An Exploration of Organoid Technology: Present Advancements, Applications, and Obstacles


Cite item

Full Text

Abstract

Background:Organoids are in vitro models that exhibit a three-dimensional structure and effectively replicate the structural and physiological features of human organs. The capacity to research complex biological processes and disorders in a controlled setting is laid out by these miniature organ-like structures.

Objectives:This work examines the potential applications of organoid technology, as well as the challenges and future directions associated with its implementation. It aims to emphasize the pivotal role of organoids in disease modeling, drug discovery, developmental biology, precision medicine, and fundamental research.

Methods:The manuscript was put together by conducting a comprehensive literature review, which involved an in-depth evaluation of globally renowned scientific research databases.

Results:The field of organoids has generated significant attention due to its potential applications in tissue development and disease modelling, as well as its implications for personalised medicine, drug screening, and cell-based therapies. The utilisation of organoids has proven to be effective in the examination of various conditions, encompassing genetic disorders, cancer, neurodevelopmental disorders, and infectious diseases.

Conclusion:The exploration of the wider uses of organoids is still in its early phases. Research shall be conducted to integrate 3D organoid systems as alternatives for current models, potentially improving both fundamental and clinical studies in the future.

About the authors

Isha Mishra

Department of Pharmacy, Galgotias College of Pharmacy

Author for correspondence.
Email: info@benthamscience.net

Komal Gupta

Department of Pharmacy, Galgotias College of Pharmacy

Email: info@benthamscience.net

Raghav Mishra

Department of Pharmacy,, GLA University

Author for correspondence.
Email: info@benthamscience.net

Kajal Chaudhary

Department of Pharmacy, GLA University

Email: info@benthamscience.net

Vikram Sharma

Department of Pharmacy, Galgotias College of Pharmacy

Email: info@benthamscience.net

References

  1. Murti, Y.; Agrawal, K.K.; Semwal, B.C.; Gupta, J.; Gupta, R. A review on novel herbal drug delivery system and its application. Curr. Tradit. Med., 2023, 9(2), e280422204154. doi: 10.2174/2215083808666220428092638
  2. Murti, Y.; Agrawal, K.K. Tangeretin: A biologically potential citrus flavone. Curr. Tradit. Med., 2022, 8(4), e040322201698. doi: 10.2174/2215083808666220304100702
  3. Ahuja, A.; Singh, S. Impact of the current scenario and future perspectives for the management of oral diseases: Remarkable contribution of herbs in dentistry. Antiinfect. Agents, 2022, 20(5), e050422203119. doi: 10.2174/2211352520666220405124929
  4. Singh, S.; Bajpai, M.; Mishra, P. Herbal folklore medication for liver disorders. Curr. Tradit. Med., 2021, 7(3), 415-433. doi: 10.2174/2215083806999201112093503
  5. Mishra, I.; Sachan, N. Thiazole scaffold: An overview on its synthetic and pharmaceutical aspects. ECS Trans., 2022, 107(1), 17745-17768. doi: 10.1149/10701.17745ecst
  6. Mishra, R.; Tomer, I.; Kumar, S. Synthesis and antimicrobial evaluation of novel thiophene derivatives. Pharm. Sin., 2012, 3, 332-336.
  7. Upadhyay, P.K.; Pathak, S.; Mishra, R.; Kumar, R.; Jain, A. A multifaceted scaffold for building bioactive compounds. Phenothiazine. Lett. Org. Chem., 2023, 20(7), 618-631. doi: 10.2174/1570178620666221202100529
  8. Mishra, R.; da Cunha Xavier, J.; dos Santos, H.S.; Machado Marinho, M.; Nunes da Rocha, M.; Rodrigues Teixeira, A.M.; Coutinho, H.D.M.; Marinho, E.S. Sucheta; Kumar, N. Chalcones as potent agents against Staphylococcus aureus: A Computational Approach. Lett. Drug Des. Discov., 2023, 20 doi: 10.2174/1570180820666230120145921
  9. Mishra, I. Preferences of Indian women on COVID-19 medical solutions. Biosci. Biotechnol. Res. Commun., 2021, 14(3), 1381-1384. doi: 10.21786/bbrc/14.3.71
  10. Mishra, R.; Chaudhary, K.; Mishra, I. Weapons and strategies against COVID-19: A perspective. Curr. Pharm. Biotechnol., 2023, 24 doi: 10.2174/1389201024666230525161432 PMID: 37231727
  11. Mishra, R.; Chaudhary, K.; Mishra, I. AI in health science: A perspective. Curr. Pharm. Biotechnol., 2023, 24(9), 1149-1163. doi: 10.2174/1389201023666220929145220 PMID: 36177622
  12. Mishra, R.; Kumar, N.; Sachan, N. Synthesis, biological evaluation, and docking analysis of novel tetrahydrobenzothiophene derivatives. Lett. Drug Des. Discov., 2022, 19(6), 530-540. doi: 10.2174/1570180819666220117123958
  13. Mishra, R.; Kumar, N.; Sachan, N. Synthesis, pharmacological evaluation, and in-silico studies of thiophene derivatives. Oncologie, 2021, 23(4), 493-514. doi: 10.32604/oncologie.2021.018532
  14. Mishra, R.; Kumar, N.; Mishra, I.; Sachan, N. A review on anticancer activities of thiophene and its analogs. Mini Rev. Med. Chem., 2020, 20(19), 1944-1965. doi: 10.2174/1389557520666200715104555 PMID: 32669077
  15. Neal, J.T.; Kuo, C.J. Organoids as models for neoplastic transformation. Annu. Rev. Pathol., 2016, 11(1), 199-220. doi: 10.1146/annurev-pathol-012615-044249 PMID: 26907527
  16. Bredenoord, A.L.; Clevers, H.; Knoblich, J.A. Human tissues in a dish: The research and ethical implications of organoid technology. Science, 2017, 355(6322), eaaf9414. doi: 10.1126/science.aaf9414 PMID: 28104841
  17. Hidalgo, M.; Amant, F.; Biankin, A.V.; Budinská, E.; Byrne, A.T.; Caldas, C.; Clarke, R.B.; de Jong, S.; Jonkers, J.; Mælandsmo, G.M.; Roman-Roman, S.; Seoane, J.; Trusolino, L.; Villanueva, A. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov., 2014, 4(9), 998-1013. doi: 10.1158/2159-8290.CD-14-0001 PMID: 25185190
  18. Heydari, Z.; Moeinvaziri, F.; Agarwal, T.; Pooyan, P.; Shpichka, A.; Maiti, T.K.; Timashev, P.; Baharvand, H.; Vosough, M. Organoids: a novel modality in disease modeling. Biodes. Manuf., 2021, 4(4), 689-716. doi: 10.1007/s42242-021-00150-7 PMID: 34395032
  19. Fang, Y.; Eglen, R.M. Three-dimensional cell cultures in drug discovery and development. SLAS Discov., 2017, 22(5), 456-472. doi: 10.1177/1087057117696795 PMID: 28520521
  20. Lancaster, M.A.; Knoblich, J.A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 2014, 345(6194), 1247125. doi: 10.1126/science.1247125 PMID: 25035496
  21. Lancaster, M.A.; Renner, M.; Martin, C.A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral organoids model human brain development and microcephaly. Nature, 2013, 501(7467), 373-379. doi: 10.1038/nature12517 PMID: 23995685
  22. Paşca, A.M.; Sloan, S.A.; Clarke, L.E.; Tian, Y.; Makinson, C.D.; Huber, N.; Kim, C.H.; Park, J.Y.; O’Rourke, N.A.; Nguyen, K.D.; Smith, S.J.; Huguenard, J.R.; Geschwind, D.H.; Barres, B.A.; Paşca, S.P. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods, 2015, 12(7), 671-678. doi: 10.1038/nmeth.3415 PMID: 26005811
  23. Kadoshima, T.; Sakaguchi, H.; Nakano, T.; Soen, M.; Ando, S.; Eiraku, M.; Sasai, Y. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell–derived neocortex. Proc. Natl. Acad. Sci. USA, 2013, 110(50), 20284-20289. doi: 10.1073/pnas.1315710110 PMID: 24277810
  24. Eiraku, M.; Takata, N.; Ishibashi, H.; Kawada, M.; Sakakura, E.; Okuda, S.; Sekiguchi, K.; Adachi, T.; Sasai, Y. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 2011, 472(7341), 51-56. doi: 10.1038/nature09941 PMID: 21475194
  25. Nakano, T.; Ando, S.; Takata, N.; Kawada, M.; Muguruma, K.; Sekiguchi, K.; Saito, K.; Yonemura, S.; Eiraku, M.; Sasai, Y. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell, 2012, 10(6), 771-785. doi: 10.1016/j.stem.2012.05.009 PMID: 22704518
  26. Sato, T.; Vries, R.G.; Snippert, H.J.; van de Wetering, M.; Barker, N.; Stange, D.E.; van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; Clevers, H. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244), 262-265. doi: 10.1038/nature07935 PMID: 19329995
  27. Ootani, A.; Li, X.; Sangiorgi, E.; Ho, Q.T.; Ueno, H.; Toda, S.; Sugihara, H.; Fujimoto, K.; Weissman, I.L.; Capecchi, M.R.; Kuo, C.J. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med., 2009, 15(6), 701-706. doi: 10.1038/nm.1951 PMID: 19398967
  28. Spence, J.R.; Mayhew, C.N.; Rankin, S.A.; Kuhar, M.F.; Vallance, J.E.; Tolle, K.; Hoskins, E.E.; Kalinichenko, V.V.; Wells, S.I.; Zorn, A.M.; Shroyer, N.F.; Wells, J.M. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 2011, 470(7332), 105-109. doi: 10.1038/nature09691 PMID: 21151107
  29. Fordham, R.P.; Yui, S.; Hannan, N.R.F.; Soendergaard, C.; Madgwick, A.; Schweiger, P.J.; Nielsen, O.H.; Vallier, L.; Pedersen, R.A.; Nakamura, T.; Watanabe, M.; Jensen, K.B. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell, 2013, 13(6), 734-744. doi: 10.1016/j.stem.2013.09.015 PMID: 24139758
  30. Takasato, M.; Er, P.X.; Chiu, H.S.; Maier, B.; Baillie, G.J.; Ferguson, C.; Parton, R.G.; Wolvetang, E.J.; Roost, M.S.; Chuva de Sousa Lopes, S.M.; Little, M.H. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature, 2015, 526(7574), 564-568. doi: 10.1038/nature15695 PMID: 26444236
  31. Freedman, B.S.; Brooks, C.R.; Lam, A.Q.; Fu, H.; Morizane, R.; Agrawal, V.; Saad, A.F.; Li, M.K.; Hughes, M.R.; Werff, R.V.; Peters, D.T.; Lu, J.; Baccei, A.; Siedlecki, A.M.; Valerius, M.T.; Musunuru, K.; McNagny, K.M.; Steinman, T.I.; Zhou, J.; Lerou, P.H.; Bonventre, J.V. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat. Commun., 2015, 6(1), 8715. doi: 10.1038/ncomms9715 PMID: 26493500
  32. Morizane, R.; Lam, A.Q.; Freedman, B.S.; Kishi, S.; Valerius, M.T.; Bonventre, J.V. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol., 2015, 33(11), 1193-1200. doi: 10.1038/nbt.3392 PMID: 26458176
  33. Takasato, M.; Er, P.X.; Becroft, M.; Vanslambrouck, J.M.; Stanley, E.G.; Elefanty, A.G.; Little, M.H. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat. Cell Biol., 2014, 16(1), 118-126. doi: 10.1038/ncb2894 PMID: 24335651
  34. Takebe, T.; Sekine, K.; Enomura, M.; Koike, H.; Kimura, M.; Ogaeri, T.; Zhang, R.R.; Ueno, Y.; Zheng, Y.W.; Koike, N.; Aoyama, S.; Adachi, Y.; Taniguchi, H. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013, 499(7459), 481-484. doi: 10.1038/nature12271 PMID: 23823721
  35. Huch, M.; Dorrell, C.; Boj, S.F.; van Es, J.H.; Li, V.S.W.; van de Wetering, M.; Sato, T.; Hamer, K.; Sasaki, N.; Finegold, M.J.; Haft, A.; Vries, R.G.; Grompe, M.; Clevers, H. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature, 2013, 494(7436), 247-250. doi: 10.1038/nature11826 PMID: 23354049
  36. Huch, M.; Gehart, H.; van Boxtel, R.; Hamer, K.; Blokzijl, F.; Verstegen, M.M.A.; Ellis, E.; van Wenum, M.; Fuchs, S.A.; de Ligt, J.; van de Wetering, M.; Sasaki, N.; Boers, S.J.; Kemperman, H.; de Jonge, J.; Ijzermans, J.N.M.; Nieuwenhuis, E.E.S.; Hoekstra, R.; Strom, S.; Vries, R.R.G.; van der Laan, L.J.W.; Cuppen, E.; Clevers, H. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell, 2015, 160(1-2), 299-312. doi: 10.1016/j.cell.2014.11.050 PMID: 25533785
  37. Lee, J.H.; Bhang, D.H.; Beede, A.; Huang, T.L.; Stripp, B.R.; Bloch, K.D.; Wagers, A.J.; Tseng, Y.H.; Ryeom, S.; Kim, C.F. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell, 2014, 156(3), 440-455. doi: 10.1016/j.cell.2013.12.039 PMID: 24485453
  38. Dye, B.R.; Hill, D.R.; Ferguson, M.A.H.; Tsai, Y.H.; Nagy, M.S.; Dyal, R.; Wells, J.M.; Mayhew, C.N.; Nattiv, R.; Klein, O.D.; White, E.S.; Deutsch, G.H.; Spence, J.R. In vitro generation of human pluripotent stem cell derived lung organoids. eLife, 2015, 4, e05098. doi: 10.7554/eLife.05098 PMID: 25803487
  39. Konishi, S.; Gotoh, S.; Tateishi, K.; Yamamoto, Y.; Korogi, Y.; Nagasaki, T.; Matsumoto, H.; Muro, S.; Hirai, T.; Ito, I.; Tsukita, S.; Mishima, M. Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells. Stem Cell Reports, 2016, 6(1), 18-25. doi: 10.1016/j.stemcr.2015.11.010 PMID: 26724905
  40. Koehler, K.R.; Mikosz, A.M.; Molosh, A.I.; Patel, D.; Hashino, E. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature, 2013, 500(7461), 217-221. doi: 10.1038/nature12298 PMID: 23842490
  41. Koehler, K.R.; Hashino, E. 3D mouse embryonic stem cell culture for generating inner ear organoids. Nat. Protoc., 2014, 9(6), 1229-1244. doi: 10.1038/nprot.2014.100 PMID: 24784820
  42. Nie, J.; Hashino, E. Organoid technologies meet genome engineering. EMBO Rep., 2017, 18(3), 367-376. doi: 10.15252/embr.201643732 PMID: 28202491
  43. Wilson, H.V. A new method by which sponges may be artificially reared. Science, 1907, 25(649), 912-915. doi: 10.1126/science.25.649.912 PMID: 17842577
  44. Armah, H.B.; Parwani, A.V.; Perepletchikov, A.M. Synchronous primary carcinoid tumor and primary adenocarcinoma arising within mature cystic teratoma of horseshoe kidney: a unique case report and review of the literature. Diagn. Pathol., 2009, 4(1), 17. doi: 10.1186/1746-1596-4-17 PMID: 19523243
  45. Weiss, P.; Taylor, A.C. Reconstitution of complete organs from single-cell suspensions of chick embryos in advanced stages of differentiation. Proc. Natl. Acad. Sci. USA, 1960, 46(9), 1177-1185. doi: 10.1073/pnas.46.9.1177 PMID: 16590731
  46. Xinaris, C.; Brizi, V.; Remuzzi, G. Organoid models and applications in biomedical research. Nephron J., 2015, 130(3), 191-199. doi: 10.1159/000433566 PMID: 26112599
  47. Fatehullah, A.; Tan, S.H.; Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol., 2016, 18(3), 246-254. doi: 10.1038/ncb3312 PMID: 26911908
  48. Corbet, C. Stem cell metabolism in cancer and healthy tissues: pyruvate in the limelight. Front. Pharmacol., 2018, 8, 958. doi: 10.3389/fphar.2017.00958 PMID: 29403375
  49. Lancaster, M.A.; Huch, M. Disease modelling in human organoids. Dis. Model. Mech., 2019, 12(7), dmm039347. doi: 10.1242/dmm.039347 PMID: 31383635
  50. Clevers, H. Modeling development and disease with organoids. Cell, 2016, 165(7), 1586-1597. doi: 10.1016/j.cell.2016.05.082 PMID: 27315476
  51. Dutta, D.; Heo, I.; Clevers, H. Disease modeling in stem cell-derived 3d organoid systems. Trends Mol. Med., 2017, 23(5), 393-410. doi: 10.1016/j.molmed.2017.02.007 PMID: 28341301
  52. Bartfeld, S.; Clevers, H. Stem cell-derived organoids and their application for medical research and patient treatment. J. Mol. Med. (Berl.), 2017, 95(7), 729-738. doi: 10.1007/s00109-017-1531-7 PMID: 28391362
  53. Organoids. Available from: https://www.moleculardevices.com/applications/3d-cell-models/organoids (Accessed on: 2023-08-19).
  54. Sato, T.; Stange, D.E.; Ferrante, M.; Vries, R.G.J.; van Es, J.H.; van den Brink, S.; van Houdt, W.J.; Pronk, A.; van Gorp, J.; Siersema, P.D.; Clevers, H. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology, 2011, 141(5), 1762-1772. doi: 10.1053/j.gastro.2011.07.050 PMID: 21889923
  55. Jung, P.; Sato, T.; Merlos-Suárez, A.; Barriga, F.M.; Iglesias, M.; Rossell, D.; Auer, H.; Gallardo, M.; Blasco, M.A.; Sancho, E.; Clevers, H.; Batlle, E. Isolation and in vitro expansion of human colonic stem cells. Nat. Med., 2011, 17(10), 1225-1227. doi: 10.1038/nm.2470 PMID: 21892181
  56. Barker, N.; Huch, M.; Kujala, P.; van de Wetering, M.; Snippert, H.J.; van Es, J.H.; Sato, T.; Stange, D.E.; Begthel, H.; van den Born, M.; Danenberg, E.; van den Brink, S.; Korving, J.; Abo, A.; Peters, P.J.; Wright, N.; Poulsom, R.; Clevers, H. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 2010, 6(1), 25-36. doi: 10.1016/j.stem.2009.11.013 PMID: 20085740
  57. Artegiani, B.; Clevers, H. Use and application of 3D-organoid technology. Hum. Mol. Genet., 2018, 27(R2), R99-R107. doi: 10.1093/hmg/ddy187 PMID: 29796608
  58. Fan, H.; Demirci, U.; Chen, P. Emerging organoid models: leaping forward in cancer research. J. Hematol. Oncol., 2019, 12(1), 142. doi: 10.1186/s13045-019-0832-4 PMID: 31884964
  59. Rauth, S.; Karmakar, S.; Batra, S.K.; Ponnusamy, M.P. Recent advances in organoid development and applications in disease modeling. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(2), 188527. doi: 10.1016/j.bbcan.2021.188527 PMID: 33640383
  60. Heath, J.K. Transcriptional networks and signaling pathways that govern vertebrate intestinal development. Curr. Top. Dev. Biol., 2010, 90, 159-192. doi: 10.1016/S0070-2153(10)90004-5 PMID: 20691849
  61. Sato, T.; Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science, 2013, 340(6137), 1190-1194. doi: 10.1126/science.1234852 PMID: 23744940
  62. Bartfeld, S.; Bayram, T.; van de Wetering, M.; Huch, M.; Begthel, H.; Kujala, P.; Vries, R.; Peters, P.J.; Clevers, H. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology, 2015, 148(1), 126-136.e6. doi: 10.1053/j.gastro.2014.09.042 PMID: 25307862
  63. McCracken, K.W.; Catá, E.M.; Crawford, C.M.; Sinagoga, K.L.; Schumacher, M.; Rockich, B.E.; Tsai, Y.H.; Mayhew, C.N.; Spence, J.R.; Zavros, Y.; Wells, J.M. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 2014, 516(7531), 400-404. doi: 10.1038/nature13863 PMID: 25363776
  64. McCracken, K.W.; Aihara, E.; Martin, B.; Crawford, C.M.; Broda, T.; Treguier, J.; Zhang, X.; Shannon, J.M.; Montrose, M.H.; Wells, J.M. Wnt/β-catenin promotes gastric fundus specification in mice and humans. Nature, 2017, 541(7636), 182-187. doi: 10.1038/nature21021 PMID: 28052057
  65. Liu, Q.; Zeng, A.; Liu, Z.; Wu, C.; Song, L. Liver organoids: From fabrication to application in liver diseases. Front. Physiol., 2022, 13, 956244. doi: 10.3389/fphys.2022.956244 PMID: 35923228
  66. Chi, K.Y.; Kim, J.H. Recent advances in liver organoids and their use in in vitro modeling of non-alcoholic fatty liver disease. Organoid, 2022, 2, e6. doi: 10.51335/organoid.2022.2.e6
  67. Dorrell, C.; Tarlow, B.; Wang, Y.; Canaday, P.S.; Haft, A.; Schug, J.; Streeter, P.R.; Finegold, M.J.; Shenje, L.T.; Kaestner, K.H.; Grompe, M. The organoid-initiating cells in mouse pancreas and liver are phenotypically and functionally similar. Stem Cell Res. (Amst.), 2014, 13(2), 275-283. doi: 10.1016/j.scr.2014.07.006 PMID: 25151611
  68. Sakabe, K.; Takebe, T.; Asai, A. Organoid medicine in hepatology. Clin. Liver Dis. (Hoboken), 2020, 15(1), 3-8. doi: 10.1002/cld.855 PMID: 32104569
  69. Hu, H.; Gehart, H.; Artegiani, B. LÖpez-Iglesias, C.; Dekkers, F.; Basak, O.; van Es, J.; Chuva de Sousa Lopes, S.M.; Begthel, H.; Korving, J.; van den Born, M.; Zou, C.; Quirk, C.; Chiriboga, L.; Rice, C.M.; Ma, S.; Rios, A.; Peters, P.J.; de Jong, Y.P.; Clevers, H. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell, 2018, 175(6), 1591-1606.e19. doi: 10.1016/j.cell.2018.11.013 PMID: 30500538
  70. Prior, N.; Inacio, P.; Huch, M. Liver organoids: from basic research to therapeutic applications. Gut, 2019, 68(12), 2228-2237. doi: 10.1136/gutjnl-2019-319256 PMID: 31300517
  71. Birgersdotter, A.; Sandberg, R.; Ernberg, I. Gene expression perturbation in vitro—A growing case for three-dimensional (3D) culture systems. Semin. Cancer Biol., 2005, 15(5), 405-412. doi: 10.1016/j.semcancer.2005.06.009 PMID: 16055341
  72. Edmondson, R.; Broglie, J.J.; Adcock, A.F.; Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol., 2014, 12(4), 207-218. doi: 10.1089/adt.2014.573 PMID: 24831787
  73. van Staveren, W.C.G.; Solís, D.Y.W.; Hébrant, A.; Detours, V.; Dumont, J.E.; Maenhaut, C. Human cancer cell lines: Experimental models for cancer cells in situ? For cancer stem cells? Biochim. Biophys. Acta Rev. Cancer, 2009, 1795(2), 92-103. doi: 10.1016/j.bbcan.2008.12.004 PMID: 19167460
  74. Lee, J.; Kotliarova, S.; Kotliarov, Y.; Li, A.; Su, Q.; Donin, N.M.; Pastorino, S.; Purow, B.W.; Christopher, N.; Zhang, W.; Park, J.K.; Fine, H.A. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell, 2006, 9(5), 391-403. doi: 10.1016/j.ccr.2006.03.030 PMID: 16697959
  75. Stein, W.D.; Litman, T.; Fojo, T.; Bates, S.E. A Serial Analysis of Gene Expression (SAGE) database analysis of chemosensitivity: comparing solid tumors with cell lines and comparing solid tumors from different tissue origins. Cancer Res., 2004, 64(8), 2805-2816. doi: 10.1158/0008-5472.CAN-03-3383 PMID: 15087397
  76. Gadaleta, E.; Cutts, R.J.; Kelly, G.P.; Crnogorac-Jurcevic, T.; Kocher, H.M.; Lemoine, N.R.; Chelala, C. A global insight into a cancer transcriptional space using pancreatic data: importance, findings and flaws. Nucleic Acids Res., 2011, 39(18), 7900-7907. doi: 10.1093/nar/gkr533 PMID: 21724610
  77. Kopp, J.L.; Dubois, C.L.; Schaffer, A.E.; Hao, E.; Shih, H.P.; Seymour, P.A.; Ma, J.; Sander, M. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development, 2011, 138(4), 653-665. doi: 10.1242/dev.056499 PMID: 21266405
  78. Sugiyama, T.; Benitez, C.M.; Ghodasara, A.; Liu, L.; McLean, G.W.; Lee, J.; Blauwkamp, T.A.; Nusse, R.; Wright, C.V.E.; Gu, G.; Kim, S.K. Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proc. Natl. Acad. Sci. USA, 2013, 110(31), 12691-12696. doi: 10.1073/pnas.1304507110 PMID: 23852729
  79. Huch, M.; Koo, B.K. Modeling mouse and human development using organoid cultures. Development, 2015, 142(18), 3113-3125. doi: 10.1242/dev.118570 PMID: 26395140
  80. Boj, S.F.; Hwang, C.I.; Baker, L.A.; Chio, I.I.C.; Engle, D.D.; Corbo, V.; Jager, M.; Ponz-Sarvise, M.; Tiriac, H.; Spector, M.S.; Gracanin, A.; Oni, T.; Yu, K.H.; van Boxtel, R.; Huch, M.; Rivera, K.D.; Wilson, J.P.; Feigin, M.E.; Öhlund, D.; Handly-Santana, A.; Ardito-Abraham, C.M.; Ludwig, M.; Elyada, E.; Alagesan, B.; Biffi, G.; Yordanov, G.N.; Delcuze, B.; Creighton, B.; Wright, K.; Park, Y.; Morsink, F.H.M.; Molenaar, I.Q.; Borel Rinkes, I.H.; Cuppen, E.; Hao, Y.; Jin, Y.; Nijman, I.J.; Iacobuzio-Donahue, C.; Leach, S.D.; Pappin, D.J.; Hammell, M.; Klimstra, D.S.; Basturk, O.; Hruban, R.H.; Offerhaus, G.J.; Vries, R.G.J.; Clevers, H.; Tuveson, D.A. Organoid models of human and mouse ductal pancreatic cancer. Cell, 2015, 160(1-2), 324-338. doi: 10.1016/j.cell.2014.12.021 PMID: 25557080
  81. Dekkers, J.F.; Wiegerinck, C.L.; de Jonge, H.R.; Bronsveld, I.; Janssens, H.M.; de Winter-de Groot, K.M.; Brandsma, A.M.; de Jong, N.W.M.; Bijvelds, M.J.C.; Scholte, B.J.; Nieuwenhuis, E.E.S.; van den Brink, S.; Clevers, H.; van der Ent, C.K.; Middendorp, S.; Beekman, J.M. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med., 2013, 19(7), 939-945. doi: 10.1038/nm.3201 PMID: 23727931
  82. Dekkers, J.F.; Berkers, G.; Kruisselbrink, E.; Vonk, A.; de Jonge, H.R.; Janssens, H.M.; Bronsveld, I.; van de Graaf, E.A.; Nieuwenhuis, E.E.S.; Houwen, R.H.J.; Vleggaar, F.P.; Escher, J.C.; de Rijke, Y.B.; Majoor, C.J.; Heijerman, H.G.M.; de Winter-de Groot, K.M.; Clevers, H.; van der Ent, C.K.; Beekman, J.M. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med., 2016, 8(344), 344ra84. doi: 10.1126/scitranslmed.aad8278 PMID: 27334259
  83. Chen, R.; Giliani, S.; Lanzi, G.; Mias, G.I.; Lonardi, S.; Dobbs, K.; Manis, J. Im, H.; Gallagher, J.E.; Phanstiel, D.H.; Euskirchen, G.; Lacroute, P.; Bettinger, K.; Moratto, D.; Weinacht, K.; Montin, D.; Gallo, E.; Mangili, G.; Porta, F.; Notarangelo, L.D.; Pedretti, S.; Al-Herz, W.; Alfahdli, W.; Comeau, A.M.; Traister, R.S.; Pai, S.Y.; Carella, G.; Facchetti, F.; Nadeau, K.C.; Snyder, M.; Notarangelo, L.D. Whole-exome sequencing identifies tetratricopeptide repeat domain 7A ( TTC7A ) mutations for combined immunodeficiency with intestinal atresias. J. Allergy Clin. Immunol., 2013, 132(3), 656-664.e17. doi: 10.1016/j.jaci.2013.06.013 PMID: 23830146
  84. Ho, B.; Pek, N.; Soh, B.S. Disease modeling using 3D organoids derived from human induced pluripotent stem cells. Int. J. Mol. Sci., 2018, 19(4), 936. doi: 10.3390/ijms19040936 PMID: 29561796
  85. Kim, H.; Park, H.J.; Choi, H.; Chang, Y.; Park, H.; Shin, J.; Kim, J.; Lengner, C.J.; Lee, Y.K.; Kim, J. Modeling G2019S-LRRK2 Sporadic Parkinson’s Disease in 3D Midbrain Organoids. Stem Cell Reports, 2019, 12(3), 518-531. doi: 10.1016/j.stemcr.2019.01.020 PMID: 30799274
  86. Cruz, N.M.; Song, X.; Czerniecki, S.M.; Gulieva, R.E.; Churchill, A.J.; Kim, Y.K.; Winston, K.; Tran, L.M.; Diaz, M.A.; Fu, H.; Finn, L.S.; Pei, Y.; Himmelfarb, J.; Freedman, B.S. Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat. Mater., 2017, 16(11), 1112-1119. doi: 10.1038/nmat4994 PMID: 28967916
  87. Golenhofen, K.; Hannappel, J. Normal spontaneous activity of the pyeloureteral system in the guinea-pig. Pflugers Arch., 1973, 341(3), 257-270. doi: 10.1007/BF00592794 PMID: 4737416
  88. Guan, Y.; Xu, D.; Garfin, P.M.; Ehmer, U.; Hurwitz, M.; Enns, G.; Michie, S.; Wu, M.; Zheng, M.; Nishimura, T.; Sage, J.; Peltz, G. Human hepatic organoids for the analysis of human genetic diseases. JCI Insight, 2017, 2(17), e94954. doi: 10.1172/jci.insight.94954 PMID: 28878125
  89. Thomas, C.A.; Tejwani, L.; Trujillo, C.A.; Negraes, P.D.; Herai, R.H.; Mesci, P.; Macia, A.; Crow, Y.J.; Muotri, A.R. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell, 2017, 21(3), 319-331.e8. doi: 10.1016/j.stem.2017.07.009 PMID: 28803918
  90. Li, Y.; Tang, P.; Cai, S.; Peng, J.; Hua, G. Organoid based personalized medicine: from bench to bedside. Cell Regen. (Lond.), 2020, 9(1), 21. doi: 10.1186/s13619-020-00059-z PMID: 33135109
  91. Broutier, L.; Mastrogiovanni, G.; Verstegen, M. M. Cultivos de Organoid Derivados Del Cancer de Higado Primario Humano Para El Modelado de Enfermedades y La Deteccion de Farmacos Medicina natural, 2017, 23(12), 1424-1435.
  92. Rich, J.N. Cancer stem cells in radiation resistance. Cancer Res., 2007, 67(19), 8980-8984. doi: 10.1158/0008-5472.CAN-07-0895 PMID: 17908997
  93. Godos, J.; Giampieri, F.; Micek, A.; Battino, M.; Forbes-Hernández, T.Y.; Quiles, J.L.; Paladino, N.; Falzone, L.; Grosso, G. Effect of Brazil Nuts on Selenium Status, Blood Lipids, and Biomarkers of Oxidative Stress and Inflammation: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Antioxidants, 2022, 11(2), 403. doi: 10.3390/antiox11020403 PMID: 35204285
  94. Sondorp, L.H.J.; Ogundipe, V.M.L.; Groen, A.H.; Kelder, W.; Kemper, A.; Links, T.P.; Coppes, R.P.; Kruijff, S. Patient-derived papillary thyroid cancer organoids for radioactive iodine refractory screening. Cancers (Basel), 2020, 12(11), 3212. doi: 10.3390/cancers12113212 PMID: 33142750
  95. Driehuis, E.; Kretzschmar, K.; Clevers, H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat. Protoc., 2020, 15(10), 3380-3409. doi: 10.1038/s41596-020-0379-4 PMID: 32929210
  96. Jardé, T.; Lloyd-Lewis, B.; Thomas, M.; Kendrick, H.; Melchor, L.; Bougaret, L.; Watson, P.D.; Ewan, K.; Smalley, M.J.; Dale, T.C. Wnt and neuregulin1/ErbB signalling extends 3D culture of hormone responsive mammary organoids. Nat. Commun., 2016, 7(1), 13207. doi: 10.1038/ncomms13207 PMID: 27782124
  97. Sachs, N.; de Ligt, J.; Kopper, O.; Gogola, E.; Bounova, G.; Weeber, F.; Balgobind, A.V.; Wind, K.; Gracanin, A.; Begthel, H.; Korving, J.; van Boxtel, R.; Duarte, A.A.; Lelieveld, D.; van Hoeck, A.; Ernst, R.F.; Blokzijl, F.; Nijman, I.J.; Hoogstraat, M.; van de Ven, M.; Egan, D.A.; Zinzalla, V.; Moll, J.; Boj, S.F.; Voest, E.E.; Wessels, L.; van Diest, P.J.; Rottenberg, S.; Vries, R.G.J.; Cuppen, E.; Clevers, H. A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 2018, 172(1-2), 373-386.e10. doi: 10.1016/j.cell.2017.11.010 PMID: 29224780
  98. Johnson, K.M.; Hacker, M.R.; Thornton, K.; Young, B.C.; Modest, A.M. Association between in vitro fertilization and ischemic placental disease by gestational age. Fertil. Steril., 2020, 114(3), 579-586. doi: 10.1016/j.fertnstert.2020.04.029 PMID: 32709377
  99. Mazzucchelli, S.; Piccotti, F.; Allevi, R.; Truffi, M.; Sorrentino, L.; Russo, L.; Agozzino, M.; Signati, L.; Bonizzi, A.; Villani, L.; Corsi, F. Establishment and morphological characterization of patient-derived organoids from breast cancer. Biol. Proced. Online, 2019, 21(1), 12. doi: 10.1186/s12575-019-0099-8 PMID: 31223292
  100. Emerman, J.T.; Pitelka, D.R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In vitro, 1977, 13(5), 316-328. doi: 10.1007/BF02616178 PMID: 559643
  101. Bienz, M.; Clevers, H. Linking colorectal cancer to Wnt signaling. Cell, 2000, 103(2), 311-320. doi: 10.1016/S0092-8674(00)00122-7 PMID: 11057903
  102. Schwitalla, S.; Fingerle, A.A.; Cammareri, P.; Nebelsiek, T.; Göktuna, S.I.; Ziegler, P.K.; Canli, O.; Heijmans, J.; Huels, D.J.; Moreaux, G.; Rupec, R.A.; Gerhard, M.; Schmid, R.; Barker, N.; Clevers, H.; Lang, R.; Neumann, J.; Kirchner, T.; Taketo, M.M.; van den Brink, G.R.; Sansom, O.J.; Arkan, M.C.; Greten, F.R. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell, 2013, 152(1-2), 25-38. doi: 10.1016/j.cell.2012.12.012 PMID: 23273993
  103. Nanki, K.; Toshimitsu, K.; Takano, A.; Fujii, M.; Shimokawa, M.; Ohta, Y.; Matano, M.; Seino, T.; Nishikori, S.; Ishikawa, K.; Kawasaki, K.; Togasaki, K.; Takahashi, S.; Sukawa, Y.; Ishida, H.; Sugimoto, S.; Kawakubo, H.; Kim, J.; Kitagawa, Y.; Sekine, S.; Koo, B.K.; Kanai, T.; Sato, T. Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis. Cell, 2018, 174(4), 856-869.e17. doi: 10.1016/j.cell.2018.07.027 PMID: 30096312
  104. Seidlitz, T.; Merker, S.R.; Rothe, A.; Zakrzewski, F.; von Neubeck, C.; Grützmann, K.; Sommer, U.; Schweitzer, C.; Schölch, S.; Uhlemann, H.; Gaebler, A.M.; Werner, K.; Krause, M.; Baretton, G.B.; Welsch, T.; Koo, B.K.; Aust, D.E.; Klink, B.; Weitz, J.; Stange, D.E. Human gastric cancer modelling using organoids. Gut, 2019, 68(2), 207-217. doi: 10.1136/gutjnl-2017-314549 PMID: 29703791
  105. Li, X.; Nadauld, L.; Ootani, A.; Corney, D.C.; Pai, R.K.; Gevaert, O.; Cantrell, M.A.; Rack, P.G.; Neal, J.T.; Chan, C.W.M.; Yeung, T.; Gong, X.; Yuan, J.; Wilhelmy, J.; Robine, S.; Attardi, L.D.; Plevritis, S.K.; Hung, K.E.; Chen, C.Z.; Ji, H.P.; Kuo, C.J. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat. Med., 2014, 20(7), 769-777. doi: 10.1038/nm.3585 PMID: 24859528
  106. Nadauld, L.D.; Garcia, S.; Natsoulis, G.; Bell, J.M.; Miotke, L.; Hopmans, E.S.; Xu, H.; Pai, R.K.; Palm, C.; Regan, J.F.; Chen, H.; Flaherty, P.; Ootani, A.; Zhang, N.R.; Ford, J.M.; Kuo, C.J.; Ji, H.P. Metastatic tumor evolution and organoid modeling implicate TGFBR2as a cancer driver in diffuse gastric cancer. Genome Biol., 2014, 15(8), 428. doi: 10.1186/s13059-014-0428-9 PMID: 25315765
  107. Gao, D.; Vela, I.; Sboner, A.; Iaquinta, P.J.; Karthaus, W.R.; Gopalan, A.; Dowling, C.; Wanjala, J.N.; Undvall, E.A.; Arora, V.K.; Wongvipat, J.; Kossai, M.; Ramazanoglu, S.; Barboza, L.P.; Di, W.; Cao, Z.; Zhang, Q.F.; Sirota, I.; Ran, L.; MacDonald, T.Y.; Beltran, H.; Mosquera, J.M.; Touijer, K.A.; Scardino, P.T.; Laudone, V.P.; Curtis, K.R.; Rathkopf, D.E.; Morris, M.J.; Danila, D.C.; Slovin, S.F.; Solomon, S.B.; Eastham, J.A.; Chi, P.; Carver, B.; Rubin, M.A.; Scher, H.I.; Clevers, H.; Sawyers, C.L.; Chen, Y. Organoid cultures derived from patients with advanced prostate cancer. Cell, 2014, 159(1), 176-187. doi: 10.1016/j.cell.2014.08.016 PMID: 25201530
  108. Kopper, O.; de Witte, C.J.; Lõhmussaar, K.; Valle-Inclan, J.E.; Hami, N.; Kester, L.; Balgobind, A.V.; Korving, J.; Proost, N.; Begthel, H.; van Wijk, L.M.; Revilla, S.A.; Theeuwsen, R.; van de Ven, M.; van Roosmalen, M.J.; Ponsioen, B.; Ho, V.W.H.; Neel, B.G.; Bosse, T.; Gaarenstroom, K.N.; Vrieling, H.; Vreeswijk, M.P.G.; van Diest, P.J.; Witteveen, P.O.; Jonges, T.; Bos, J.L.; van Oudenaarden, A.; Zweemer, R.P.; Snippert, H.J.G.; Kloosterman, W.P.; Clevers, H. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med., 2019, 25(5), 838-849. doi: 10.1038/s41591-019-0422-6 PMID: 31011202
  109. da Silva, B.; Mathew, R.K.; Polson, E.S.; Williams, J.; Wurdak, H. Spontaneous glioblastoma spheroid infiltration of early-stage cerebral organoids models brain tumor invasion. SLAS Discov., 2018, 23(8), 862-868. doi: 10.1177/2472555218764623 PMID: 29543559
  110. Lee, S.H.; Hu, W.; Matulay, J.T.; Silva, M.V.; Owczarek, T.B.; Kim, K.; Chua, C.W.; Barlow, L.J.; Kandoth, C.; Williams, A.B.; Bergren, S.K.; Pietzak, E.J.; Anderson, C.B.; Benson, M.C.; Coleman, J.A.; Taylor, B.S.; Abate-Shen, C.; McKiernan, J.M.; Al-Ahmadie, H.; Solit, D.B.; Shen, M.M. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell, 2018, 173(2), 515-528.e17. doi: 10.1016/j.cell.2018.03.017 PMID: 29625057
  111. Bolck, H.A.; Corrò, C.; Kahraman, A.; von Teichman, A.; Toussaint, N.C.; Kuipers, J.; Chiovaro, F.; Koelzer, V.H.; Pauli, C.; Moritz, W.; Bode, P.K.; Rechsteiner, M.; Beerenwinkel, N.; Schraml, P.; Moch, H. Tracing clonal dynamics reveals that two- and three-dimensional patient-derived cell models capture tumor heterogeneity of clear cell renal cell carcinoma. Eur. Urol. Focus, 2021, 7(1), 152-162. doi: 10.1016/j.euf.2019.06.009 PMID: 31266731
  112. Sachs, N.; Papaspyropoulos, A.; Zomer-van Ommen, D.D.; Heo, I.; Böttinger, L.; Klay, D.; Weeber, F.; Huelsz-Prince, G.; Iakobachvili, N.; Amatngalim, G.D.; de Ligt, J.; van Hoeck, A.; Proost, N.; Viveen, M.C.; Lyubimova, A.; Teeven, L.; Derakhshan, S.; Korving, J.; Begthel, H.; Dekkers, J.F.; Kumawat, K.; Ramos, E.; van Oosterhout, M.F.M.; Offerhaus, G.J.; Wiener, D.J.; Olimpio, E.P.; Dijkstra, K.K.; Smit, E.F.; van der Linden, M.; Jaksani, S.; van de Ven, M.; Jonkers, J.; Rios, A.C.; Voest, E.E.; van Moorsel, C.H.M.; van der Ent, C.K.; Cuppen, E.; van Oudenaarden, A.; Coenjaerts, F.E.; Meyaard, L.; Bont, L.J.; Peters, P.J.; Tans, S.J.; van Zon, J.S.; Boj, S.F.; Vries, R.G.; Beekman, J.M.; Clevers, H. Long‐term expanding human airway organoids for disease modeling. EMBO J., 2019, 38(4), e100300. doi: 10.15252/embj.2018100300 PMID: 30643021
  113. Li, X.; Francies, H.E.; Secrier, M.; Perner, J.; Miremadi, A.; Galeano-Dalmau, N.; Barendt, W.J.; Letchford, L.; Leyden, G.M.; Goffin, E.K.; Barthorpe, A.; Lightfoot, H.; Chen, E.; Gilbert, J.; Noorani, A.; Devonshire, G.; Bower, L.; Grantham, A.; MacRae, S.; Grehan, N.; Wedge, D.C.; Fitzgerald, R.C.; Garnett, M.J. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat. Commun., 2018, 9(1), 2983. doi: 10.1038/s41467-018-05190-9 PMID: 30061675
  114. Fujii, M.; Shimokawa, M.; Date, S.; Takano, A.; Matano, M.; Nanki, K.; Ohta, Y.; Toshimitsu, K.; Nakazato, Y.; Kawasaki, K.; Uraoka, T.; Watanabe, T.; Kanai, T.; Sato, T. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell, 2016, 18(6), 827-838. doi: 10.1016/j.stem.2016.04.003 PMID: 27212702
  115. Roerink, S. F.; Sasaki, N.; Lee-Six, H.; Young, M. D.; Alexandrov, L. B.; Behjati, S.; Mitchell, T. J.; Grossmann, S.; Lightfoot, H.; Egan, D. A.; Pronk, A.; Smakman, N.; van Gorp, J.; Anderson, E.; Gamble, S. J.; Alder, C.; van de Wetering, M.; Campbell, P. J.; Stratton, M. R.; Clevers, H. Intra-Tumour Diversification in Colorectal Cancer at the Single-Cell Level Nature, 2018, 556(7702), 457-462. doi: 10.1038/s41586-018-0024-3
  116. Tian, L.; Gao, J.; Garcia, I.M.; Chen, H.J.; Castaldi, A.; Chen, Y.W. Human pluripotent stem cell‐derived lung organoids: Potential applications in development and disease modeling. Wiley Interdiscip. Rev. Dev. Biol., 2021, 10(6), e399. doi: 10.1002/wdev.399 PMID: 33145915
  117. Reyfman, P.A.; Walter, J.M.; Joshi, N.; Anekalla, K.R.; McQuattie-Pimentel, A.C.; Chiu, S.; Fernandez, R.; Akbarpour, M.; Chen, C-I.; Ren, Z.; Verma, R.; Abdala-Valencia, H.; Nam, K.; Chi, M.; Han, S.; Gonzalez-Gonzalez, F.J.; Soberanes, S.; Watanabe, S.; Williams, K.J.N.; Flozak, A.S.; Nicholson, T.T.; Morgan, V.K.; Hrusch, C.L.; Guzy, R.D.; Bonham, C.A.; Sperling, A.I.; Bag, R.; Hamanaka, R.B.; Mutlu, G.M.; Yeldandi, A.V.; Marshall, S.A.; Shilatifard, A.; Amaral, L.A.N.; Perlman, H.; Sznajder, J.I.; Winter, D.R.; Hinchcliff, M.; Argento, A.C.; Gillespie, C.T.; D’Amico Dematte, J.; Jain, M.; Singer, B.D.; Ridge, K.M.; Gottardi, C.J.; Lam, A.P.; Bharat, A.; Bhorade, S.M.; Budinger, G.R.S.; Misharin, A.V. Single-cell transcriptomic analysis of human lung reveals complex multicellular changes during pulmonary fibrosis. bioRxiv, 2018. doi: 10.1101/296608
  118. Plasschaert, L.W.; Žilionis, R.; Choo-Wing, R.; Savova, V.; Knehr, J.; Roma, G.; Klein, A.M.; Jaffe, A.B. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature, 2018, 560(7718), 377-381. doi: 10.1038/s41586-018-0394-6 PMID: 30069046
  119. Schiller, H.B.; Montoro, D.T.; Simon, L.M.; Rawlins, E.L.; Meyer, K.B.; Strunz, M.; Vieira Braga, F.A.; Timens, W.; Koppelman, G.H.; Budinger, G.R.S.; Burgess, J.K.; Waghray, A.; van den Berge, M.; Theis, F.J.; Regev, A.; Kaminski, N.; Rajagopal, J.; Teichmann, S.A.; Misharin, A.V.; Nawijn, M.C. The human lung cell atlas: a high-resolution reference map of the human lung in health and disease. Am. J. Respir. Cell Mol. Biol., 2019, 61(1), 31-41. doi: 10.1165/rcmb.2018-0416TR PMID: 30995076
  120. van der Vaart, J.; Clevers, H. Airway organoids as models of human disease. J. Intern. Med., 2021, 289(5), 604-613. doi: 10.1111/joim.13075 PMID: 32350962
  121. Strikoudis, A.; Cieślak, A.; Loffredo, L.; Chen, Y.W.; Patel, N.; Saqi, A.; Lederer, D.J.; Snoeck, H.W. Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells. Cell Rep., 2019, 27(12), 3709-3723.e5. doi: 10.1016/j.celrep.2019.05.077 PMID: 31216486
  122. Demchenko, A.; Lavrov, A.; Smirnikhina, S. Lung organoids: current strategies for generation and transplantation. Cell Tissue Res., 2022, 390(3), 317-333. doi: 10.1007/s00441-022-03686-x PMID: 36178558
  123. Shitamukai, A.; Konno, D.; Matsuzaki, F. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J. Neurosci., 2011, 31(10), 3683-3695. doi: 10.1523/JNEUROSCI.4773-10.2011 PMID: 21389223
  124. Wang, Z.; Wang, S.N.; Xu, T.Y.; Miao, Z.W.; Su, D.F.; Miao, C.Y. Organoid technology for brain and therapeutics research. CNS Neurosci. Ther., 2017, 23(10), 771-778. doi: 10.1111/cns.12754 PMID: 28884977
  125. van de Leemput, J.; Boles, N.C.; Kiehl, T.R.; Corneo, B.; Lederman, P.; Menon, V.; Lee, C.; Martinez, R.A.; Levi, B.P.; Thompson, C.L.; Yao, S.; Kaykas, A.; Temple, S.; Fasano, C.A. CORTECON: a temporal transcriptome analysis of in vitro human cerebral cortex development from human embryonic stem cells. Neuron, 2014, 83(1), 51-68. doi: 10.1016/j.neuron.2014.05.013 PMID: 24991954
  126. Layer, P.G.; Weikert, T.; Willbold, E. Chicken retinospheroids as developmental and pharmacological in vitro models: acetylcholinesterase is regulated by its own and by butyrylcholinesterase activity. Cell Tissue Res., 1992, 268(3), 409-418. doi: 10.1007/BF00319147 PMID: 1628298
  127. Kuwahara, A.; Ozone, C.; Nakano, T.; Saito, K.; Eiraku, M.; Sasai, Y. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat. Commun., 2015, 6(1), 6286. doi: 10.1038/ncomms7286 PMID: 25695148
  128. Chichagova, V.; Dorgau, B.; Felemban, M.; Georgiou, M.; Armstrong, L.; Lako, M. Differentiation of retinal organoids from human pluripotent stem cells. Curr. Protoc. Stem Cell Biol., 2019, 50(1), e95. doi: 10.1002/cpsc.95 PMID: 31479596
  129. Fligor, C.M.; Langer, K.B.; Sridhar, A.; Ren, Y.; Shields, P.K.; Edler, M.C.; Ohlemacher, S.K.; Sluch, V.M.; Zack, D.J.; Zhang, C.; Suter, D.M.; Meyer, J.S. Three-dimensional retinal organoids facilitate the investigation of retinal ganglion cell development, organization and neurite outgrowth from human pluripotent stem cells. Sci. Rep., 2018, 8(1), 14520. doi: 10.1038/s41598-018-32871-8 PMID: 30266927
  130. Phillips, M.J.; Capowski, E.E.; Petersen, A.; Jansen, A.D.; Barlow, K.; Edwards, K.L.; Gamm, D.M. Generation of a rod-specific NRL reporter line in human pluripotent stem cells. Sci. Rep., 2018, 8(1), 2370. doi: 10.1038/s41598-018-20813-3 PMID: 29402929
  131. Reichman, S.; Terray, A.; Slembrouck, A.; Nanteau, C.; Orieux, G.; Habeler, W.; Nandrot, E.F.; Sahel, J.A.; Monville, C.; Goureau, O. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc. Natl. Acad. Sci. USA, 2014, 111(23), 8518-8523. doi: 10.1073/pnas.1324212111 PMID: 24912154
  132. Vergara, M.N.; Flores-Bellver, M.; Aparicio-Domingo, S.; McNally, M.; Wahlin, K.J.; Saxena, M.T.; Mumm, J.S.; Canto-Soler, M.V. Three-dimensional automated reporter quantification (3D-ARQ) technology enables quantitative screening in retinal organoids. Development, 2017, 144(20), 3698-3705. doi: 10.1242/dev.146290 PMID: 28870990
  133. Völkner, M.; Zschätzsch, M.; Rostovskaya, M.; Overall, R.W.; Busskamp, V.; Anastassiadis, K.; Karl, M.O. Retinal organoids from pluripotent stem cells efficiently recapitulate retinogenesis. Stem Cell Reports, 2016, 6(4), 525-538. doi: 10.1016/j.stemcr.2016.03.001 PMID: 27050948
  134. Lamba, D.A.; Reh, T.A. Microarray characterization of human embryonic stem cell--derived retinal cultures. Invest. Ophthalmol. Vis. Sci., 2011, 52(7), 4897-4906. doi: 10.1167/iovs.10-6504 PMID: 21345990
  135. Zhong, X.; Gutierrez, C.; Xue, T.; Hampton, C.; Vergara, M.N.; Cao, L.H.; Peters, A.; Park, T.S.; Zambidis, E.T.; Meyer, J.S.; Gamm, D.M.; Yau, K.W.; Canto-Soler, M.V. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun., 2014, 5(1), 4047. doi: 10.1038/ncomms5047 PMID: 24915161
  136. Wahlin, K.J.; Maruotti, J.A.; Sripathi, S.R.; Ball, J.; Angueyra, J.M.; Kim, C.; Grebe, R.; Li, W.; Jones, B.W.; Zack, D.J. Photoreceptor outer segment-like structures in long-term 3D retinas from human pluripotent stem cells. Sci. Rep., 2017, 7(1), 766. doi: 10.1038/s41598-017-00774-9 PMID: 28396597
  137. Gabriel, E.; Albanna, W.; Pasquini, G.; Ramani, A.; Josipovic, N.; Mariappan, A.; Schinzel, F.; Karch, C.M.; Bao, G.; Gottardo, M.; Suren, A.A.; Hescheler, J.; Nagel-Wolfrum, K.; Persico, V.; Rizzoli, S.O.; Altmüller, J.; Riparbelli, M.G.; Callaini, G.; Goureau, O.; Papantonis, A.; Busskamp, V.; Schneider, T.; Gopalakrishnan, J. Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell, 2021, 28(10), 1740-1757.e8. doi: 10.1016/j.stem.2021.07.010 PMID: 34407456
  138. Tang, X.Y.; Wu, S.; Wang, D.; Chu, C.; Hong, Y.; Tao, M.; Hu, H.; Xu, M.; Guo, X.; Liu, Y. Human organoids in basic research and clinical applications. Signal Transduct. Target. Ther., 2022, 7(1), 168. doi: 10.1038/s41392-022-01024-9 PMID: 35610212
  139. Miyoshi, T.; Hiratsuka, K.; Saiz, E.G.; Morizane, R. Kidney organoids in translational medicine: Disease modeling and regenerative medicine. Dev. Dyn., 2020, 249(1), 34-45. doi: 10.1002/dvdy.22 PMID: 30843293
  140. Takasato, M.; Er, P.X.; Chiu, H.S.; Little, M.H. Generation of kidney organoids from human pluripotent stem cells. Nat. Protoc., 2016, 11(9), 1681-1692. doi: 10.1038/nprot.2016.098 PMID: 27560173
  141. Xia, Y.; Nivet, E.; Sancho-Martinez, I.; Gallegos, T.; Suzuki, K.; Okamura, D.; Wu, M.Z.; Dubova, I.; Esteban, C.R.; Montserrat, N.; Campistol, J.M.; Belmonte, J.C.I. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat. Cell Biol., 2013, 15(12), 1507-1515. doi: 10.1038/ncb2872 PMID: 24240476
  142. Shan, Z.; Xie, X.; Wu, X.; Zhuang, S.; Zhang, C. Development of degradable magnesium-based metal implants and their function in promoting bone metabolism (A review). J. Orthop. Translat., 2022, 36, 184-193. doi: 10.1016/j.jot.2022.09.013 PMID: 36263386
  143. Liu, H.; Zhang, Q.; Wang, S.; Weng, W.; Jing, Y.; Su, J. Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: Advances and perspectives. Bioact. Mater., 2022, 14, 169-181. doi: 10.1016/j.bioactmat.2021.12.006 PMID: 35310361
  144. Gan, D.; Jiang, Y.; Hu, Y.; Wang, X.; Wang, Q.; Wang, K.; Xie, C.; Han, L.; Lu, X. Mussel-inspired extracellular matrix-mimicking hydrogel scaffold with high cell affinity and immunomodulation ability for growth factor-free cartilage regeneration. J. Orthop. Translat., 2022, 33, 120-131. doi: 10.1016/j.jot.2022.02.006 PMID: 35330942
  145. Xue, X.; Hu, Y.; Wang, S.; Chen, X.; Jiang, Y.; Su, J. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact. Mater., 2022, 12, 327-339. doi: 10.1016/j.bioactmat.2021.10.029 PMID: 35128180
  146. Xue, X.; Hu, Y.; Deng, Y.; Su, J. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv. Funct. Mater., 2021, 31(19), 2009432. doi: 10.1002/adfm.202009432
  147. Liu, H.; Sun, J.; Wang, M.; Wang, S.; Su, J.; Xu, C. Intestinal organoids and organoids extracellular vesicles for inflammatory bowel disease treatment. Chem. Eng. J., 2023, 465(142842), 142842. doi: 10.1016/j.cej.2023.142842
  148. Kale, S.; Biermann, S.; Edwards, C.; Tarnowski, C.; Morris, M.; Long, M.W. Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat. Biotechnol., 2000, 18(9), 954-958. doi: 10.1038/79439 PMID: 10973215
  149. Mallette, J.M.; Anthony, A. Growth in culture of trypsin dissociated thyroid cells from adult rats. Exp. Cell Res., 1966, 41(3), 642-651. doi: 10.1016/S0014-4827(66)80115-5 PMID: 4952051
  150. Ogundipe, V.M.L.; Plukker, J.T.M.; Links, T.P.; Coppes, R.P. Thyroid gland organoids: Current models and insights for application in tissue engineering. Tissue Eng. Part A, 2022, 28(11-12), 500-510. doi: 10.1089/ten.tea.2021.0221 PMID: 35262402
  151. ILiver organoid Available from: https://ki-images.mit.edu/2018/fortuna-1 (Accessed on: 2023-08-19).
  152. Zhao, Z.; Chen, X.; Dowbaj, A.M.; Sljukic, A.; Bratlie, K.; Lin, L.; Fong, E.L.S.; Balachander, G.M.; Chen, Z.; Soragni, A.; Huch, M.; Zeng, Y.A.; Wang, Q.; Yu, H. Organoids. Nature Reviews Methods Primers, 2022, 2(1), 94. doi: 10.1038/s43586-022-00174-y PMID: 37325195
  153. Cugola, F.R.; Fernandes, I.R.; Russo, F.B.; Freitas, B.C.; Dias, J.L.M.; Guimarães, K.P.; Benazzato, C.; Almeida, N.; Pignatari, G.C.; Romero, S.; Polonio, C.M.; Cunha, I.; Freitas, C.L.; Brandão, W.N.; Rossato, C.; Andrade, D.G.; Faria, D.P.; Garcez, A.T.; Buchpigel, C.A.; Braconi, C.T.; Mendes, E.; Sall, A.A.; Zanotto, P.M.A.; Peron, J.P.S.; Muotri, A.R.; Beltrão-Braga, P.C.B. The Brazilian Zika virus strain causes birth defects in experimental models. Nature, 2016, 534(7606), 267-271. doi: 10.1038/nature18296 PMID: 27279226
  154. Li, H.; Saucedo-Cuevas, L.; Shresta, S.; Gleeson, J.G. The neurobiology of zika Virus. Neuron, 2016, 92(5), 949-958. doi: 10.1016/j.neuron.2016.11.031 PMID: 27930910
  155. Driggers, R.W.; Ho, C.Y.; Korhonen, E.M.; Kuivanen, S.; Jääskeläinen, A.J.; Smura, T.; Rosenberg, A.; Hill, D.A.; DeBiasi, R.L.; Vezina, G.; Timofeev, J.; Rodriguez, F.J.; Levanov, L.; Razak, J.; Iyengar, P.; Hennenfent, A.; Kennedy, R.; Lanciotti, R.; du Plessis, A.; Vapalahti, O. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N. Engl. J. Med., 2016, 374(22), 2142-2151. doi: 10.1056/NEJMoa1601824 PMID: 27028667
  156. Dang, J.; Tiwari, S.K.; Lichinchi, G.; Qin, Y.; Patil, V.S.; Eroshkin, A.M.; Rana, T.M. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell, 2016, 19(2), 258-265. doi: 10.1016/j.stem.2016.04.014 PMID: 27162029
  157. Finkbeiner, S.R.; Zeng, X.L.; Utama, B.; Atmar, R.L.; Shroyer, N.F.; Estes, M.K. Stem cell-derived human intestinal organoids as an infection model for rotaviruses. MBio, 2012, 3(4), e00159-e12. doi: 10.1128/mBio.00159-12 PMID: 22761392
  158. Huang, J.Y.; Sweeney, E.G.; Sigal, M.; Zhang, H.C.; Remington, S.J.; Cantrell, M.A.; Kuo, C.J.; Guillemin, K.; Amieva, M.R. Chemodetection and destruction of host urea allows helicobacter pylori to locate the epithelium. Cell Host Microbe, 2015, 18(2), 147-156. doi: 10.1016/j.chom.2015.07.002 PMID: 26269952
  159. Heo, I.; Dutta, D.; Schaefer, D.A.; Iakobachvili, N.; Artegiani, B.; Sachs, N.; Boonekamp, K.E.; Bowden, G.; Hendrickx, A.P.A.; Willems, R.J.L.; Peters, P.J.; Riggs, M.W.; O’Connor, R.; Clevers, H. Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nat. Microbiol., 2018, 3(7), 814-823. doi: 10.1038/s41564-018-0177-8 PMID: 29946163
  160. Dedhia, P.H.; Bertaux-Skeirik, N.; Zavros, Y.; Spence, J.R. Organoid models of human gastrointestinal development and disease. Gastroenterology, 2016, 150(5), 1098-1112. doi: 10.1053/j.gastro.2015.12.042 PMID: 26774180
  161. Crespo, M.; Vilar, E.; Tsai, S.Y.; Chang, K.; Amin, S.; Srinivasan, T.; Zhang, T.; Pipalia, N.H.; Chen, H.J.; Witherspoon, M.; Gordillo, M.; Xiang, J.Z.; Maxfield, F.R.; Lipkin, S.; Evans, T.; Chen, S. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat. Med., 2017, 23(7), 878-884. doi: 10.1038/nm.4355 PMID: 28628110
  162. Skardal, A.; Murphy, S.V.; Devarasetty, M.; Mead, I.; Kang, H.W.; Seol, Y.J.; Shrike Zhang, Y.; Shin, S.R.; Zhao, L.; Aleman, J.; Hall, A.R.; Shupe, T.D.; Kleensang, A.; Dokmeci, M.R.; Jin Lee, S. Jackson, J.D.; Yoo, J.J.; Hartung, T.; Khademhosseini, A.; Soker, S.; Bishop, C.E.; Atala, A. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci. Rep., 2017, 7(1), 8837. doi: 10.1038/s41598-017-08879-x PMID: 28821762
  163. Bose, S.; Clevers, H.; Shen, X. Promises and challenges of organoid-guided precision medicine. Med, 2021, 2(9), 1011-1026. doi: 10.1016/j.medj.2021.08.005 PMID: 34617071
  164. Letai, A. Functional precision cancer medicine—moving beyond pure genomics. Nat. Med., 2017, 23(9), 1028-1035. doi: 10.1038/nm.4389 PMID: 28886003
  165. Le Tourneau, C.; Delord, J.P.; Gonçalves, A.; Gavoille, C.; Dubot, C.; Isambert, N.; Campone, M.; Trédan, O.; Massiani, M.A.; Mauborgne, C.; Armanet, S.; Servant, N.; Bièche, I.; Bernard, V.; Gentien, D.; Jezequel, P.; Attignon, V.; Boyault, S.; Vincent-Salomon, A.; Servois, V.; Sablin, M.P.; Kamal, M.; Paoletti, X. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol., 2015, 16(13), 1324-1334. doi: 10.1016/S1470-2045(15)00188-6 PMID: 26342236
  166. Meric-Bernstam, F.; Brusco, L.; Shaw, K.; Horombe, C.; Kopetz, S.; Davies, M.A.; Routbort, M.; Piha-Paul, S.A.; Janku, F.; Ueno, N.; Hong, D.; De Groot, J.; Ravi, V.; Li, Y.; Luthra, R.; Patel, K.; Broaddus, R.; Mendelsohn, J.; Mills, G.B. Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials. J. Clin. Oncol., 2015, 33(25), 2753-2762. doi: 10.1200/JCO.2014.60.4165 PMID: 26014291
  167. Sholl, L.M.; Do, K.; Shivdasani, P.; Cerami, E.; Dubuc, A.M.; Kuo, F.C.; Garcia, E.P.; Jia, Y.; Davineni, P.; Abo, R.P.; Pugh, T.J.; van Hummelen, P.; Thorner, A.R.; Ducar, M.; Berger, A.H.; Nishino, M.; Janeway, K.A.; Church, A.; Harris, M.; Ritterhouse, L.L.; Campbell, J.D.; Rojas-Rudilla, V.; Ligon, A.H.; Ramkissoon, S.; Cleary, J.M.; Matulonis, U.; Oxnard, G.R.; Chao, R.; Tassell, V.; Christensen, J.; Hahn, W.C.; Kantoff, P.W.; Kwiatkowski, D.J.; Johnson, B.E.; Meyerson, M.; Garraway, L.A.; Shapiro, G.I.; Rollins, B.J.; Lindeman, N.I.; MacConaill, L.E. Institutional implementation of clinical tumor profiling on an unselected cancer population. JCI Insight, 2016, 1(19), e87062. doi: 10.1172/jci.insight.87062 PMID: 27882345
  168. Schwaederle, M.; Daniels, G.A.; Piccioni, D.E.; Fanta, P.T.; Schwab, R.B.; Shimabukuro, K.A.; Parker, B.A.; Kurzrock, R. On the road to precision cancer medicine: Analysis of genomic biomarker actionability in 439 patients. Mol. Cancer Ther., 2015, 14(6), 1488-1494. doi: 10.1158/1535-7163.MCT-14-1061 PMID: 25852059
  169. Guillen, K.P.; Fujita, M.; Butterfield, A.J.; Scherer, S.D.; Bailey, M.H.; Chu, Z.; DeRose, Y.S.; Zhao, L.; Cortes-Sanchez, E.; Yang, C.H.; Toner, J.; Wang, G.; Qiao, Y.; Huang, X.; Greenland, J.A.; Vahrenkamp, J.M.; Lum, D.H.; Factor, R.E.; Nelson, E.W.; Matsen, C.B.; Poretta, J.M.; Rosenthal, R.; Beck, A.C.; Buys, S.S.; Vaklavas, C.; Ward, J.H.; Jensen, R.L.; Jones, K.B.; Li, Z.; Oesterreich, S.; Dobrolecki, L.E.; Pathi, S.S.; Woo, X.Y.; Berrett, K.C.; Wadsworth, M.E.; Chuang, J.H.; Lewis, M.T.; Marth, G.T.; Gertz, J.; Varley, K.E.; Welm, B.E.; Welm, A.L. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nat. Can., 2022, 3(2), 232-250. doi: 10.1038/s43018-022-00337-6 PMID: 35221336
  170. Kawasaki, K.; Toshimitsu, K.; Matano, M.; Fujita, M.; Fujii, M.; Togasaki, K.; Ebisudani, T.; Shimokawa, M.; Takano, A.; Takahashi, S.; Ohta, Y.; Nanki, K.; Igarashi, R.; Ishimaru, K.; Ishida, H.; Sukawa, Y.; Sugimoto, S.; Saito, Y.; Maejima, K.; Sasagawa, S.; Lee, H.; Kim, H.G.; Ha, K.; Hamamoto, J.; Fukunaga, K.; Maekawa, A.; Tanabe, M.; Ishihara, S.; Hamamoto, Y.; Yasuda, H.; Sekine, S.; Kudo, A.; Kitagawa, Y.; Kanai, T.; Nakagawa, H.; Sato, T. An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping. Cell, 2020, 183(5), 1420-1435.e21. doi: 10.1016/j.cell.2020.10.023 PMID: 33159857
  171. Kondo, T. Current status and perspectives of patient-derived rare cancer models. Hum. Cell, 2020, 33(4), 919-929. doi: 10.1007/s13577-020-00391-1 PMID: 32537685
  172. van de Wetering, M.; Francies, H.E.; Francis, J.M.; Bounova, G.; Iorio, F.; Pronk, A.; van Houdt, W.; van Gorp, J.; Taylor-Weiner, A.; Kester, L.; McLaren-Douglas, A.; Blokker, J.; Jaksani, S.; Bartfeld, S.; Volckman, R.; van Sluis, P.; Li, V.S.W.; Seepo, S.; Sekhar Pedamallu, C.; Cibulskis, K.; Carter, S.L.; McKenna, A.; Lawrence, M.S.; Lichtenstein, L.; Stewart, C.; Koster, J.; Versteeg, R.; van Oudenaarden, A.; Saez-Rodriguez, J.; Vries, R.G.J.; Getz, G.; Wessels, L.; Stratton, M.R.; McDermott, U.; Meyerson, M.; Garnett, M.J.; Clevers, H. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell, 2015, 161(4), 933-945. doi: 10.1016/j.cell.2015.03.053 PMID: 25957691
  173. Metavarayuth, K.; Sitasuwan, P.; Zhao, X.; Lin, Y.; Wang, Q. Influence of surface topographical cues on the differentiation of mesenchymal stem cells in vitro. ACS Biomater. Sci. Eng., 2016, 2(2), 142-151. doi: 10.1021/acsbiomaterials.5b00377 PMID: 33418629
  174. Karzbrun, E.; Khankhel, A.H.; Megale, H.C.; Glasauer, S.M.K.; Wyle, Y.; Britton, G.; Warmflash, A.; Kosik, K.S.; Siggia, E.D.; Shraiman, B.I.; Streichan, S.J. Human neural tube morphogenesis in vitro by geometric constraints. Nature, 2021, 599(7884), 268-272. doi: 10.1038/s41586-021-04026-9 PMID: 34707290
  175. Loomans, C.J.M.; Williams Giuliani, N.; Balak, J.; Ringnalda, F.; van Gurp, L.; Huch, M.; Boj, S.F.; Sato, T.; Kester, L.; de Sousa Lopes, S.M.C.; Roost, M.S.; Bonner-Weir, S.; Engelse, M.A.; Rabelink, T.J.; Heimberg, H.; Vries, R.G.J.; van Oudenaarden, A.; Carlotti, F.; Clevers, H.; de Koning, E.J.P. Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentiation potential. Stem Cell Reports, 2018, 10(3), 712-724. doi: 10.1016/j.stemcr.2018.02.005 PMID: 29539434
  176. Elizondo, D.M.; Brandy, N.Z.D.; da Silva, R.L.L.; de Moura, T.R.; Ali, J.; Yang, D.; Lipscomb, M.W. Pancreatic islets seeded in a novel bioscaffold forms an organoid to rescue insulin production and reverse hyperglycemia in models of type 1 diabetes. Sci. Rep., 2020, 10(1), 4362. doi: 10.1038/s41598-020-60947-x PMID: 32152396
  177. Lukonin, I.; Serra, D.; Challet Meylan, L.; Volkmann, K.; Baaten, J.; Zhao, R.; Meeusen, S.; Colman, K.; Maurer, F.; Stadler, M.B.; Jenkins, J.; Liberali, P. Phenotypic landscape of intestinal organoid regeneration. Nature, 2020, 586(7828), 275-280. doi: 10.1038/s41586-020-2776-9 PMID: 33029001
  178. Vacanti, J.P.; Morse, M.A.; Saltzman, W.M.; Domb, A.J.; Perez-Atayde, A.; Langer, R. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J. Pediatr. Surg., 1988, 23(1), 3-9. doi: 10.1016/S0022-3468(88)80529-3 PMID: 2895175
  179. Yui, S.; Nakamura, T.; Sato, T.; Nemoto, Y.; Mizutani, T.; Zheng, X.; Ichinose, S.; Nagaishi, T.; Okamoto, R.; Tsuchiya, K.; Clevers, H.; Watanabe, M. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med., 2012, 18(4), 618-623. doi: 10.1038/nm.2695 PMID: 22406745
  180. Rutherford, D.; Ho, G.T. Therapeutic potential of human intestinal organoids in tissue repair approaches in inflammatory bowel diseases. Inflamm. Bowel Dis., 2023, 29(9), 1488-1498. doi: 10.1093/ibd/izad044 PMID: 37094358
  181. Sprangers, J.; Zaalberg, I.C.; Maurice, M.M. Organoid-based modeling of intestinal development, regeneration, and repair. Cell Death Differ., 2021, 28(1), 95-107. doi: 10.1038/s41418-020-00665-z PMID: 33208888
  182. Yan, H.H.N.; Siu, H.C.; Law, S.; Ho, S.L.; Yue, S.S.K.; Tsui, W.Y.; Chan, D.; Chan, A.S.; Ma, S.; Lam, K.O.; Bartfeld, S.; Man, A.H.Y.; Lee, B.C.H.; Chan, A.S.Y.; Wong, J.W.H.; Cheng, P.S.W.; Chan, A.K.W.; Zhang, J.; Shi, J.; Fan, X.; Kwong, D.L.W.; Mak, T.W.; Yuen, S.T.; Clevers, H.; Leung, S.Y. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell, 2018, 23(6), 882-897.e11. doi: 10.1016/j.stem.2018.09.016 PMID: 30344100
  183. Williamson, C.T.; Miller, R.; Pemberton, H.N.; Jones, S.E.; Campbell, J.; Konde, A.; Badham, N.; Rafiq, R.; Brough, R.; Gulati, A.; Ryan, C.J.; Francis, J.; Vermulen, P.B.; Reynolds, A.R.; Reaper, P.M.; Pollard, J.R.; Ashworth, A.; Lord, C.J. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat. Commun., 2016, 7(1), 13837. doi: 10.1038/ncomms13837 PMID: 27958275
  184. Dijkstra, K.K.; Cattaneo, C.M.; Weeber, F.; Chalabi, M.; van de Haar, J.; Fanchi, L.F.; Slagter, M.; van der Velden, D.L.; Kaing, S.; Kelderman, S.; van Rooij, N.; van Leerdam, M.E.; Depla, A.; Smit, E.F.; Hartemink, K.J.; de Groot, R.; Wolkers, M.C.; Sachs, N.; Snaebjornsson, P.; Monkhorst, K.; Haanen, J.; Clevers, H.; Schumacher, T.N.; Voest, E.E. Generation of tumor-reactive t cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell, 2018, 174(6), 1586-1598.e12. doi: 10.1016/j.cell.2018.07.009 PMID: 30100188
  185. Rozich, N.S.; Blair, A.B.; Burkhart, R.A. Organoids. In: Precision Medicine for Investigators, Practitioners and Providers; Elsevier, 2020; pp. 123-129. doi: 10.1016/B978-0-12-819178-1.00012-5
  186. Spence, J.; Cruz-Acuna, R.; Quiros, M.; Farkas, A.; Dedhia, P.; Huang, S.; Siuda, D.; Garcia-Hernandez, V.; Miller, A.; Spence, J.; Nusrat, A.; Garcia, A. PEG-4MAL hydrogels for in vitro culture of human organoids and in vivo delivery to sites of injury. Protoc. Exch., 2017. doi: 10.1038/protex.2017.098
  187. Davies, J.A. Organoids and mini-organs. In: Organs and Organoids; Elsevier, 2018; pp. 3-23.
  188. Park, S.E.; Georgescu, A.; Huh, D. Organoids-on-a-chip. Science, 2019, 364(6444), 960-965. doi: 10.1126/science.aaw7894 PMID: 31171693
  189. Zhu, J.; Ji, L.; Chen, Y.; Li, H.; Huang, M.; Dai, Z.; Wang, J.; Xiang, D.; Fu, G.; Lei, Z.; Chu, X. Organoids and organs-on-chips: insights into predicting the efficacy of systemic treatment in colorectal cancer. Cell Death Discov., 2023, 9(1), 72. doi: 10.1038/s41420-023-01354-9 PMID: 36813783
  190. Razavi Bazaz, S.; Rouhi, O.; Raoufi, M.A.; Ejeian, F.; Asadnia, M.; Jin, D.; Ebrahimi Warkiani, M. 3D printing of inertial microfluidic devices. Sci. Rep., 2020, 10(1), 5929. doi: 10.1038/s41598-020-62569-9 PMID: 32246111
  191. Baptista, L.S.; Porrini, C.; Kronemberger, G.S.; Kelly, D.J.; Perrault, C.M. 3D organ-on-a-chip: The convergence of microphysiological systems and organoids. Front. Cell Dev. Biol., 2022, 10, 1043117. doi: 10.3389/fcell.2022.1043117 PMID: 36478741
  192. Wu, L.; Ai, Y.; Xie, R.; Xiong, J.; Wang, Y.; Liang, Q. Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models. Lab Chip, 2023, 23(5), 1192-1212. doi: 10.1039/D2LC00804A PMID: 36644984

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers