An Exploration of Organoid Technology: Present Advancements, Applications, and Obstacles
- Authors: Mishra I.1, Gupta K.1, Mishra R.2, Chaudhary K.3, Sharma V.1
-
Affiliations:
- Department of Pharmacy, Galgotias College of Pharmacy
- Department of Pharmacy,, GLA University
- Department of Pharmacy, GLA University
- Issue: Vol 25, No 8 (2024)
- Pages: 1000-1020
- Section: Biotechnology
- URL: https://rjeid.com/1389-2010/article/view/644937
- DOI: https://doi.org/10.2174/0113892010273024230925075231
- ID: 644937
Cite item
Full Text
Abstract
Background:Organoids are in vitro models that exhibit a three-dimensional structure and effectively replicate the structural and physiological features of human organs. The capacity to research complex biological processes and disorders in a controlled setting is laid out by these miniature organ-like structures.
Objectives:This work examines the potential applications of organoid technology, as well as the challenges and future directions associated with its implementation. It aims to emphasize the pivotal role of organoids in disease modeling, drug discovery, developmental biology, precision medicine, and fundamental research.
Methods:The manuscript was put together by conducting a comprehensive literature review, which involved an in-depth evaluation of globally renowned scientific research databases.
Results:The field of organoids has generated significant attention due to its potential applications in tissue development and disease modelling, as well as its implications for personalised medicine, drug screening, and cell-based therapies. The utilisation of organoids has proven to be effective in the examination of various conditions, encompassing genetic disorders, cancer, neurodevelopmental disorders, and infectious diseases.
Conclusion:The exploration of the wider uses of organoids is still in its early phases. Research shall be conducted to integrate 3D organoid systems as alternatives for current models, potentially improving both fundamental and clinical studies in the future.
About the authors
Isha Mishra
Department of Pharmacy, Galgotias College of Pharmacy
Author for correspondence.
Email: info@benthamscience.net
Komal Gupta
Department of Pharmacy, Galgotias College of Pharmacy
Email: info@benthamscience.net
Raghav Mishra
Department of Pharmacy,, GLA University
Author for correspondence.
Email: info@benthamscience.net
Kajal Chaudhary
Department of Pharmacy, GLA University
Email: info@benthamscience.net
Vikram Sharma
Department of Pharmacy, Galgotias College of Pharmacy
Email: info@benthamscience.net
References
- Murti, Y.; Agrawal, K.K.; Semwal, B.C.; Gupta, J.; Gupta, R. A review on novel herbal drug delivery system and its application. Curr. Tradit. Med., 2023, 9(2), e280422204154. doi: 10.2174/2215083808666220428092638
- Murti, Y.; Agrawal, K.K. Tangeretin: A biologically potential citrus flavone. Curr. Tradit. Med., 2022, 8(4), e040322201698. doi: 10.2174/2215083808666220304100702
- Ahuja, A.; Singh, S. Impact of the current scenario and future perspectives for the management of oral diseases: Remarkable contribution of herbs in dentistry. Antiinfect. Agents, 2022, 20(5), e050422203119. doi: 10.2174/2211352520666220405124929
- Singh, S.; Bajpai, M.; Mishra, P. Herbal folklore medication for liver disorders. Curr. Tradit. Med., 2021, 7(3), 415-433. doi: 10.2174/2215083806999201112093503
- Mishra, I.; Sachan, N. Thiazole scaffold: An overview on its synthetic and pharmaceutical aspects. ECS Trans., 2022, 107(1), 17745-17768. doi: 10.1149/10701.17745ecst
- Mishra, R.; Tomer, I.; Kumar, S. Synthesis and antimicrobial evaluation of novel thiophene derivatives. Pharm. Sin., 2012, 3, 332-336.
- Upadhyay, P.K.; Pathak, S.; Mishra, R.; Kumar, R.; Jain, A. A multifaceted scaffold for building bioactive compounds. Phenothiazine. Lett. Org. Chem., 2023, 20(7), 618-631. doi: 10.2174/1570178620666221202100529
- Mishra, R.; da Cunha Xavier, J.; dos Santos, H.S.; Machado Marinho, M.; Nunes da Rocha, M.; Rodrigues Teixeira, A.M.; Coutinho, H.D.M.; Marinho, E.S. Sucheta; Kumar, N. Chalcones as potent agents against Staphylococcus aureus: A Computational Approach. Lett. Drug Des. Discov., 2023, 20 doi: 10.2174/1570180820666230120145921
- Mishra, I. Preferences of Indian women on COVID-19 medical solutions. Biosci. Biotechnol. Res. Commun., 2021, 14(3), 1381-1384. doi: 10.21786/bbrc/14.3.71
- Mishra, R.; Chaudhary, K.; Mishra, I. Weapons and strategies against COVID-19: A perspective. Curr. Pharm. Biotechnol., 2023, 24 doi: 10.2174/1389201024666230525161432 PMID: 37231727
- Mishra, R.; Chaudhary, K.; Mishra, I. AI in health science: A perspective. Curr. Pharm. Biotechnol., 2023, 24(9), 1149-1163. doi: 10.2174/1389201023666220929145220 PMID: 36177622
- Mishra, R.; Kumar, N.; Sachan, N. Synthesis, biological evaluation, and docking analysis of novel tetrahydrobenzothiophene derivatives. Lett. Drug Des. Discov., 2022, 19(6), 530-540. doi: 10.2174/1570180819666220117123958
- Mishra, R.; Kumar, N.; Sachan, N. Synthesis, pharmacological evaluation, and in-silico studies of thiophene derivatives. Oncologie, 2021, 23(4), 493-514. doi: 10.32604/oncologie.2021.018532
- Mishra, R.; Kumar, N.; Mishra, I.; Sachan, N. A review on anticancer activities of thiophene and its analogs. Mini Rev. Med. Chem., 2020, 20(19), 1944-1965. doi: 10.2174/1389557520666200715104555 PMID: 32669077
- Neal, J.T.; Kuo, C.J. Organoids as models for neoplastic transformation. Annu. Rev. Pathol., 2016, 11(1), 199-220. doi: 10.1146/annurev-pathol-012615-044249 PMID: 26907527
- Bredenoord, A.L.; Clevers, H.; Knoblich, J.A. Human tissues in a dish: The research and ethical implications of organoid technology. Science, 2017, 355(6322), eaaf9414. doi: 10.1126/science.aaf9414 PMID: 28104841
- Hidalgo, M.; Amant, F.; Biankin, A.V.; Budinská, E.; Byrne, A.T.; Caldas, C.; Clarke, R.B.; de Jong, S.; Jonkers, J.; Mælandsmo, G.M.; Roman-Roman, S.; Seoane, J.; Trusolino, L.; Villanueva, A. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov., 2014, 4(9), 998-1013. doi: 10.1158/2159-8290.CD-14-0001 PMID: 25185190
- Heydari, Z.; Moeinvaziri, F.; Agarwal, T.; Pooyan, P.; Shpichka, A.; Maiti, T.K.; Timashev, P.; Baharvand, H.; Vosough, M. Organoids: a novel modality in disease modeling. Biodes. Manuf., 2021, 4(4), 689-716. doi: 10.1007/s42242-021-00150-7 PMID: 34395032
- Fang, Y.; Eglen, R.M. Three-dimensional cell cultures in drug discovery and development. SLAS Discov., 2017, 22(5), 456-472. doi: 10.1177/1087057117696795 PMID: 28520521
- Lancaster, M.A.; Knoblich, J.A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 2014, 345(6194), 1247125. doi: 10.1126/science.1247125 PMID: 25035496
- Lancaster, M.A.; Renner, M.; Martin, C.A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral organoids model human brain development and microcephaly. Nature, 2013, 501(7467), 373-379. doi: 10.1038/nature12517 PMID: 23995685
- Paşca, A.M.; Sloan, S.A.; Clarke, L.E.; Tian, Y.; Makinson, C.D.; Huber, N.; Kim, C.H.; Park, J.Y.; ORourke, N.A.; Nguyen, K.D.; Smith, S.J.; Huguenard, J.R.; Geschwind, D.H.; Barres, B.A.; Paşca, S.P. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods, 2015, 12(7), 671-678. doi: 10.1038/nmeth.3415 PMID: 26005811
- Kadoshima, T.; Sakaguchi, H.; Nakano, T.; Soen, M.; Ando, S.; Eiraku, M.; Sasai, Y. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cellderived neocortex. Proc. Natl. Acad. Sci. USA, 2013, 110(50), 20284-20289. doi: 10.1073/pnas.1315710110 PMID: 24277810
- Eiraku, M.; Takata, N.; Ishibashi, H.; Kawada, M.; Sakakura, E.; Okuda, S.; Sekiguchi, K.; Adachi, T.; Sasai, Y. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 2011, 472(7341), 51-56. doi: 10.1038/nature09941 PMID: 21475194
- Nakano, T.; Ando, S.; Takata, N.; Kawada, M.; Muguruma, K.; Sekiguchi, K.; Saito, K.; Yonemura, S.; Eiraku, M.; Sasai, Y. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell, 2012, 10(6), 771-785. doi: 10.1016/j.stem.2012.05.009 PMID: 22704518
- Sato, T.; Vries, R.G.; Snippert, H.J.; van de Wetering, M.; Barker, N.; Stange, D.E.; van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; Clevers, H. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244), 262-265. doi: 10.1038/nature07935 PMID: 19329995
- Ootani, A.; Li, X.; Sangiorgi, E.; Ho, Q.T.; Ueno, H.; Toda, S.; Sugihara, H.; Fujimoto, K.; Weissman, I.L.; Capecchi, M.R.; Kuo, C.J. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med., 2009, 15(6), 701-706. doi: 10.1038/nm.1951 PMID: 19398967
- Spence, J.R.; Mayhew, C.N.; Rankin, S.A.; Kuhar, M.F.; Vallance, J.E.; Tolle, K.; Hoskins, E.E.; Kalinichenko, V.V.; Wells, S.I.; Zorn, A.M.; Shroyer, N.F.; Wells, J.M. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 2011, 470(7332), 105-109. doi: 10.1038/nature09691 PMID: 21151107
- Fordham, R.P.; Yui, S.; Hannan, N.R.F.; Soendergaard, C.; Madgwick, A.; Schweiger, P.J.; Nielsen, O.H.; Vallier, L.; Pedersen, R.A.; Nakamura, T.; Watanabe, M.; Jensen, K.B. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell, 2013, 13(6), 734-744. doi: 10.1016/j.stem.2013.09.015 PMID: 24139758
- Takasato, M.; Er, P.X.; Chiu, H.S.; Maier, B.; Baillie, G.J.; Ferguson, C.; Parton, R.G.; Wolvetang, E.J.; Roost, M.S.; Chuva de Sousa Lopes, S.M.; Little, M.H. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature, 2015, 526(7574), 564-568. doi: 10.1038/nature15695 PMID: 26444236
- Freedman, B.S.; Brooks, C.R.; Lam, A.Q.; Fu, H.; Morizane, R.; Agrawal, V.; Saad, A.F.; Li, M.K.; Hughes, M.R.; Werff, R.V.; Peters, D.T.; Lu, J.; Baccei, A.; Siedlecki, A.M.; Valerius, M.T.; Musunuru, K.; McNagny, K.M.; Steinman, T.I.; Zhou, J.; Lerou, P.H.; Bonventre, J.V. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat. Commun., 2015, 6(1), 8715. doi: 10.1038/ncomms9715 PMID: 26493500
- Morizane, R.; Lam, A.Q.; Freedman, B.S.; Kishi, S.; Valerius, M.T.; Bonventre, J.V. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol., 2015, 33(11), 1193-1200. doi: 10.1038/nbt.3392 PMID: 26458176
- Takasato, M.; Er, P.X.; Becroft, M.; Vanslambrouck, J.M.; Stanley, E.G.; Elefanty, A.G.; Little, M.H. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat. Cell Biol., 2014, 16(1), 118-126. doi: 10.1038/ncb2894 PMID: 24335651
- Takebe, T.; Sekine, K.; Enomura, M.; Koike, H.; Kimura, M.; Ogaeri, T.; Zhang, R.R.; Ueno, Y.; Zheng, Y.W.; Koike, N.; Aoyama, S.; Adachi, Y.; Taniguchi, H. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013, 499(7459), 481-484. doi: 10.1038/nature12271 PMID: 23823721
- Huch, M.; Dorrell, C.; Boj, S.F.; van Es, J.H.; Li, V.S.W.; van de Wetering, M.; Sato, T.; Hamer, K.; Sasaki, N.; Finegold, M.J.; Haft, A.; Vries, R.G.; Grompe, M.; Clevers, H. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature, 2013, 494(7436), 247-250. doi: 10.1038/nature11826 PMID: 23354049
- Huch, M.; Gehart, H.; van Boxtel, R.; Hamer, K.; Blokzijl, F.; Verstegen, M.M.A.; Ellis, E.; van Wenum, M.; Fuchs, S.A.; de Ligt, J.; van de Wetering, M.; Sasaki, N.; Boers, S.J.; Kemperman, H.; de Jonge, J.; Ijzermans, J.N.M.; Nieuwenhuis, E.E.S.; Hoekstra, R.; Strom, S.; Vries, R.R.G.; van der Laan, L.J.W.; Cuppen, E.; Clevers, H. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell, 2015, 160(1-2), 299-312. doi: 10.1016/j.cell.2014.11.050 PMID: 25533785
- Lee, J.H.; Bhang, D.H.; Beede, A.; Huang, T.L.; Stripp, B.R.; Bloch, K.D.; Wagers, A.J.; Tseng, Y.H.; Ryeom, S.; Kim, C.F. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell, 2014, 156(3), 440-455. doi: 10.1016/j.cell.2013.12.039 PMID: 24485453
- Dye, B.R.; Hill, D.R.; Ferguson, M.A.H.; Tsai, Y.H.; Nagy, M.S.; Dyal, R.; Wells, J.M.; Mayhew, C.N.; Nattiv, R.; Klein, O.D.; White, E.S.; Deutsch, G.H.; Spence, J.R. In vitro generation of human pluripotent stem cell derived lung organoids. eLife, 2015, 4, e05098. doi: 10.7554/eLife.05098 PMID: 25803487
- Konishi, S.; Gotoh, S.; Tateishi, K.; Yamamoto, Y.; Korogi, Y.; Nagasaki, T.; Matsumoto, H.; Muro, S.; Hirai, T.; Ito, I.; Tsukita, S.; Mishima, M. Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells. Stem Cell Reports, 2016, 6(1), 18-25. doi: 10.1016/j.stemcr.2015.11.010 PMID: 26724905
- Koehler, K.R.; Mikosz, A.M.; Molosh, A.I.; Patel, D.; Hashino, E. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature, 2013, 500(7461), 217-221. doi: 10.1038/nature12298 PMID: 23842490
- Koehler, K.R.; Hashino, E. 3D mouse embryonic stem cell culture for generating inner ear organoids. Nat. Protoc., 2014, 9(6), 1229-1244. doi: 10.1038/nprot.2014.100 PMID: 24784820
- Nie, J.; Hashino, E. Organoid technologies meet genome engineering. EMBO Rep., 2017, 18(3), 367-376. doi: 10.15252/embr.201643732 PMID: 28202491
- Wilson, H.V. A new method by which sponges may be artificially reared. Science, 1907, 25(649), 912-915. doi: 10.1126/science.25.649.912 PMID: 17842577
- Armah, H.B.; Parwani, A.V.; Perepletchikov, A.M. Synchronous primary carcinoid tumor and primary adenocarcinoma arising within mature cystic teratoma of horseshoe kidney: a unique case report and review of the literature. Diagn. Pathol., 2009, 4(1), 17. doi: 10.1186/1746-1596-4-17 PMID: 19523243
- Weiss, P.; Taylor, A.C. Reconstitution of complete organs from single-cell suspensions of chick embryos in advanced stages of differentiation. Proc. Natl. Acad. Sci. USA, 1960, 46(9), 1177-1185. doi: 10.1073/pnas.46.9.1177 PMID: 16590731
- Xinaris, C.; Brizi, V.; Remuzzi, G. Organoid models and applications in biomedical research. Nephron J., 2015, 130(3), 191-199. doi: 10.1159/000433566 PMID: 26112599
- Fatehullah, A.; Tan, S.H.; Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol., 2016, 18(3), 246-254. doi: 10.1038/ncb3312 PMID: 26911908
- Corbet, C. Stem cell metabolism in cancer and healthy tissues: pyruvate in the limelight. Front. Pharmacol., 2018, 8, 958. doi: 10.3389/fphar.2017.00958 PMID: 29403375
- Lancaster, M.A.; Huch, M. Disease modelling in human organoids. Dis. Model. Mech., 2019, 12(7), dmm039347. doi: 10.1242/dmm.039347 PMID: 31383635
- Clevers, H. Modeling development and disease with organoids. Cell, 2016, 165(7), 1586-1597. doi: 10.1016/j.cell.2016.05.082 PMID: 27315476
- Dutta, D.; Heo, I.; Clevers, H. Disease modeling in stem cell-derived 3d organoid systems. Trends Mol. Med., 2017, 23(5), 393-410. doi: 10.1016/j.molmed.2017.02.007 PMID: 28341301
- Bartfeld, S.; Clevers, H. Stem cell-derived organoids and their application for medical research and patient treatment. J. Mol. Med. (Berl.), 2017, 95(7), 729-738. doi: 10.1007/s00109-017-1531-7 PMID: 28391362
- Organoids. Available from: https://www.moleculardevices.com/applications/3d-cell-models/organoids (Accessed on: 2023-08-19).
- Sato, T.; Stange, D.E.; Ferrante, M.; Vries, R.G.J.; van Es, J.H.; van den Brink, S.; van Houdt, W.J.; Pronk, A.; van Gorp, J.; Siersema, P.D.; Clevers, H. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barretts epithelium. Gastroenterology, 2011, 141(5), 1762-1772. doi: 10.1053/j.gastro.2011.07.050 PMID: 21889923
- Jung, P.; Sato, T.; Merlos-Suárez, A.; Barriga, F.M.; Iglesias, M.; Rossell, D.; Auer, H.; Gallardo, M.; Blasco, M.A.; Sancho, E.; Clevers, H.; Batlle, E. Isolation and in vitro expansion of human colonic stem cells. Nat. Med., 2011, 17(10), 1225-1227. doi: 10.1038/nm.2470 PMID: 21892181
- Barker, N.; Huch, M.; Kujala, P.; van de Wetering, M.; Snippert, H.J.; van Es, J.H.; Sato, T.; Stange, D.E.; Begthel, H.; van den Born, M.; Danenberg, E.; van den Brink, S.; Korving, J.; Abo, A.; Peters, P.J.; Wright, N.; Poulsom, R.; Clevers, H. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 2010, 6(1), 25-36. doi: 10.1016/j.stem.2009.11.013 PMID: 20085740
- Artegiani, B.; Clevers, H. Use and application of 3D-organoid technology. Hum. Mol. Genet., 2018, 27(R2), R99-R107. doi: 10.1093/hmg/ddy187 PMID: 29796608
- Fan, H.; Demirci, U.; Chen, P. Emerging organoid models: leaping forward in cancer research. J. Hematol. Oncol., 2019, 12(1), 142. doi: 10.1186/s13045-019-0832-4 PMID: 31884964
- Rauth, S.; Karmakar, S.; Batra, S.K.; Ponnusamy, M.P. Recent advances in organoid development and applications in disease modeling. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(2), 188527. doi: 10.1016/j.bbcan.2021.188527 PMID: 33640383
- Heath, J.K. Transcriptional networks and signaling pathways that govern vertebrate intestinal development. Curr. Top. Dev. Biol., 2010, 90, 159-192. doi: 10.1016/S0070-2153(10)90004-5 PMID: 20691849
- Sato, T.; Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science, 2013, 340(6137), 1190-1194. doi: 10.1126/science.1234852 PMID: 23744940
- Bartfeld, S.; Bayram, T.; van de Wetering, M.; Huch, M.; Begthel, H.; Kujala, P.; Vries, R.; Peters, P.J.; Clevers, H. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology, 2015, 148(1), 126-136.e6. doi: 10.1053/j.gastro.2014.09.042 PMID: 25307862
- McCracken, K.W.; Catá, E.M.; Crawford, C.M.; Sinagoga, K.L.; Schumacher, M.; Rockich, B.E.; Tsai, Y.H.; Mayhew, C.N.; Spence, J.R.; Zavros, Y.; Wells, J.M. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 2014, 516(7531), 400-404. doi: 10.1038/nature13863 PMID: 25363776
- McCracken, K.W.; Aihara, E.; Martin, B.; Crawford, C.M.; Broda, T.; Treguier, J.; Zhang, X.; Shannon, J.M.; Montrose, M.H.; Wells, J.M. Wnt/β-catenin promotes gastric fundus specification in mice and humans. Nature, 2017, 541(7636), 182-187. doi: 10.1038/nature21021 PMID: 28052057
- Liu, Q.; Zeng, A.; Liu, Z.; Wu, C.; Song, L. Liver organoids: From fabrication to application in liver diseases. Front. Physiol., 2022, 13, 956244. doi: 10.3389/fphys.2022.956244 PMID: 35923228
- Chi, K.Y.; Kim, J.H. Recent advances in liver organoids and their use in in vitro modeling of non-alcoholic fatty liver disease. Organoid, 2022, 2, e6. doi: 10.51335/organoid.2022.2.e6
- Dorrell, C.; Tarlow, B.; Wang, Y.; Canaday, P.S.; Haft, A.; Schug, J.; Streeter, P.R.; Finegold, M.J.; Shenje, L.T.; Kaestner, K.H.; Grompe, M. The organoid-initiating cells in mouse pancreas and liver are phenotypically and functionally similar. Stem Cell Res. (Amst.), 2014, 13(2), 275-283. doi: 10.1016/j.scr.2014.07.006 PMID: 25151611
- Sakabe, K.; Takebe, T.; Asai, A. Organoid medicine in hepatology. Clin. Liver Dis. (Hoboken), 2020, 15(1), 3-8. doi: 10.1002/cld.855 PMID: 32104569
- Hu, H.; Gehart, H.; Artegiani, B. LÖpez-Iglesias, C.; Dekkers, F.; Basak, O.; van Es, J.; Chuva de Sousa Lopes, S.M.; Begthel, H.; Korving, J.; van den Born, M.; Zou, C.; Quirk, C.; Chiriboga, L.; Rice, C.M.; Ma, S.; Rios, A.; Peters, P.J.; de Jong, Y.P.; Clevers, H. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell, 2018, 175(6), 1591-1606.e19. doi: 10.1016/j.cell.2018.11.013 PMID: 30500538
- Prior, N.; Inacio, P.; Huch, M. Liver organoids: from basic research to therapeutic applications. Gut, 2019, 68(12), 2228-2237. doi: 10.1136/gutjnl-2019-319256 PMID: 31300517
- Birgersdotter, A.; Sandberg, R.; Ernberg, I. Gene expression perturbation in vitroA growing case for three-dimensional (3D) culture systems. Semin. Cancer Biol., 2005, 15(5), 405-412. doi: 10.1016/j.semcancer.2005.06.009 PMID: 16055341
- Edmondson, R.; Broglie, J.J.; Adcock, A.F.; Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol., 2014, 12(4), 207-218. doi: 10.1089/adt.2014.573 PMID: 24831787
- van Staveren, W.C.G.; Solís, D.Y.W.; Hébrant, A.; Detours, V.; Dumont, J.E.; Maenhaut, C. Human cancer cell lines: Experimental models for cancer cells in situ? For cancer stem cells? Biochim. Biophys. Acta Rev. Cancer, 2009, 1795(2), 92-103. doi: 10.1016/j.bbcan.2008.12.004 PMID: 19167460
- Lee, J.; Kotliarova, S.; Kotliarov, Y.; Li, A.; Su, Q.; Donin, N.M.; Pastorino, S.; Purow, B.W.; Christopher, N.; Zhang, W.; Park, J.K.; Fine, H.A. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell, 2006, 9(5), 391-403. doi: 10.1016/j.ccr.2006.03.030 PMID: 16697959
- Stein, W.D.; Litman, T.; Fojo, T.; Bates, S.E. A Serial Analysis of Gene Expression (SAGE) database analysis of chemosensitivity: comparing solid tumors with cell lines and comparing solid tumors from different tissue origins. Cancer Res., 2004, 64(8), 2805-2816. doi: 10.1158/0008-5472.CAN-03-3383 PMID: 15087397
- Gadaleta, E.; Cutts, R.J.; Kelly, G.P.; Crnogorac-Jurcevic, T.; Kocher, H.M.; Lemoine, N.R.; Chelala, C. A global insight into a cancer transcriptional space using pancreatic data: importance, findings and flaws. Nucleic Acids Res., 2011, 39(18), 7900-7907. doi: 10.1093/nar/gkr533 PMID: 21724610
- Kopp, J.L.; Dubois, C.L.; Schaffer, A.E.; Hao, E.; Shih, H.P.; Seymour, P.A.; Ma, J.; Sander, M. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development, 2011, 138(4), 653-665. doi: 10.1242/dev.056499 PMID: 21266405
- Sugiyama, T.; Benitez, C.M.; Ghodasara, A.; Liu, L.; McLean, G.W.; Lee, J.; Blauwkamp, T.A.; Nusse, R.; Wright, C.V.E.; Gu, G.; Kim, S.K. Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proc. Natl. Acad. Sci. USA, 2013, 110(31), 12691-12696. doi: 10.1073/pnas.1304507110 PMID: 23852729
- Huch, M.; Koo, B.K. Modeling mouse and human development using organoid cultures. Development, 2015, 142(18), 3113-3125. doi: 10.1242/dev.118570 PMID: 26395140
- Boj, S.F.; Hwang, C.I.; Baker, L.A.; Chio, I.I.C.; Engle, D.D.; Corbo, V.; Jager, M.; Ponz-Sarvise, M.; Tiriac, H.; Spector, M.S.; Gracanin, A.; Oni, T.; Yu, K.H.; van Boxtel, R.; Huch, M.; Rivera, K.D.; Wilson, J.P.; Feigin, M.E.; Öhlund, D.; Handly-Santana, A.; Ardito-Abraham, C.M.; Ludwig, M.; Elyada, E.; Alagesan, B.; Biffi, G.; Yordanov, G.N.; Delcuze, B.; Creighton, B.; Wright, K.; Park, Y.; Morsink, F.H.M.; Molenaar, I.Q.; Borel Rinkes, I.H.; Cuppen, E.; Hao, Y.; Jin, Y.; Nijman, I.J.; Iacobuzio-Donahue, C.; Leach, S.D.; Pappin, D.J.; Hammell, M.; Klimstra, D.S.; Basturk, O.; Hruban, R.H.; Offerhaus, G.J.; Vries, R.G.J.; Clevers, H.; Tuveson, D.A. Organoid models of human and mouse ductal pancreatic cancer. Cell, 2015, 160(1-2), 324-338. doi: 10.1016/j.cell.2014.12.021 PMID: 25557080
- Dekkers, J.F.; Wiegerinck, C.L.; de Jonge, H.R.; Bronsveld, I.; Janssens, H.M.; de Winter-de Groot, K.M.; Brandsma, A.M.; de Jong, N.W.M.; Bijvelds, M.J.C.; Scholte, B.J.; Nieuwenhuis, E.E.S.; van den Brink, S.; Clevers, H.; van der Ent, C.K.; Middendorp, S.; Beekman, J.M. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med., 2013, 19(7), 939-945. doi: 10.1038/nm.3201 PMID: 23727931
- Dekkers, J.F.; Berkers, G.; Kruisselbrink, E.; Vonk, A.; de Jonge, H.R.; Janssens, H.M.; Bronsveld, I.; van de Graaf, E.A.; Nieuwenhuis, E.E.S.; Houwen, R.H.J.; Vleggaar, F.P.; Escher, J.C.; de Rijke, Y.B.; Majoor, C.J.; Heijerman, H.G.M.; de Winter-de Groot, K.M.; Clevers, H.; van der Ent, C.K.; Beekman, J.M. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med., 2016, 8(344), 344ra84. doi: 10.1126/scitranslmed.aad8278 PMID: 27334259
- Chen, R.; Giliani, S.; Lanzi, G.; Mias, G.I.; Lonardi, S.; Dobbs, K.; Manis, J. Im, H.; Gallagher, J.E.; Phanstiel, D.H.; Euskirchen, G.; Lacroute, P.; Bettinger, K.; Moratto, D.; Weinacht, K.; Montin, D.; Gallo, E.; Mangili, G.; Porta, F.; Notarangelo, L.D.; Pedretti, S.; Al-Herz, W.; Alfahdli, W.; Comeau, A.M.; Traister, R.S.; Pai, S.Y.; Carella, G.; Facchetti, F.; Nadeau, K.C.; Snyder, M.; Notarangelo, L.D. Whole-exome sequencing identifies tetratricopeptide repeat domain 7A ( TTC7A ) mutations for combined immunodeficiency with intestinal atresias. J. Allergy Clin. Immunol., 2013, 132(3), 656-664.e17. doi: 10.1016/j.jaci.2013.06.013 PMID: 23830146
- Ho, B.; Pek, N.; Soh, B.S. Disease modeling using 3D organoids derived from human induced pluripotent stem cells. Int. J. Mol. Sci., 2018, 19(4), 936. doi: 10.3390/ijms19040936 PMID: 29561796
- Kim, H.; Park, H.J.; Choi, H.; Chang, Y.; Park, H.; Shin, J.; Kim, J.; Lengner, C.J.; Lee, Y.K.; Kim, J. Modeling G2019S-LRRK2 Sporadic Parkinsons Disease in 3D Midbrain Organoids. Stem Cell Reports, 2019, 12(3), 518-531. doi: 10.1016/j.stemcr.2019.01.020 PMID: 30799274
- Cruz, N.M.; Song, X.; Czerniecki, S.M.; Gulieva, R.E.; Churchill, A.J.; Kim, Y.K.; Winston, K.; Tran, L.M.; Diaz, M.A.; Fu, H.; Finn, L.S.; Pei, Y.; Himmelfarb, J.; Freedman, B.S. Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat. Mater., 2017, 16(11), 1112-1119. doi: 10.1038/nmat4994 PMID: 28967916
- Golenhofen, K.; Hannappel, J. Normal spontaneous activity of the pyeloureteral system in the guinea-pig. Pflugers Arch., 1973, 341(3), 257-270. doi: 10.1007/BF00592794 PMID: 4737416
- Guan, Y.; Xu, D.; Garfin, P.M.; Ehmer, U.; Hurwitz, M.; Enns, G.; Michie, S.; Wu, M.; Zheng, M.; Nishimura, T.; Sage, J.; Peltz, G. Human hepatic organoids for the analysis of human genetic diseases. JCI Insight, 2017, 2(17), e94954. doi: 10.1172/jci.insight.94954 PMID: 28878125
- Thomas, C.A.; Tejwani, L.; Trujillo, C.A.; Negraes, P.D.; Herai, R.H.; Mesci, P.; Macia, A.; Crow, Y.J.; Muotri, A.R. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell, 2017, 21(3), 319-331.e8. doi: 10.1016/j.stem.2017.07.009 PMID: 28803918
- Li, Y.; Tang, P.; Cai, S.; Peng, J.; Hua, G. Organoid based personalized medicine: from bench to bedside. Cell Regen. (Lond.), 2020, 9(1), 21. doi: 10.1186/s13619-020-00059-z PMID: 33135109
- Broutier, L.; Mastrogiovanni, G.; Verstegen, M. M. Cultivos de Organoid Derivados Del Cancer de Higado Primario Humano Para El Modelado de Enfermedades y La Deteccion de Farmacos Medicina natural, 2017, 23(12), 1424-1435.
- Rich, J.N. Cancer stem cells in radiation resistance. Cancer Res., 2007, 67(19), 8980-8984. doi: 10.1158/0008-5472.CAN-07-0895 PMID: 17908997
- Godos, J.; Giampieri, F.; Micek, A.; Battino, M.; Forbes-Hernández, T.Y.; Quiles, J.L.; Paladino, N.; Falzone, L.; Grosso, G. Effect of Brazil Nuts on Selenium Status, Blood Lipids, and Biomarkers of Oxidative Stress and Inflammation: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Antioxidants, 2022, 11(2), 403. doi: 10.3390/antiox11020403 PMID: 35204285
- Sondorp, L.H.J.; Ogundipe, V.M.L.; Groen, A.H.; Kelder, W.; Kemper, A.; Links, T.P.; Coppes, R.P.; Kruijff, S. Patient-derived papillary thyroid cancer organoids for radioactive iodine refractory screening. Cancers (Basel), 2020, 12(11), 3212. doi: 10.3390/cancers12113212 PMID: 33142750
- Driehuis, E.; Kretzschmar, K.; Clevers, H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat. Protoc., 2020, 15(10), 3380-3409. doi: 10.1038/s41596-020-0379-4 PMID: 32929210
- Jardé, T.; Lloyd-Lewis, B.; Thomas, M.; Kendrick, H.; Melchor, L.; Bougaret, L.; Watson, P.D.; Ewan, K.; Smalley, M.J.; Dale, T.C. Wnt and neuregulin1/ErbB signalling extends 3D culture of hormone responsive mammary organoids. Nat. Commun., 2016, 7(1), 13207. doi: 10.1038/ncomms13207 PMID: 27782124
- Sachs, N.; de Ligt, J.; Kopper, O.; Gogola, E.; Bounova, G.; Weeber, F.; Balgobind, A.V.; Wind, K.; Gracanin, A.; Begthel, H.; Korving, J.; van Boxtel, R.; Duarte, A.A.; Lelieveld, D.; van Hoeck, A.; Ernst, R.F.; Blokzijl, F.; Nijman, I.J.; Hoogstraat, M.; van de Ven, M.; Egan, D.A.; Zinzalla, V.; Moll, J.; Boj, S.F.; Voest, E.E.; Wessels, L.; van Diest, P.J.; Rottenberg, S.; Vries, R.G.J.; Cuppen, E.; Clevers, H. A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 2018, 172(1-2), 373-386.e10. doi: 10.1016/j.cell.2017.11.010 PMID: 29224780
- Johnson, K.M.; Hacker, M.R.; Thornton, K.; Young, B.C.; Modest, A.M. Association between in vitro fertilization and ischemic placental disease by gestational age. Fertil. Steril., 2020, 114(3), 579-586. doi: 10.1016/j.fertnstert.2020.04.029 PMID: 32709377
- Mazzucchelli, S.; Piccotti, F.; Allevi, R.; Truffi, M.; Sorrentino, L.; Russo, L.; Agozzino, M.; Signati, L.; Bonizzi, A.; Villani, L.; Corsi, F. Establishment and morphological characterization of patient-derived organoids from breast cancer. Biol. Proced. Online, 2019, 21(1), 12. doi: 10.1186/s12575-019-0099-8 PMID: 31223292
- Emerman, J.T.; Pitelka, D.R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In vitro, 1977, 13(5), 316-328. doi: 10.1007/BF02616178 PMID: 559643
- Bienz, M.; Clevers, H. Linking colorectal cancer to Wnt signaling. Cell, 2000, 103(2), 311-320. doi: 10.1016/S0092-8674(00)00122-7 PMID: 11057903
- Schwitalla, S.; Fingerle, A.A.; Cammareri, P.; Nebelsiek, T.; Göktuna, S.I.; Ziegler, P.K.; Canli, O.; Heijmans, J.; Huels, D.J.; Moreaux, G.; Rupec, R.A.; Gerhard, M.; Schmid, R.; Barker, N.; Clevers, H.; Lang, R.; Neumann, J.; Kirchner, T.; Taketo, M.M.; van den Brink, G.R.; Sansom, O.J.; Arkan, M.C.; Greten, F.R. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell, 2013, 152(1-2), 25-38. doi: 10.1016/j.cell.2012.12.012 PMID: 23273993
- Nanki, K.; Toshimitsu, K.; Takano, A.; Fujii, M.; Shimokawa, M.; Ohta, Y.; Matano, M.; Seino, T.; Nishikori, S.; Ishikawa, K.; Kawasaki, K.; Togasaki, K.; Takahashi, S.; Sukawa, Y.; Ishida, H.; Sugimoto, S.; Kawakubo, H.; Kim, J.; Kitagawa, Y.; Sekine, S.; Koo, B.K.; Kanai, T.; Sato, T. Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis. Cell, 2018, 174(4), 856-869.e17. doi: 10.1016/j.cell.2018.07.027 PMID: 30096312
- Seidlitz, T.; Merker, S.R.; Rothe, A.; Zakrzewski, F.; von Neubeck, C.; Grützmann, K.; Sommer, U.; Schweitzer, C.; Schölch, S.; Uhlemann, H.; Gaebler, A.M.; Werner, K.; Krause, M.; Baretton, G.B.; Welsch, T.; Koo, B.K.; Aust, D.E.; Klink, B.; Weitz, J.; Stange, D.E. Human gastric cancer modelling using organoids. Gut, 2019, 68(2), 207-217. doi: 10.1136/gutjnl-2017-314549 PMID: 29703791
- Li, X.; Nadauld, L.; Ootani, A.; Corney, D.C.; Pai, R.K.; Gevaert, O.; Cantrell, M.A.; Rack, P.G.; Neal, J.T.; Chan, C.W.M.; Yeung, T.; Gong, X.; Yuan, J.; Wilhelmy, J.; Robine, S.; Attardi, L.D.; Plevritis, S.K.; Hung, K.E.; Chen, C.Z.; Ji, H.P.; Kuo, C.J. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat. Med., 2014, 20(7), 769-777. doi: 10.1038/nm.3585 PMID: 24859528
- Nadauld, L.D.; Garcia, S.; Natsoulis, G.; Bell, J.M.; Miotke, L.; Hopmans, E.S.; Xu, H.; Pai, R.K.; Palm, C.; Regan, J.F.; Chen, H.; Flaherty, P.; Ootani, A.; Zhang, N.R.; Ford, J.M.; Kuo, C.J.; Ji, H.P. Metastatic tumor evolution and organoid modeling implicate TGFBR2as a cancer driver in diffuse gastric cancer. Genome Biol., 2014, 15(8), 428. doi: 10.1186/s13059-014-0428-9 PMID: 25315765
- Gao, D.; Vela, I.; Sboner, A.; Iaquinta, P.J.; Karthaus, W.R.; Gopalan, A.; Dowling, C.; Wanjala, J.N.; Undvall, E.A.; Arora, V.K.; Wongvipat, J.; Kossai, M.; Ramazanoglu, S.; Barboza, L.P.; Di, W.; Cao, Z.; Zhang, Q.F.; Sirota, I.; Ran, L.; MacDonald, T.Y.; Beltran, H.; Mosquera, J.M.; Touijer, K.A.; Scardino, P.T.; Laudone, V.P.; Curtis, K.R.; Rathkopf, D.E.; Morris, M.J.; Danila, D.C.; Slovin, S.F.; Solomon, S.B.; Eastham, J.A.; Chi, P.; Carver, B.; Rubin, M.A.; Scher, H.I.; Clevers, H.; Sawyers, C.L.; Chen, Y. Organoid cultures derived from patients with advanced prostate cancer. Cell, 2014, 159(1), 176-187. doi: 10.1016/j.cell.2014.08.016 PMID: 25201530
- Kopper, O.; de Witte, C.J.; Lõhmussaar, K.; Valle-Inclan, J.E.; Hami, N.; Kester, L.; Balgobind, A.V.; Korving, J.; Proost, N.; Begthel, H.; van Wijk, L.M.; Revilla, S.A.; Theeuwsen, R.; van de Ven, M.; van Roosmalen, M.J.; Ponsioen, B.; Ho, V.W.H.; Neel, B.G.; Bosse, T.; Gaarenstroom, K.N.; Vrieling, H.; Vreeswijk, M.P.G.; van Diest, P.J.; Witteveen, P.O.; Jonges, T.; Bos, J.L.; van Oudenaarden, A.; Zweemer, R.P.; Snippert, H.J.G.; Kloosterman, W.P.; Clevers, H. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med., 2019, 25(5), 838-849. doi: 10.1038/s41591-019-0422-6 PMID: 31011202
- da Silva, B.; Mathew, R.K.; Polson, E.S.; Williams, J.; Wurdak, H. Spontaneous glioblastoma spheroid infiltration of early-stage cerebral organoids models brain tumor invasion. SLAS Discov., 2018, 23(8), 862-868. doi: 10.1177/2472555218764623 PMID: 29543559
- Lee, S.H.; Hu, W.; Matulay, J.T.; Silva, M.V.; Owczarek, T.B.; Kim, K.; Chua, C.W.; Barlow, L.J.; Kandoth, C.; Williams, A.B.; Bergren, S.K.; Pietzak, E.J.; Anderson, C.B.; Benson, M.C.; Coleman, J.A.; Taylor, B.S.; Abate-Shen, C.; McKiernan, J.M.; Al-Ahmadie, H.; Solit, D.B.; Shen, M.M. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell, 2018, 173(2), 515-528.e17. doi: 10.1016/j.cell.2018.03.017 PMID: 29625057
- Bolck, H.A.; Corrò, C.; Kahraman, A.; von Teichman, A.; Toussaint, N.C.; Kuipers, J.; Chiovaro, F.; Koelzer, V.H.; Pauli, C.; Moritz, W.; Bode, P.K.; Rechsteiner, M.; Beerenwinkel, N.; Schraml, P.; Moch, H. Tracing clonal dynamics reveals that two- and three-dimensional patient-derived cell models capture tumor heterogeneity of clear cell renal cell carcinoma. Eur. Urol. Focus, 2021, 7(1), 152-162. doi: 10.1016/j.euf.2019.06.009 PMID: 31266731
- Sachs, N.; Papaspyropoulos, A.; Zomer-van Ommen, D.D.; Heo, I.; Böttinger, L.; Klay, D.; Weeber, F.; Huelsz-Prince, G.; Iakobachvili, N.; Amatngalim, G.D.; de Ligt, J.; van Hoeck, A.; Proost, N.; Viveen, M.C.; Lyubimova, A.; Teeven, L.; Derakhshan, S.; Korving, J.; Begthel, H.; Dekkers, J.F.; Kumawat, K.; Ramos, E.; van Oosterhout, M.F.M.; Offerhaus, G.J.; Wiener, D.J.; Olimpio, E.P.; Dijkstra, K.K.; Smit, E.F.; van der Linden, M.; Jaksani, S.; van de Ven, M.; Jonkers, J.; Rios, A.C.; Voest, E.E.; van Moorsel, C.H.M.; van der Ent, C.K.; Cuppen, E.; van Oudenaarden, A.; Coenjaerts, F.E.; Meyaard, L.; Bont, L.J.; Peters, P.J.; Tans, S.J.; van Zon, J.S.; Boj, S.F.; Vries, R.G.; Beekman, J.M.; Clevers, H. Long‐term expanding human airway organoids for disease modeling. EMBO J., 2019, 38(4), e100300. doi: 10.15252/embj.2018100300 PMID: 30643021
- Li, X.; Francies, H.E.; Secrier, M.; Perner, J.; Miremadi, A.; Galeano-Dalmau, N.; Barendt, W.J.; Letchford, L.; Leyden, G.M.; Goffin, E.K.; Barthorpe, A.; Lightfoot, H.; Chen, E.; Gilbert, J.; Noorani, A.; Devonshire, G.; Bower, L.; Grantham, A.; MacRae, S.; Grehan, N.; Wedge, D.C.; Fitzgerald, R.C.; Garnett, M.J. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat. Commun., 2018, 9(1), 2983. doi: 10.1038/s41467-018-05190-9 PMID: 30061675
- Fujii, M.; Shimokawa, M.; Date, S.; Takano, A.; Matano, M.; Nanki, K.; Ohta, Y.; Toshimitsu, K.; Nakazato, Y.; Kawasaki, K.; Uraoka, T.; Watanabe, T.; Kanai, T.; Sato, T. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell, 2016, 18(6), 827-838. doi: 10.1016/j.stem.2016.04.003 PMID: 27212702
- Roerink, S. F.; Sasaki, N.; Lee-Six, H.; Young, M. D.; Alexandrov, L. B.; Behjati, S.; Mitchell, T. J.; Grossmann, S.; Lightfoot, H.; Egan, D. A.; Pronk, A.; Smakman, N.; van Gorp, J.; Anderson, E.; Gamble, S. J.; Alder, C.; van de Wetering, M.; Campbell, P. J.; Stratton, M. R.; Clevers, H. Intra-Tumour Diversification in Colorectal Cancer at the Single-Cell Level Nature, 2018, 556(7702), 457-462. doi: 10.1038/s41586-018-0024-3
- Tian, L.; Gao, J.; Garcia, I.M.; Chen, H.J.; Castaldi, A.; Chen, Y.W. Human pluripotent stem cell‐derived lung organoids: Potential applications in development and disease modeling. Wiley Interdiscip. Rev. Dev. Biol., 2021, 10(6), e399. doi: 10.1002/wdev.399 PMID: 33145915
- Reyfman, P.A.; Walter, J.M.; Joshi, N.; Anekalla, K.R.; McQuattie-Pimentel, A.C.; Chiu, S.; Fernandez, R.; Akbarpour, M.; Chen, C-I.; Ren, Z.; Verma, R.; Abdala-Valencia, H.; Nam, K.; Chi, M.; Han, S.; Gonzalez-Gonzalez, F.J.; Soberanes, S.; Watanabe, S.; Williams, K.J.N.; Flozak, A.S.; Nicholson, T.T.; Morgan, V.K.; Hrusch, C.L.; Guzy, R.D.; Bonham, C.A.; Sperling, A.I.; Bag, R.; Hamanaka, R.B.; Mutlu, G.M.; Yeldandi, A.V.; Marshall, S.A.; Shilatifard, A.; Amaral, L.A.N.; Perlman, H.; Sznajder, J.I.; Winter, D.R.; Hinchcliff, M.; Argento, A.C.; Gillespie, C.T.; DAmico Dematte, J.; Jain, M.; Singer, B.D.; Ridge, K.M.; Gottardi, C.J.; Lam, A.P.; Bharat, A.; Bhorade, S.M.; Budinger, G.R.S.; Misharin, A.V. Single-cell transcriptomic analysis of human lung reveals complex multicellular changes during pulmonary fibrosis. bioRxiv, 2018. doi: 10.1101/296608
- Plasschaert, L.W.; ilionis, R.; Choo-Wing, R.; Savova, V.; Knehr, J.; Roma, G.; Klein, A.M.; Jaffe, A.B. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature, 2018, 560(7718), 377-381. doi: 10.1038/s41586-018-0394-6 PMID: 30069046
- Schiller, H.B.; Montoro, D.T.; Simon, L.M.; Rawlins, E.L.; Meyer, K.B.; Strunz, M.; Vieira Braga, F.A.; Timens, W.; Koppelman, G.H.; Budinger, G.R.S.; Burgess, J.K.; Waghray, A.; van den Berge, M.; Theis, F.J.; Regev, A.; Kaminski, N.; Rajagopal, J.; Teichmann, S.A.; Misharin, A.V.; Nawijn, M.C. The human lung cell atlas: a high-resolution reference map of the human lung in health and disease. Am. J. Respir. Cell Mol. Biol., 2019, 61(1), 31-41. doi: 10.1165/rcmb.2018-0416TR PMID: 30995076
- van der Vaart, J.; Clevers, H. Airway organoids as models of human disease. J. Intern. Med., 2021, 289(5), 604-613. doi: 10.1111/joim.13075 PMID: 32350962
- Strikoudis, A.; Cieślak, A.; Loffredo, L.; Chen, Y.W.; Patel, N.; Saqi, A.; Lederer, D.J.; Snoeck, H.W. Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells. Cell Rep., 2019, 27(12), 3709-3723.e5. doi: 10.1016/j.celrep.2019.05.077 PMID: 31216486
- Demchenko, A.; Lavrov, A.; Smirnikhina, S. Lung organoids: current strategies for generation and transplantation. Cell Tissue Res., 2022, 390(3), 317-333. doi: 10.1007/s00441-022-03686-x PMID: 36178558
- Shitamukai, A.; Konno, D.; Matsuzaki, F. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J. Neurosci., 2011, 31(10), 3683-3695. doi: 10.1523/JNEUROSCI.4773-10.2011 PMID: 21389223
- Wang, Z.; Wang, S.N.; Xu, T.Y.; Miao, Z.W.; Su, D.F.; Miao, C.Y. Organoid technology for brain and therapeutics research. CNS Neurosci. Ther., 2017, 23(10), 771-778. doi: 10.1111/cns.12754 PMID: 28884977
- van de Leemput, J.; Boles, N.C.; Kiehl, T.R.; Corneo, B.; Lederman, P.; Menon, V.; Lee, C.; Martinez, R.A.; Levi, B.P.; Thompson, C.L.; Yao, S.; Kaykas, A.; Temple, S.; Fasano, C.A. CORTECON: a temporal transcriptome analysis of in vitro human cerebral cortex development from human embryonic stem cells. Neuron, 2014, 83(1), 51-68. doi: 10.1016/j.neuron.2014.05.013 PMID: 24991954
- Layer, P.G.; Weikert, T.; Willbold, E. Chicken retinospheroids as developmental and pharmacological in vitro models: acetylcholinesterase is regulated by its own and by butyrylcholinesterase activity. Cell Tissue Res., 1992, 268(3), 409-418. doi: 10.1007/BF00319147 PMID: 1628298
- Kuwahara, A.; Ozone, C.; Nakano, T.; Saito, K.; Eiraku, M.; Sasai, Y. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat. Commun., 2015, 6(1), 6286. doi: 10.1038/ncomms7286 PMID: 25695148
- Chichagova, V.; Dorgau, B.; Felemban, M.; Georgiou, M.; Armstrong, L.; Lako, M. Differentiation of retinal organoids from human pluripotent stem cells. Curr. Protoc. Stem Cell Biol., 2019, 50(1), e95. doi: 10.1002/cpsc.95 PMID: 31479596
- Fligor, C.M.; Langer, K.B.; Sridhar, A.; Ren, Y.; Shields, P.K.; Edler, M.C.; Ohlemacher, S.K.; Sluch, V.M.; Zack, D.J.; Zhang, C.; Suter, D.M.; Meyer, J.S. Three-dimensional retinal organoids facilitate the investigation of retinal ganglion cell development, organization and neurite outgrowth from human pluripotent stem cells. Sci. Rep., 2018, 8(1), 14520. doi: 10.1038/s41598-018-32871-8 PMID: 30266927
- Phillips, M.J.; Capowski, E.E.; Petersen, A.; Jansen, A.D.; Barlow, K.; Edwards, K.L.; Gamm, D.M. Generation of a rod-specific NRL reporter line in human pluripotent stem cells. Sci. Rep., 2018, 8(1), 2370. doi: 10.1038/s41598-018-20813-3 PMID: 29402929
- Reichman, S.; Terray, A.; Slembrouck, A.; Nanteau, C.; Orieux, G.; Habeler, W.; Nandrot, E.F.; Sahel, J.A.; Monville, C.; Goureau, O. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc. Natl. Acad. Sci. USA, 2014, 111(23), 8518-8523. doi: 10.1073/pnas.1324212111 PMID: 24912154
- Vergara, M.N.; Flores-Bellver, M.; Aparicio-Domingo, S.; McNally, M.; Wahlin, K.J.; Saxena, M.T.; Mumm, J.S.; Canto-Soler, M.V. Three-dimensional automated reporter quantification (3D-ARQ) technology enables quantitative screening in retinal organoids. Development, 2017, 144(20), 3698-3705. doi: 10.1242/dev.146290 PMID: 28870990
- Völkner, M.; Zschätzsch, M.; Rostovskaya, M.; Overall, R.W.; Busskamp, V.; Anastassiadis, K.; Karl, M.O. Retinal organoids from pluripotent stem cells efficiently recapitulate retinogenesis. Stem Cell Reports, 2016, 6(4), 525-538. doi: 10.1016/j.stemcr.2016.03.001 PMID: 27050948
- Lamba, D.A.; Reh, T.A. Microarray characterization of human embryonic stem cell--derived retinal cultures. Invest. Ophthalmol. Vis. Sci., 2011, 52(7), 4897-4906. doi: 10.1167/iovs.10-6504 PMID: 21345990
- Zhong, X.; Gutierrez, C.; Xue, T.; Hampton, C.; Vergara, M.N.; Cao, L.H.; Peters, A.; Park, T.S.; Zambidis, E.T.; Meyer, J.S.; Gamm, D.M.; Yau, K.W.; Canto-Soler, M.V. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun., 2014, 5(1), 4047. doi: 10.1038/ncomms5047 PMID: 24915161
- Wahlin, K.J.; Maruotti, J.A.; Sripathi, S.R.; Ball, J.; Angueyra, J.M.; Kim, C.; Grebe, R.; Li, W.; Jones, B.W.; Zack, D.J. Photoreceptor outer segment-like structures in long-term 3D retinas from human pluripotent stem cells. Sci. Rep., 2017, 7(1), 766. doi: 10.1038/s41598-017-00774-9 PMID: 28396597
- Gabriel, E.; Albanna, W.; Pasquini, G.; Ramani, A.; Josipovic, N.; Mariappan, A.; Schinzel, F.; Karch, C.M.; Bao, G.; Gottardo, M.; Suren, A.A.; Hescheler, J.; Nagel-Wolfrum, K.; Persico, V.; Rizzoli, S.O.; Altmüller, J.; Riparbelli, M.G.; Callaini, G.; Goureau, O.; Papantonis, A.; Busskamp, V.; Schneider, T.; Gopalakrishnan, J. Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell, 2021, 28(10), 1740-1757.e8. doi: 10.1016/j.stem.2021.07.010 PMID: 34407456
- Tang, X.Y.; Wu, S.; Wang, D.; Chu, C.; Hong, Y.; Tao, M.; Hu, H.; Xu, M.; Guo, X.; Liu, Y. Human organoids in basic research and clinical applications. Signal Transduct. Target. Ther., 2022, 7(1), 168. doi: 10.1038/s41392-022-01024-9 PMID: 35610212
- Miyoshi, T.; Hiratsuka, K.; Saiz, E.G.; Morizane, R. Kidney organoids in translational medicine: Disease modeling and regenerative medicine. Dev. Dyn., 2020, 249(1), 34-45. doi: 10.1002/dvdy.22 PMID: 30843293
- Takasato, M.; Er, P.X.; Chiu, H.S.; Little, M.H. Generation of kidney organoids from human pluripotent stem cells. Nat. Protoc., 2016, 11(9), 1681-1692. doi: 10.1038/nprot.2016.098 PMID: 27560173
- Xia, Y.; Nivet, E.; Sancho-Martinez, I.; Gallegos, T.; Suzuki, K.; Okamura, D.; Wu, M.Z.; Dubova, I.; Esteban, C.R.; Montserrat, N.; Campistol, J.M.; Belmonte, J.C.I. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat. Cell Biol., 2013, 15(12), 1507-1515. doi: 10.1038/ncb2872 PMID: 24240476
- Shan, Z.; Xie, X.; Wu, X.; Zhuang, S.; Zhang, C. Development of degradable magnesium-based metal implants and their function in promoting bone metabolism (A review). J. Orthop. Translat., 2022, 36, 184-193. doi: 10.1016/j.jot.2022.09.013 PMID: 36263386
- Liu, H.; Zhang, Q.; Wang, S.; Weng, W.; Jing, Y.; Su, J. Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: Advances and perspectives. Bioact. Mater., 2022, 14, 169-181. doi: 10.1016/j.bioactmat.2021.12.006 PMID: 35310361
- Gan, D.; Jiang, Y.; Hu, Y.; Wang, X.; Wang, Q.; Wang, K.; Xie, C.; Han, L.; Lu, X. Mussel-inspired extracellular matrix-mimicking hydrogel scaffold with high cell affinity and immunomodulation ability for growth factor-free cartilage regeneration. J. Orthop. Translat., 2022, 33, 120-131. doi: 10.1016/j.jot.2022.02.006 PMID: 35330942
- Xue, X.; Hu, Y.; Wang, S.; Chen, X.; Jiang, Y.; Su, J. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact. Mater., 2022, 12, 327-339. doi: 10.1016/j.bioactmat.2021.10.029 PMID: 35128180
- Xue, X.; Hu, Y.; Deng, Y.; Su, J. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv. Funct. Mater., 2021, 31(19), 2009432. doi: 10.1002/adfm.202009432
- Liu, H.; Sun, J.; Wang, M.; Wang, S.; Su, J.; Xu, C. Intestinal organoids and organoids extracellular vesicles for inflammatory bowel disease treatment. Chem. Eng. J., 2023, 465(142842), 142842. doi: 10.1016/j.cej.2023.142842
- Kale, S.; Biermann, S.; Edwards, C.; Tarnowski, C.; Morris, M.; Long, M.W. Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat. Biotechnol., 2000, 18(9), 954-958. doi: 10.1038/79439 PMID: 10973215
- Mallette, J.M.; Anthony, A. Growth in culture of trypsin dissociated thyroid cells from adult rats. Exp. Cell Res., 1966, 41(3), 642-651. doi: 10.1016/S0014-4827(66)80115-5 PMID: 4952051
- Ogundipe, V.M.L.; Plukker, J.T.M.; Links, T.P.; Coppes, R.P. Thyroid gland organoids: Current models and insights for application in tissue engineering. Tissue Eng. Part A, 2022, 28(11-12), 500-510. doi: 10.1089/ten.tea.2021.0221 PMID: 35262402
- ILiver organoid Available from: https://ki-images.mit.edu/2018/fortuna-1 (Accessed on: 2023-08-19).
- Zhao, Z.; Chen, X.; Dowbaj, A.M.; Sljukic, A.; Bratlie, K.; Lin, L.; Fong, E.L.S.; Balachander, G.M.; Chen, Z.; Soragni, A.; Huch, M.; Zeng, Y.A.; Wang, Q.; Yu, H. Organoids. Nature Reviews Methods Primers, 2022, 2(1), 94. doi: 10.1038/s43586-022-00174-y PMID: 37325195
- Cugola, F.R.; Fernandes, I.R.; Russo, F.B.; Freitas, B.C.; Dias, J.L.M.; Guimarães, K.P.; Benazzato, C.; Almeida, N.; Pignatari, G.C.; Romero, S.; Polonio, C.M.; Cunha, I.; Freitas, C.L.; Brandão, W.N.; Rossato, C.; Andrade, D.G.; Faria, D.P.; Garcez, A.T.; Buchpigel, C.A.; Braconi, C.T.; Mendes, E.; Sall, A.A.; Zanotto, P.M.A.; Peron, J.P.S.; Muotri, A.R.; Beltrão-Braga, P.C.B. The Brazilian Zika virus strain causes birth defects in experimental models. Nature, 2016, 534(7606), 267-271. doi: 10.1038/nature18296 PMID: 27279226
- Li, H.; Saucedo-Cuevas, L.; Shresta, S.; Gleeson, J.G. The neurobiology of zika Virus. Neuron, 2016, 92(5), 949-958. doi: 10.1016/j.neuron.2016.11.031 PMID: 27930910
- Driggers, R.W.; Ho, C.Y.; Korhonen, E.M.; Kuivanen, S.; Jääskeläinen, A.J.; Smura, T.; Rosenberg, A.; Hill, D.A.; DeBiasi, R.L.; Vezina, G.; Timofeev, J.; Rodriguez, F.J.; Levanov, L.; Razak, J.; Iyengar, P.; Hennenfent, A.; Kennedy, R.; Lanciotti, R.; du Plessis, A.; Vapalahti, O. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N. Engl. J. Med., 2016, 374(22), 2142-2151. doi: 10.1056/NEJMoa1601824 PMID: 27028667
- Dang, J.; Tiwari, S.K.; Lichinchi, G.; Qin, Y.; Patil, V.S.; Eroshkin, A.M.; Rana, T.M. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell, 2016, 19(2), 258-265. doi: 10.1016/j.stem.2016.04.014 PMID: 27162029
- Finkbeiner, S.R.; Zeng, X.L.; Utama, B.; Atmar, R.L.; Shroyer, N.F.; Estes, M.K. Stem cell-derived human intestinal organoids as an infection model for rotaviruses. MBio, 2012, 3(4), e00159-e12. doi: 10.1128/mBio.00159-12 PMID: 22761392
- Huang, J.Y.; Sweeney, E.G.; Sigal, M.; Zhang, H.C.; Remington, S.J.; Cantrell, M.A.; Kuo, C.J.; Guillemin, K.; Amieva, M.R. Chemodetection and destruction of host urea allows helicobacter pylori to locate the epithelium. Cell Host Microbe, 2015, 18(2), 147-156. doi: 10.1016/j.chom.2015.07.002 PMID: 26269952
- Heo, I.; Dutta, D.; Schaefer, D.A.; Iakobachvili, N.; Artegiani, B.; Sachs, N.; Boonekamp, K.E.; Bowden, G.; Hendrickx, A.P.A.; Willems, R.J.L.; Peters, P.J.; Riggs, M.W.; OConnor, R.; Clevers, H. Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nat. Microbiol., 2018, 3(7), 814-823. doi: 10.1038/s41564-018-0177-8 PMID: 29946163
- Dedhia, P.H.; Bertaux-Skeirik, N.; Zavros, Y.; Spence, J.R. Organoid models of human gastrointestinal development and disease. Gastroenterology, 2016, 150(5), 1098-1112. doi: 10.1053/j.gastro.2015.12.042 PMID: 26774180
- Crespo, M.; Vilar, E.; Tsai, S.Y.; Chang, K.; Amin, S.; Srinivasan, T.; Zhang, T.; Pipalia, N.H.; Chen, H.J.; Witherspoon, M.; Gordillo, M.; Xiang, J.Z.; Maxfield, F.R.; Lipkin, S.; Evans, T.; Chen, S. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat. Med., 2017, 23(7), 878-884. doi: 10.1038/nm.4355 PMID: 28628110
- Skardal, A.; Murphy, S.V.; Devarasetty, M.; Mead, I.; Kang, H.W.; Seol, Y.J.; Shrike Zhang, Y.; Shin, S.R.; Zhao, L.; Aleman, J.; Hall, A.R.; Shupe, T.D.; Kleensang, A.; Dokmeci, M.R.; Jin Lee, S. Jackson, J.D.; Yoo, J.J.; Hartung, T.; Khademhosseini, A.; Soker, S.; Bishop, C.E.; Atala, A. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci. Rep., 2017, 7(1), 8837. doi: 10.1038/s41598-017-08879-x PMID: 28821762
- Bose, S.; Clevers, H.; Shen, X. Promises and challenges of organoid-guided precision medicine. Med, 2021, 2(9), 1011-1026. doi: 10.1016/j.medj.2021.08.005 PMID: 34617071
- Letai, A. Functional precision cancer medicinemoving beyond pure genomics. Nat. Med., 2017, 23(9), 1028-1035. doi: 10.1038/nm.4389 PMID: 28886003
- Le Tourneau, C.; Delord, J.P.; Gonçalves, A.; Gavoille, C.; Dubot, C.; Isambert, N.; Campone, M.; Trédan, O.; Massiani, M.A.; Mauborgne, C.; Armanet, S.; Servant, N.; Bièche, I.; Bernard, V.; Gentien, D.; Jezequel, P.; Attignon, V.; Boyault, S.; Vincent-Salomon, A.; Servois, V.; Sablin, M.P.; Kamal, M.; Paoletti, X. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol., 2015, 16(13), 1324-1334. doi: 10.1016/S1470-2045(15)00188-6 PMID: 26342236
- Meric-Bernstam, F.; Brusco, L.; Shaw, K.; Horombe, C.; Kopetz, S.; Davies, M.A.; Routbort, M.; Piha-Paul, S.A.; Janku, F.; Ueno, N.; Hong, D.; De Groot, J.; Ravi, V.; Li, Y.; Luthra, R.; Patel, K.; Broaddus, R.; Mendelsohn, J.; Mills, G.B. Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials. J. Clin. Oncol., 2015, 33(25), 2753-2762. doi: 10.1200/JCO.2014.60.4165 PMID: 26014291
- Sholl, L.M.; Do, K.; Shivdasani, P.; Cerami, E.; Dubuc, A.M.; Kuo, F.C.; Garcia, E.P.; Jia, Y.; Davineni, P.; Abo, R.P.; Pugh, T.J.; van Hummelen, P.; Thorner, A.R.; Ducar, M.; Berger, A.H.; Nishino, M.; Janeway, K.A.; Church, A.; Harris, M.; Ritterhouse, L.L.; Campbell, J.D.; Rojas-Rudilla, V.; Ligon, A.H.; Ramkissoon, S.; Cleary, J.M.; Matulonis, U.; Oxnard, G.R.; Chao, R.; Tassell, V.; Christensen, J.; Hahn, W.C.; Kantoff, P.W.; Kwiatkowski, D.J.; Johnson, B.E.; Meyerson, M.; Garraway, L.A.; Shapiro, G.I.; Rollins, B.J.; Lindeman, N.I.; MacConaill, L.E. Institutional implementation of clinical tumor profiling on an unselected cancer population. JCI Insight, 2016, 1(19), e87062. doi: 10.1172/jci.insight.87062 PMID: 27882345
- Schwaederle, M.; Daniels, G.A.; Piccioni, D.E.; Fanta, P.T.; Schwab, R.B.; Shimabukuro, K.A.; Parker, B.A.; Kurzrock, R. On the road to precision cancer medicine: Analysis of genomic biomarker actionability in 439 patients. Mol. Cancer Ther., 2015, 14(6), 1488-1494. doi: 10.1158/1535-7163.MCT-14-1061 PMID: 25852059
- Guillen, K.P.; Fujita, M.; Butterfield, A.J.; Scherer, S.D.; Bailey, M.H.; Chu, Z.; DeRose, Y.S.; Zhao, L.; Cortes-Sanchez, E.; Yang, C.H.; Toner, J.; Wang, G.; Qiao, Y.; Huang, X.; Greenland, J.A.; Vahrenkamp, J.M.; Lum, D.H.; Factor, R.E.; Nelson, E.W.; Matsen, C.B.; Poretta, J.M.; Rosenthal, R.; Beck, A.C.; Buys, S.S.; Vaklavas, C.; Ward, J.H.; Jensen, R.L.; Jones, K.B.; Li, Z.; Oesterreich, S.; Dobrolecki, L.E.; Pathi, S.S.; Woo, X.Y.; Berrett, K.C.; Wadsworth, M.E.; Chuang, J.H.; Lewis, M.T.; Marth, G.T.; Gertz, J.; Varley, K.E.; Welm, B.E.; Welm, A.L. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nat. Can., 2022, 3(2), 232-250. doi: 10.1038/s43018-022-00337-6 PMID: 35221336
- Kawasaki, K.; Toshimitsu, K.; Matano, M.; Fujita, M.; Fujii, M.; Togasaki, K.; Ebisudani, T.; Shimokawa, M.; Takano, A.; Takahashi, S.; Ohta, Y.; Nanki, K.; Igarashi, R.; Ishimaru, K.; Ishida, H.; Sukawa, Y.; Sugimoto, S.; Saito, Y.; Maejima, K.; Sasagawa, S.; Lee, H.; Kim, H.G.; Ha, K.; Hamamoto, J.; Fukunaga, K.; Maekawa, A.; Tanabe, M.; Ishihara, S.; Hamamoto, Y.; Yasuda, H.; Sekine, S.; Kudo, A.; Kitagawa, Y.; Kanai, T.; Nakagawa, H.; Sato, T. An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping. Cell, 2020, 183(5), 1420-1435.e21. doi: 10.1016/j.cell.2020.10.023 PMID: 33159857
- Kondo, T. Current status and perspectives of patient-derived rare cancer models. Hum. Cell, 2020, 33(4), 919-929. doi: 10.1007/s13577-020-00391-1 PMID: 32537685
- van de Wetering, M.; Francies, H.E.; Francis, J.M.; Bounova, G.; Iorio, F.; Pronk, A.; van Houdt, W.; van Gorp, J.; Taylor-Weiner, A.; Kester, L.; McLaren-Douglas, A.; Blokker, J.; Jaksani, S.; Bartfeld, S.; Volckman, R.; van Sluis, P.; Li, V.S.W.; Seepo, S.; Sekhar Pedamallu, C.; Cibulskis, K.; Carter, S.L.; McKenna, A.; Lawrence, M.S.; Lichtenstein, L.; Stewart, C.; Koster, J.; Versteeg, R.; van Oudenaarden, A.; Saez-Rodriguez, J.; Vries, R.G.J.; Getz, G.; Wessels, L.; Stratton, M.R.; McDermott, U.; Meyerson, M.; Garnett, M.J.; Clevers, H. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell, 2015, 161(4), 933-945. doi: 10.1016/j.cell.2015.03.053 PMID: 25957691
- Metavarayuth, K.; Sitasuwan, P.; Zhao, X.; Lin, Y.; Wang, Q. Influence of surface topographical cues on the differentiation of mesenchymal stem cells in vitro. ACS Biomater. Sci. Eng., 2016, 2(2), 142-151. doi: 10.1021/acsbiomaterials.5b00377 PMID: 33418629
- Karzbrun, E.; Khankhel, A.H.; Megale, H.C.; Glasauer, S.M.K.; Wyle, Y.; Britton, G.; Warmflash, A.; Kosik, K.S.; Siggia, E.D.; Shraiman, B.I.; Streichan, S.J. Human neural tube morphogenesis in vitro by geometric constraints. Nature, 2021, 599(7884), 268-272. doi: 10.1038/s41586-021-04026-9 PMID: 34707290
- Loomans, C.J.M.; Williams Giuliani, N.; Balak, J.; Ringnalda, F.; van Gurp, L.; Huch, M.; Boj, S.F.; Sato, T.; Kester, L.; de Sousa Lopes, S.M.C.; Roost, M.S.; Bonner-Weir, S.; Engelse, M.A.; Rabelink, T.J.; Heimberg, H.; Vries, R.G.J.; van Oudenaarden, A.; Carlotti, F.; Clevers, H.; de Koning, E.J.P. Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentiation potential. Stem Cell Reports, 2018, 10(3), 712-724. doi: 10.1016/j.stemcr.2018.02.005 PMID: 29539434
- Elizondo, D.M.; Brandy, N.Z.D.; da Silva, R.L.L.; de Moura, T.R.; Ali, J.; Yang, D.; Lipscomb, M.W. Pancreatic islets seeded in a novel bioscaffold forms an organoid to rescue insulin production and reverse hyperglycemia in models of type 1 diabetes. Sci. Rep., 2020, 10(1), 4362. doi: 10.1038/s41598-020-60947-x PMID: 32152396
- Lukonin, I.; Serra, D.; Challet Meylan, L.; Volkmann, K.; Baaten, J.; Zhao, R.; Meeusen, S.; Colman, K.; Maurer, F.; Stadler, M.B.; Jenkins, J.; Liberali, P. Phenotypic landscape of intestinal organoid regeneration. Nature, 2020, 586(7828), 275-280. doi: 10.1038/s41586-020-2776-9 PMID: 33029001
- Vacanti, J.P.; Morse, M.A.; Saltzman, W.M.; Domb, A.J.; Perez-Atayde, A.; Langer, R. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J. Pediatr. Surg., 1988, 23(1), 3-9. doi: 10.1016/S0022-3468(88)80529-3 PMID: 2895175
- Yui, S.; Nakamura, T.; Sato, T.; Nemoto, Y.; Mizutani, T.; Zheng, X.; Ichinose, S.; Nagaishi, T.; Okamoto, R.; Tsuchiya, K.; Clevers, H.; Watanabe, M. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med., 2012, 18(4), 618-623. doi: 10.1038/nm.2695 PMID: 22406745
- Rutherford, D.; Ho, G.T. Therapeutic potential of human intestinal organoids in tissue repair approaches in inflammatory bowel diseases. Inflamm. Bowel Dis., 2023, 29(9), 1488-1498. doi: 10.1093/ibd/izad044 PMID: 37094358
- Sprangers, J.; Zaalberg, I.C.; Maurice, M.M. Organoid-based modeling of intestinal development, regeneration, and repair. Cell Death Differ., 2021, 28(1), 95-107. doi: 10.1038/s41418-020-00665-z PMID: 33208888
- Yan, H.H.N.; Siu, H.C.; Law, S.; Ho, S.L.; Yue, S.S.K.; Tsui, W.Y.; Chan, D.; Chan, A.S.; Ma, S.; Lam, K.O.; Bartfeld, S.; Man, A.H.Y.; Lee, B.C.H.; Chan, A.S.Y.; Wong, J.W.H.; Cheng, P.S.W.; Chan, A.K.W.; Zhang, J.; Shi, J.; Fan, X.; Kwong, D.L.W.; Mak, T.W.; Yuen, S.T.; Clevers, H.; Leung, S.Y. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell, 2018, 23(6), 882-897.e11. doi: 10.1016/j.stem.2018.09.016 PMID: 30344100
- Williamson, C.T.; Miller, R.; Pemberton, H.N.; Jones, S.E.; Campbell, J.; Konde, A.; Badham, N.; Rafiq, R.; Brough, R.; Gulati, A.; Ryan, C.J.; Francis, J.; Vermulen, P.B.; Reynolds, A.R.; Reaper, P.M.; Pollard, J.R.; Ashworth, A.; Lord, C.J. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat. Commun., 2016, 7(1), 13837. doi: 10.1038/ncomms13837 PMID: 27958275
- Dijkstra, K.K.; Cattaneo, C.M.; Weeber, F.; Chalabi, M.; van de Haar, J.; Fanchi, L.F.; Slagter, M.; van der Velden, D.L.; Kaing, S.; Kelderman, S.; van Rooij, N.; van Leerdam, M.E.; Depla, A.; Smit, E.F.; Hartemink, K.J.; de Groot, R.; Wolkers, M.C.; Sachs, N.; Snaebjornsson, P.; Monkhorst, K.; Haanen, J.; Clevers, H.; Schumacher, T.N.; Voest, E.E. Generation of tumor-reactive t cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell, 2018, 174(6), 1586-1598.e12. doi: 10.1016/j.cell.2018.07.009 PMID: 30100188
- Rozich, N.S.; Blair, A.B.; Burkhart, R.A. Organoids. In: Precision Medicine for Investigators, Practitioners and Providers; Elsevier, 2020; pp. 123-129. doi: 10.1016/B978-0-12-819178-1.00012-5
- Spence, J.; Cruz-Acuna, R.; Quiros, M.; Farkas, A.; Dedhia, P.; Huang, S.; Siuda, D.; Garcia-Hernandez, V.; Miller, A.; Spence, J.; Nusrat, A.; Garcia, A. PEG-4MAL hydrogels for in vitro culture of human organoids and in vivo delivery to sites of injury. Protoc. Exch., 2017. doi: 10.1038/protex.2017.098
- Davies, J.A. Organoids and mini-organs. In: Organs and Organoids; Elsevier, 2018; pp. 3-23.
- Park, S.E.; Georgescu, A.; Huh, D. Organoids-on-a-chip. Science, 2019, 364(6444), 960-965. doi: 10.1126/science.aaw7894 PMID: 31171693
- Zhu, J.; Ji, L.; Chen, Y.; Li, H.; Huang, M.; Dai, Z.; Wang, J.; Xiang, D.; Fu, G.; Lei, Z.; Chu, X. Organoids and organs-on-chips: insights into predicting the efficacy of systemic treatment in colorectal cancer. Cell Death Discov., 2023, 9(1), 72. doi: 10.1038/s41420-023-01354-9 PMID: 36813783
- Razavi Bazaz, S.; Rouhi, O.; Raoufi, M.A.; Ejeian, F.; Asadnia, M.; Jin, D.; Ebrahimi Warkiani, M. 3D printing of inertial microfluidic devices. Sci. Rep., 2020, 10(1), 5929. doi: 10.1038/s41598-020-62569-9 PMID: 32246111
- Baptista, L.S.; Porrini, C.; Kronemberger, G.S.; Kelly, D.J.; Perrault, C.M. 3D organ-on-a-chip: The convergence of microphysiological systems and organoids. Front. Cell Dev. Biol., 2022, 10, 1043117. doi: 10.3389/fcell.2022.1043117 PMID: 36478741
- Wu, L.; Ai, Y.; Xie, R.; Xiong, J.; Wang, Y.; Liang, Q. Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models. Lab Chip, 2023, 23(5), 1192-1212. doi: 10.1039/D2LC00804A PMID: 36644984
Supplementary files
