Y. Biological evaluation of synthesized naringenin derivatives as antimicrobial agents. Antiinfect. Agents, 2021, 19(2), 192-199. doi: 10.2174/2211352518999200729111045

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers