Stimuli-responsive Biomaterials for Tissue Engineering Applications
- Authors: Yadav D.1, Sharma P.2, Malviya R.1, Mishra P.1, Surendra A.3, Rao G.4, Rani B.5
-
Affiliations:
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
- Department of Pharmacy, School of Medical and Allied Sciences,, Galgotias University
- College of Pharmacy,, Koneru Lakshmaiah Education Foundation
- Shobhaben Pratapbhai Patel School of Pharmacy, NMIMS Deemed University
- Institute of Pharmaceutical Technology,, Sri Padmavathi Mahila Visvavidyalayam
- Issue: Vol 25, No 8 (2024)
- Pages: 981-999
- Section: Biotechnology
- URL: https://rjeid.com/1389-2010/article/view/644934
- DOI: https://doi.org/10.2174/1389201024666230818121821
- ID: 644934
Cite item
Full Text
Abstract
The use of ''smart materials,'' or ''stimulus responsive'' materials, has proven useful in a variety of fields, including tissue engineering and medication delivery. Many factors, including temperature, pH, redox state, light, and magnetic fields, are being studied for their potential to affect a material's properties, interactions, structure, and/or dimensions. New tissue engineering and drug delivery methods are made possible by the ability of living systems to respond to both external stimuli and their own internal signals) for example, materials composed of stimuliresponsive polymers that self assemble or undergo phase transitions or morphology transfor- mation. The researcher examines the potential of smart materials as controlled drug release vehicles in tissue engineering, aiming to enable the localized regeneration of injured tissue by delivering precisely dosed drugs at precisely timed intervals.
About the authors
Deepika Yadav
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Author for correspondence.
Email: info@benthamscience.net
Pramod Sharma
Department of Pharmacy, School of Medical and Allied Sciences,, Galgotias University
Email: info@benthamscience.net
Rishabha Malviya
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Author for correspondence.
Email: info@benthamscience.net
Prem Mishra
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Email: info@benthamscience.net
Amareswarapu Surendra
College of Pharmacy,, Koneru Lakshmaiah Education Foundation
Email: info@benthamscience.net
G.S.N. Rao
Shobhaben Pratapbhai Patel School of Pharmacy, NMIMS Deemed University
Email: info@benthamscience.net
Budha Rani
Institute of Pharmaceutical Technology,, Sri Padmavathi Mahila Visvavidyalayam
Email: info@benthamscience.net
References
- Lumelsky, N.; OHayre, M.; Chander, P.; Shum, L.; Somerman, M.J. Autotherapies: Enhancing endogenous healing and regeneration. Trends Mol. Med., 2018, 24(11), 919-930. doi: 10.1016/j.molmed.2018.08.004 PMID: 30213702
- Lavrador, P.; Gaspar, V.M.; Mano, J.F. Stimuli-responsive nanocarriers for delivery of bone therapeutics: Barriers and progresses. J. Control. Release, 2018, 273, 51-67. doi: 10.1016/j.jconrel.2018.01.021 PMID: 29407678
- Rogina, A.; Ressler, A.; Matić, I.; Gallego Ferrer, G.; Marijanović, I.; Ivanković, M.; Ivanković, H. Cellular hydrogels based on pH-responsive chitosan-hydroxyapatite system. Carbohydr. Polym., 2017, 166, 173-182. doi: 10.1016/j.carbpol.2017.02.105 PMID: 28385221
- Alvarez Echazú, M.I.; Olivetti, C.E.; Peralta, I.; Alonso, M.R.; Anesini, C.; Perez, C.J.; Alvarez, G.S.; Desimone, M.F. Development of pH-responsive biopolymer-silica composites loaded with larrea divaricata Cav. Extract with antioxidant activity. Colloids Surf. B Biointerfaces, 2018, 169, 82-91. doi: 10.1016/j.colsurfb.2018.05.015 PMID: 29751344
- Parani, M.; Lokhande, G.; Singh, A.; Gaharwar, A.K. Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Appl. Mater. Interfaces, 2016, 8(16), 10049-10069. doi: 10.1021/acsami.6b00291 PMID: 27043006
- Hamdan, S.; Pastar, I.; Drakulich, S.; Dikici, E.; Tomic-Canic, M.; Deo, S.; Daunert, S. Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Cent. Sci., 2017, 3(3), 163-175. doi: 10.1021/acscentsci.6b00371 PMID: 28386594
- Bose, S.; Robertson, S.F.; Bandyopadhyay, A. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater., 2018, 66, 6-22. doi: 10.1016/j.actbio.2017.11.003
- Pezzoni, M.; Catalano, P.N.; Pizarro, R.A.; Desimone, M.F.; Soler-Illia, G.J.A.A.; Bellino, M.G.; Costa, C.S. Antibiofilm effect of supramolecularly templated mesoporous silica coatings. Mater. Sci. Eng. C, 2017, 77, 1044-1049. doi: 10.1016/j.msec.2017.04.022 PMID: 28531977
- Catalano, P.N.; Pezzoni, M.; Costa, C.; Soler-Illia, G.J.A.A.; Bellino, M.G.; Desimone, M.F. Optically transparent silver-loaded mesoporous thin film coating with long-lasting antibacterial activity. Microporous Mesoporous Mater., 2016, 236, 158-166. doi: 10.1016/j.micromeso.2016.08.034
- Bellino, M.G.; Golbert, S.; De Marzi, M.C.; Soler-Illia, G.J.A.A.; Desimone, M.F. Controlled adhesion and proliferation of a human osteoblastic cell line by tuning the nanoporosity of titania and silica coatings. Biomater. Sci., 2013, 1(2), 186-189. doi: 10.1039/C2BM00136E PMID: 32481797
- Badeau, B.A.; DeForest, C.A. Programming stimuli-responsive behavior into biomaterials. Annu. Rev. Biomed. Eng., 2019, 21(1), 241-265. doi: 10.1146/annurev-bioeng-060418-052324 PMID: 30857392
- Ooi, H.W.; Hafeez, S.; van Blitterswijk, C.A.; Moroni, L.; Baker, M.B. Hydrogels that listen to cells: A review of cell-responsive strategies in biomaterial design for tissue regeneration. Mater. Horiz., 2017, 4(6), 1020-1040. doi: 10.1039/C7MH00373K
- Kondiah, P.; Choonara, Y.; Kondiah, P.; Marimuthu, T.; Kumar, P.; du Toit, L.; Pillay, V. A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules, 2016, 21(11), 1580. doi: 10.3390/molecules21111580 PMID: 27879635
- Albert, K.; Hsu, H.Y. Carbon-based materials for photo-triggered theranostic applications. Molecules, 2016, 21(11), 1585. doi: 10.3390/molecules21111585 PMID: 27879628
- Shen, L. Biocompatible polymer/quantum dots hybrid materials: Current status and future developments. J. Funct. Biomater., 2011, 2(4), 355-372. doi: 10.3390/jfb2040355 PMID: 24956449
- Galdopórpora, J.M.; Morcillo, M.F.; Ibar, A.; Perez, C.J.; Tuttolomondo, M.V.; Desimone, M.F. Development of silver nanoparticles/gelatin thermoresponsive nanocomposites: Characterization and antimicrobial activity. Curr. Pharm. Des., 2019, 25(38), 4121-4129. doi: 10.2174/1381612825666191007163152 PMID: 31589116
- Mousavi, S.T.; Harper, G.R.; Municoy, S.; Ashton, M.D.; Townsend, D.; Alsharif, G.H.K.; Oikonomou, V.K.; Firlak, M.; Au-Yong, S.; Murdock, B.E. Electroactive silk fibroin films for electrochemically enhanced delivery of drugs. Macromol. Mater. Eng., 2020, 2000130. doi: 10.1002/mame.202000130
- Gonçalves, G.A.R.; Paiva, R.M.A. Gene therapy: Advances, challenges and perspectives. Einstein, 2017, 15(3), 369-375. doi: 10.1590/s1679-45082017rb4024 PMID: 29091160
- Pattni, B.S.; Torchilin, V.P. Targeted drug delivery systems: Strategies and challenges. In: Targeted Drug Delivery: Concepts and Design; Devarajan, P.V.; Jain, S., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 3-38. doi: 10.1007/978-3-319-11355-5_1
- Khademhosseini, A.; Langer, R. A decade of progress in tissue engineering. Nat. Protoc., 2016, 11(10), 1775-1781. doi: 10.1038/nprot.2016.123 PMID: 27583639
- Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003. doi: 10.1038/nmat3776 PMID: 24150417
- Gracia, R.; Mecerreyes, D. Polymers with redox properties: Materials for batteries, biosensors and more. Polym. Chem., 2013, 4(7), 2206-2214. doi: 10.1039/c3py21118e
- Guo, X.; Cheng, Y.; Zhao, X.; Luo, Y.; Chen, J.; Yuan, W.E. Advances in redox-responsive drug delivery systems of tumor microenvironment. J. Nanobiotechnology, 2018, 16(1), 74. doi: 10.1186/s12951-018-0398-2 PMID: 30243297
- Hardy, J.G.; Lee, J.Y.; Schmidt, C.E. Biomimetic conducting polymer-based tissue scaffolds. Curr. Opin. Biotechnol., 2013, 24(5), 847-854. doi: 10.1016/j.copbio.2013.03.011 PMID: 23578463
- Rajabi, A.H.; Jaffe, M.; Arinzeh, T.L. Piezoelectric materials for tissue regeneration: A review. Acta Biomater., 2015, 24, 12-23. doi: 10.1016/j.actbio.2015.07.010 PMID: 26162587
- Baxter, F.R.; Bowen, C.R.; Turner, I.G.; Dent, A.C.E. Electrically active bioceramics: A review of interfacial responses. Ann. Biomed. Eng., 2010, 38(6), 2079-2092. doi: 10.1007/s10439-010-9977-6 PMID: 20198510
- Ribeiro, C.; Sencadas, V.; Correia, D.M.; Lanceros-Méndez, S. Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids Surf. B Biointerfaces, 2015, 136, 46-55. doi: 10.1016/j.colsurfb.2015.08.043 PMID: 26355812
- Chorsi, M.T.; Curry, E.J.; Chorsi, H.T.; Das, R.; Baroody, J.; Purohit, P.K.; Ilies, H.; Nguyen, T.D. Piezoelectric biomaterials for sensors and actuators. Adv. Mater., 2019, 31(1), 1802084. doi: 10.1002/adma.201802084 PMID: 30294947
- Yuan, H.; Lei, T.; Qin, Y.; He, J.H.; Yang, R. Design and application of piezoelectric biomaterials. J. Phys. D Appl. Phys., 2019, 52(19), 194002-194012. doi: 10.1088/1361-6463/ab0532
- Kapat, K.; Shubhra, Q.T.H.; Zhou, M.; Leeuwenburgh, S. Piezoelectric nano-biomaterials for biomedicine and tissue regeneration. Adv. Funct. Mater., 2020, 30(44), 1909045. doi: 10.1002/adfm.201909045
- Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polym. Chem., 2017, 8(1), 144-176. doi: 10.1039/C6PY01872F
- Omidi, M.; Yadegari, A.; Tayebi, L. Wound dressing application of pH-sensitive carbon dots/chitosan hydrogel. RSC Advances, 2017, 7(18), 10638-10649. doi: 10.1039/C6RA25340G
- Banerjee, I.; Mishra, D.; Das, T.; Maiti, T.K. Wound pH-responsive sustained release of therapeutics from a poly(NIPAAm-co-AAc) hydrogel. J. Biomater. Sci. Polym. Ed., 2012, 23(1-4), 111-132. doi: 10.1163/092050610X545049 PMID: 22133349
- Ninan, N.; Forget, A.; Shastri, V.P.; Voelcker, N.H.; Blencowe, A. Antibacterial and anti-inflammatory ph-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Appl. Mater. Interfaces, 2016, 8(42), 28511-28521. doi: 10.1021/acsami.6b10491 PMID: 27704757
- Tamesue, S.; Noguchi, S.; Kimura, Y.; Endo, T. Reversing redox responsiveness of hydrogels due to supramolecular interactions by utilizing double-network structures. ACS Appl. Mater. Interfaces, 2018, 10(32), 27381-27390. doi: 10.1021/acsami.8b10001 PMID: 30028125
- Ferreira, N.N.; Ferreira, L.M.B.; Cardoso, V.M.O.; Boni, F.I.; Souza, A.L.R.; Gremião, M.P.D. Recent advances in smart hydrogels for biomedical applications: From self-assembly to functional approaches. Eur. Polym. J., 2018, 99, 117-133. doi: 10.1016/j.eurpolymj.2017.12.004
- Karimi, M.; Eslami, M.; Sahandi-Zangabad, P.; Mirab, F.; Farajisafiloo, N.; Shafaei, Z.; Ghosh, D.; Bozorgomid, M.; Dashkhaneh, F.; Hamblin, M.R. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(5), 696-716. doi: 10.1002/wnan.1389 PMID: 26762467
- Adedoyin, A.A.; Ekenseair, A.K. Biomedical applications of magneto-responsive scaffolds. Nano Res., 2018, 11(10), 5049-5064. doi: 10.1007/s12274-018-2198-2
- Katz, J.S.; Burdick, J.A. Light-responsive biomaterials: Development and applications. Macromol. Biosci., 2010, 10(4), 339-348. doi: 10.1002/mabi.200900297 PMID: 20014197
- Ward, M.A.; Georgiou, T.K. Thermoresponsive polymers for biomedical applications. Polymers, 2011, 3(3), 1215-1242. doi: 10.3390/polym3031215
- Sponchioni, M.; Capasso Palmiero, U.; Moscatelli, D. Thermo-responsive polymers: Applications of smart materials in drug delivery and tissue engineering. Mater. Sci. Eng. C, 2019, 102, 589-605. doi: 10.1016/j.msec.2019.04.069 PMID: 31147031
- Zarrintaj, P.; Jouyandeh, M.; Ganjali, M.R.; Hadavand, B.S.; Mozafari, M.; Sheiko, S.S.; Vatankhah-Varnoosfaderani, M.; Gutiérrez, T.J.; Saeb, M.R. Thermo-sensitive polymers in medicine: A review. Eur. Polym. J., 2019, 117, 402-423. doi: 10.1016/j.eurpolymj.2019.05.024
- Zhang, J.; Jiang, X.; Wen, X.; Xu, Q.; Zeng, H.; Zhao, Y.; Liu, M.; Wang, Z.; Hu, X.; Wang, Y. Bio-responsive smart polymers and biomedical applications. Journal of Physics: Materials, 2019, 2(3), 032004. doi: 10.1088/2515-7639/ab1af5
- Fu, X.; Hosta-Rigau, L.; Chandrawati, R.; Cui, J. Multi-stimuli-responsive polymer particles, films, and hydrogels for drug delivery. Chem, 2018, 4(9), 2084-2107. doi: 10.1016/j.chempr.2018.07.002
- Hajebi, S.; Rabiee, N.; Bagherzadeh, M.; Ahmadi, S.; Rabiee, M.; Roghani-Mamaqani, H.; Tahriri, M.; Tayebi, L.; Hamblin, M.R. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater., 2019, 92, 1-18. doi: 10.1016/j.actbio.2019.05.018 PMID: 31096042
- Chung, B.G.; Lee, K.H.; Khademhosseini, A.; Lee, S.H. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip, 2012, 12(1), 45-59. doi: 10.1039/C1LC20859D PMID: 22105780
- Dong, R.; Pang, Y.; Su, Y.; Zhu, X. Supramolecular hydrogels: Synthesis, properties and their biomedical applications. Biomater. Sci., 2015, 3(7), 937-954. doi: 10.1039/C4BM00448E PMID: 26221932
- Koutsopoulos, S. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications. J. Biomed. Mater. Res. A, 2016, 104(4), 1002-1016. doi: 10.1002/jbm.a.35638 PMID: 26707893
- Khang, G. Handbook of intelligent scaffolds for tissue engineering and regenerative medicine; CRC Press, 2017.
- Annabi, N.; Tamayol, A.; Uquillas, J.A.; Akbari, M.; Bertassoni, L.E.; Cha, C.; Camci-Unal, G.; Dokmeci, M.R.; Peppas, N.A.; Khademhosseini, A. 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv. Mater., 2014, 26(1), 85-124. doi: 10.1002/adma.201303233 PMID: 24741694
- Tsihlis, N.D.; Murar, J.; Kapadia, M.R.; Ahanchi, S.S.; Oustwani, C.S.; Saavedra, J.E.; Keefer, L.K.; Kibbe, M.R. Isopropylamine NONOate (IPA/NO) moderates neointimal hyperplasia following vascular injury. J. Vasc. Surg., 2010, 51(5), 1248-1259. doi: 10.1016/j.jvs.2009.12.028 PMID: 20223627
- Seidel, J.M.; Malmonge, S.M. Synthesis of polyHEMA hydrogels for using as biomaterials. Bulk and solution radical-initiated polymerization techniques. Mater. Res., 2000, 3(3), 79-83. doi: 10.1590/S1516-14392000000300006
- Hennink, W.E.; van Nostrum, C.F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev., 2002, 54(1), 13-36. doi: 10.1016/S0169-409X(01)00240-X PMID: 11755704
- Billiet, T.; Vandenhaute, M.; Schelfhout, J.; Van Vlierberghe, S.; Dubruel, P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, 2012, 33(26), 6020-6041. doi: 10.1016/j.biomaterials.2012.04.050 PMID: 22681979
- Abdel-Azim, A.A.A.; Farahat, M.S.; Atta, A.M.; Abdel-Fattah, A.A. Preparation and properties of two-component hydrogels based on 2-acrylamido-2-methylpropane sulphonic acid. Polym. Adv. Technol., 1998, 9(5), 282-289. doi: 10.1002/(SICI)1099-1581(199805)9:53.0.CO;2-N
- Carraher, C.E., Jr Introduction to polymer chemistry; CRC Press, 2017. doi: 10.1201/9781315369488
- Sikdar, P.; Uddin, M.M.; Dip, T.M.; Islam, S.; Hoque, M.S.; Dhar, A.K.; Wu, S. Recent advances in the synthesis of smart hydrogels. Materials Advances, 2021, 2(14), 4532-4573. doi: 10.1039/D1MA00193K
- Achilias, D.S.; Verros, G.D. Modeling of diffusion-controlled reactions in free radical solution and bulk polymerization: Model validation by DSC experiments. J. Appl. Polym. Sci., 2010, 116(3) NA. doi: 10.1002/app.31675
- Ranganathan, N.; Joseph Bensingh, R.; Abdul Kader, M.; Nayak, S.K. Synthesis and properties of hydrogels prepared by various polymerization reaction systems.Cellulose-Based Superabsorbent Hydrogels; Mondal, M.I.H., Ed.; Springer International Publishing: Cham, 2018, pp. 1-25. doi: 10.1007/978-3-319-76573-0_18-1
- Chanda, M. Introduction to polymer science and chemistry: A problem-solving approach; CRC Press, 2006. doi: 10.1201/9781420007329
- Liu, M.; Liang, R.; Zhan, F.; Liu, Z.; Niu, A. Preparation of superabsorbent slow release nitrogen fertilizer by inverse suspension polymerization. Polym. Int., 2007, 56(6), 729-737. doi: 10.1002/pi.2196
- Tibbitt, M.W.; Kloxin, A.M.; Sawicki, L.A.; Anseth, K.S. Mechanical properties and degradation of chain and step-polymerized photodegradable hydrogels. Macromolecules, 2013, 46(7), 2785-2792. doi: 10.1021/ma302522x PMID: 24496435
- Shin, B.M.; Kim, J.H.; Chung, D.J. Synthesis of pH-responsive and adhesive super-absorbent hydrogel through bulk polymerization. Macromol. Res., 2013, 21(5), 582-587. doi: 10.1007/s13233-013-1051-4
- Young, R.J.; Lovell, P.A. Introduction to polymers; CRC Press, 2011. doi: 10.1201/9781439894156
- Liu, J.; Yin, Y. Temperature responsive hydrogels: Construction and applications. Polym. Sci., 2015, 1(13), 1-6.
- Carraher, C.E. Carrahers polymer chemistry; CRC Press, 2017.
- Ebdon, J. Introduction to polymers RJ Young and PA lovell chapman and hall; Wiley Online Library: London, 1992, p. 443.
- Essawy, H.A.; Ghazy, M.B.M.; El-Hai, F.A.; Mohamed, M.F. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Int. J. Biol. Macromol., 2016, 89, 144-151. doi: 10.1016/j.ijbiomac.2016.04.071 PMID: 27126169
- El-Sherbiny, I.M.; Khalil, I.A.; Ali, I.H. Updates on stimuli-responsive polymers: Synthesis approaches and features, polymer gels; Springer, 2018, pp. 129-146.
- Bauri, K.; Nandi, M.; De, P. Amino acid-derived stimuli-responsive polymers and their applications. Polym. Chem., 2018, 9(11), 1257-1287. doi: 10.1039/C7PY02014G
- Mondal, M.; Trivedy, K.; Nirmal, K.S. The silk proteins, sericin and fibroin in silkworm Bombyx mori Linn.,-a review, 2007.
- Jin, R. In-situ forming biomimetic hydrogels for tissue regeneration. Biomedicine, 2012, 2, 35-58. doi: 10.5772/38852
- Ebara, M.; Kotsuchibashi, Y.; Uto, K.; Aoyagi, T.; Kim, Y-J.; Narain, R.; Idota, N.; Hoffman, J.M. Smart hydrogels. In: Smart Biomaterials; Ebara, M.; Kotsuchibashi, Y.; Narain, R.; Idota, N.; Kim, Y-J.; Hoffman, J.M.; Uto, K.; Aoyagi, T., Eds.; Springer Japan, Tokyo, 2014; pp. 9-65. doi: 10.1007/978-4-431-54400-5_2
- Lutz, J.F.; Zarafshani, Z. Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azidealkyne "click" chemistry. Adv. Drug Deliv. Rev., 2008, 60(9), 958-970. doi: 10.1016/j.addr.2008.02.004 PMID: 18406491
- Mather, B.D.; Viswanathan, K.; Miller, K.M.; Long, T.E. Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci., 2006, 31(5), 487-531. doi: 10.1016/j.progpolymsci.2006.03.001
- Rodrıguez-Cabello, J.C.; Fernandez-Colino, A.; Pina, M.; Alonso, M.; Santos, M.A. Testera; Bioactive and smart hydrogel surfaces; Biomaterials Surface Science, 2013.
- Pereira, R.F.; Barrias, C.C.; Bártolo, P.J.; Granja, P.L. Cell-instructive pectin hydrogels crosslinked via thiol-norbornene photo-click chemistry for skin tissue engineering. Acta Biomater., 2018, 66, 282-293. doi: 10.1016/j.actbio.2017.11.016 PMID: 29128530
- Wang, X.; Schmidt, F.; Hanaor, D.; Kamm, P.H.; Li, S.; Gurlo, A. Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiol-ene click chemistry. Addit. Manuf., 2019, 27, 80-90. doi: 10.1016/j.addma.2019.02.012
- Arnfast, L.; Madsen, C.G.; Jorgensen, L.; Baldursdottir, S. Design and processing of nanogels as delivery systems for peptides and proteins. Ther. Deliv., 2014, 5(6), 691-708. doi: 10.4155/tde.14.38 PMID: 25090282
- Wei, H.L.; Yao, K.; Yang, Z.; Chu, H.J.; Zhu, J.; Ma, C.C.; Zhao, Z.X. Preparation of thermosensitive hydrogels by means of tandem physical and chemical crosslinking. Macromol. Res., 2011, 19(3), 294-299. doi: 10.1007/s13233-011-0308-z
- Hu, W.; Wang, Z.; Xiao, Y.; Zhang, S.; Wang, J. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci., 2019, 7(3), 843-855. doi: 10.1039/C8BM01246F PMID: 30648168
- Siqueira, N.M.; Cirne, M.F.; Immich, M.F.; Poletto, F. Stimuli-responsive polymeric hydrogels and nanogels for drug delivery applications, stimuli responsive polymeric nanocarriers for drug delivery applications; Elsevier, 2018, Vol. 1, pp. 343-374. doi: 10.1016/B978-0-08-101997-9.00017-5
- Russo, E.; Villa, C. Poloxamer hydrogels for biomedical applications. Pharmaceutics, 2019, 11(12), 671. doi: 10.3390/pharmaceutics11120671 PMID: 31835628
- Kumar, A.; Han, S.S. PVA-based hydrogels for tissue engineering: a review, Int. J. Polymer. Mater. Polymer. Biomaterials, 2017, 66(4), 159-182.
- Pennacchio, F.A.; Fedele, C.; De Martino, S.; Cavalli, S.; Vecchione, R.; Netti, P.A. Three-dimensional microstructured azobenzene-containing gelatin as a photoactuable cell confining system. ACS Appl. Mater. Interfaces, 2018, 10(1), 91-97. doi: 10.1021/acsami.7b13176 PMID: 29260543
- Choi, J.R.; Yong, K.W.; Choi, J.Y.; Cowie, A.C. Recent advances in photo-crosslinkable hydrogels for biomedical applications. Biotechniques, 2019, 66(1), 40-53. doi: 10.2144/btn-2018-0083 PMID: 30730212
- McHale, M.K.; Setton, L.A.; Chilkoti, A. Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng., 2005, 11(11-12), 1768-1779. doi: 10.1089/ten.2005.11.1768 PMID: 16411822
- Liu, D.; Wang, S.; Xu, S.; Liu, H. Photocontrollable intermittent release of doxorubicin hydrochloride from liposomes embedded by azobenzene-contained glycolipid. Langmuir, 2017, 33(4), 1004-1012. doi: 10.1021/acs.langmuir.6b03051 PMID: 27668306
- Cui, Z.K.; Phoeung, T.; Rousseau, P.A.; Rydzek, G.; Zhang, Q.; Bazuin, C.G.; Lafleur, M. Nonphospholipid fluid liposomes with switchable photocontrolled release. Langmuir, 2014, 30(36), 10818-10825. doi: 10.1021/la502131h PMID: 25149436
- Son, S.; Shin, E.; Kim, B.S. Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery. Biomacromolecules, 2014, 15(2), 628-634. doi: 10.1021/bm401670t PMID: 24432713
- Brunelle, A.R.; Horner, C.B.; Low, K.; Ico, G.; Nam, J. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells. Acta Biomater., 2018, 66, 166-176. doi: 10.1016/j.actbio.2017.11.020 PMID: 29128540
- op t Veld, R.C.; van den Boomen, O.I.; Lundvig, D.M.S.; Bronkhorst, E.M.; Kouwer, P.H.J.; Jansen, J.A.; Middelkoop, E.; Von den Hoff, J.W.; Rowan, A.E.; Wagener, F.A.D.T.G. Thermosensitive biomimetic polyisocyanopeptide hydrogels may facilitate wound repair. Biomaterials, 2018, 181, 392-401. doi: 10.1016/j.biomaterials.2018.07.038
- Zimoch, J.; Padial, J.S.; Klar, A.S.; Vallmajo-Martin, Q.; Meuli, M.; Biedermann, T.; Wilson, C.J.; Rowan, A.; Reichmann, E. Polyisocyanopeptide hydrogels: A novel thermo-responsive hydrogel supporting pre-vascularization and the development of organotypic structures. Acta Biomater., 2018, 70, 129-139. doi: 10.1016/j.actbio.2018.01.042 PMID: 29454158
- Hsieh, F.Y.; Lin, H.H.; Hsu, S. 3D bioprinting of neural stem cell laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials, 2015, 71, 48-57. doi: 10.1016/j.biomaterials.2015.08.028 PMID: 26318816
- Mouser, V.H.M.; Abbadessa, A.; Levato, R.; Hennink, W.E.; Vermonden, T.; Gawlitta, D.; Malda, J. Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs. Biofabrication, 2017, 9(1), 015026. doi: 10.1088/1758-5090/aa6265 PMID: 28229956
- Shi, K.; Liu, Z.; Yang, C.; Li, X.Y.; Sun, Y.M.; Deng, Y.; Wang, W.; Ju, X.J.; Xie, R.; Chu, L.Y. Novel biocompatible thermoresponsive poly(n -vinyl caprolactam)/clay nanocomposite hydrogels with macroporous structure and improved mechanical characteristics. ACS Appl. Mater. Interfaces, 2017, 9(26), 21979-21990. doi: 10.1021/acsami.7b04552 PMID: 28603958
- Bhullar, S.K.; Lala, N.L.; Ramkrishna, S. Smart biomaterialsA review. Rev. Adv. Mater. Sci., 2015, 40, 303-314. doi: 10.21315/tlsr2018.29.2.9
- Ruskowitz, E.R.; DeForest, C.A. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat. Rev. Mater., 2018, 3(2), 17087-17104. doi: 10.1038/natrevmats.2017.87
- Leung, S.J.; Romanowski, M. Light-activated content release from liposomes. Theranostics, 2012, 2(10), 1020-1036. doi: 10.7150/thno.4847 PMID: 23139729
- Jerca, F.A.; Jerca, V.; Stancu, I-C. Development and characterization of photoresponsive polymers. In: Polymer and Photonic Materials Towards Biomedical Breakthroughs; Springer International Publishing: Cham, Switzerland, 2018.
- Ercole, F.; Davis, T.P.; Evans, R.A. Photo-responsive systems and biomaterials: Photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym. Chem., 2010, 1(1), 37-54. doi: 10.1039/B9PY00300B
- Wu, S.; Butt, H.J. Near-infrared-sensitive materials based on upconverting nanoparticles. Adv. Mater., 2016, 28(6), 1208-1226. doi: 10.1002/adma.201502843 PMID: 26389516
- Linsley, C.S.; Wu, B.M. Recent advances in light-responsive on-demand drug-delivery systems. Ther. Deliv., 2017, 8(2), 89-107. doi: 10.4155/tde-2016-0060 PMID: 28088880
- Bandara, H.M.D.; Burdette, S.C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev., 2012, 41(5), 1809-1825. doi: 10.1039/C1CS15179G PMID: 22008710
- Udayabhaskararao, T.; Kundu, P.K.; Ahrens, J.; Klajn, R. Reversible photoisomerization of spiropyran on the surfaces of Au 25 nanoclusters. ChemPhysChem, 2016, 17(12), 1805-1809. doi: 10.1002/cphc.201500897 PMID: 26593975
- Ahmad, Z.; Shah, A.; Siddiq, M.; Kraatz, H.B. Polymeric micelles as drug delivery vehicles. RSC Advances, 2014, 4(33), 17028-17038. doi: 10.1039/C3RA47370H
- Pandita, D.; Madaan, K.; Kumar, S.; Poonia, N.; Lather, V. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci., 2014, 6(3), 139-150. doi: 10.4103/0975-7406.130965 PMID: 25035633
- Alavi, M.; Karimi, N.; Safaei, M. Application of various types of liposomes in drug delivery systems. Adv. Pharm. Bull., 2017, 7(1), 3-9. doi: 10.15171/apb.2017.002 PMID: 28507932
- Urban, P.; Pritzl, S.D.; Konrad, D.B.; Frank, J.A.; Pernpeintner, C.; Roeske, C.R.; Trauner, D.; Lohmüller, T. Light-controlled lipid interaction and membrane organization in photolipid bilayer vesicles. Langmuir, 2018, 34(44), 13368-13374. doi: 10.1021/acs.langmuir.8b03241 PMID: 30346771
- Yao, C.; Wang, P.; Li, X.; Hu, X.; Hou, J.; Wang, L.; Zhang, F. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv. Mater., 2016, 28(42), 9341-9348. doi: 10.1002/adma.201503799 PMID: 27578301
- Pearson, S.; Vitucci, D.; Khine, Y.Y.; Dag, A.; Lu, H.; Save, M.; Billon, L.; Stenzel, M.H. Light-responsive azobenzene-based glycopolymer micelles for targeted drug delivery to melanoma cells. Eur. Polym. J., 2015, 69, 616-627. doi: 10.1016/j.eurpolymj.2015.04.001
- Zhu, L.; Bratlie, K.M. pH sensitive methacrylated chitosan hydrogels with tunable physical and chemical properties. Biochem. Eng. J., 2018, 132, 38-46. doi: 10.1016/j.bej.2017.12.012
- You, J.O.; Rafat, M.; Almeda, D.; Maldonado, N.; Guo, P.; Nabzdyk, C.S.; Chun, M.; LoGerfo, F.W.; Hutchinson, J.W.; Pradhan-Nabzdyk, L.K.; Auguste, D.T. pH-responsive scaffolds generate a pro-healing response. Biomaterials, 2015, 57, 22-32. doi: 10.1016/j.biomaterials.2015.04.011 PMID: 25956194
- Yang, C.; Guo, W.; Cui, L.; Xiang, D.; Cai, K.; Lin, H.; Qu, F. pH-responsive controlled-release system based on mesoporous bioglass materials capped with mineralized hydroxyapatite. Mater. Sci. Eng. C, 2014, 36, 237-243. doi: 10.1016/j.msec.2013.12.006 PMID: 24433909
- Cicuéndez, M.; Doadrio, J.C.; Hernández, A.; Portolés, M.T.; Izquierdo-Barba, I.; Vallet-Regí, M. Multifunctional pH sensitive 3D scaffolds for treatment and prevention of bone infection. Acta Biomater., 2018, 65, 450-461. doi: 10.1016/j.actbio.2017.11.009 PMID: 29127064
- Gulzar, A.; Gai, S.; Yang, P.; Li, C.; Ansari, M.B.; Lin, J. Stimuli responsive drug delivery application of polymer and silica in biomedicine. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(44), 8599-8622. doi: 10.1039/C5TB00757G PMID: 32262717
- Lennox, K.A.; Owczarzy, R.; Thomas, D.M.; Walder, J.A.; Behlke, M.A. Improved performance of anti-miRNA oligonucleotides using a novel non-nucleotide modifier. Mol. Ther. Nucleic Acids, 2013, 2(8), e117. doi: 10.1038/mtna.2013.46 PMID: 23982190
- Makovitzki, A.; Fink, A.; Shai, Y. Suppression of human solid tumor growth in mice by intratumor and systemic inoculation of histidine-rich and pH-dependent host defense-like lytic peptides. Cancer Res., 2009, 69(8), 3458-3463. doi: 10.1158/0008-5472.CAN-08-3021 PMID: 19351852
- Zhang, Q.; Ran, R.; Zhang, L.; Liu, Y.; Mei, L.; Zhang, Z.; Gao, H.; He, Q. Simultaneous delivery of therapeutic antagomirs with paclitaxel for the management of metastatic tumors by a pH-responsive anti-microbial peptide-mediated liposomal delivery system. J. Control. Release, 2015, 197, 208-218. doi: 10.1016/j.jconrel.2014.11.010 PMID: 25445692
- Petriashvili, G.; Devadze, L.; Zurabishvili, T.; Sepashvili, N.; Chubinidze, K. Light controlled drug delivery containers based on spiropyran doped liquid crystal micro spheres. Biomed. Opt. Express, 2016, 7(2), 442-447. doi: 10.1364/BOE.7.000442 PMID: 26977353
- Baroli, B. Photopolymerization of biomaterials: Issues and potentialities in drug delivery, tissue engineering, and cell encapsulation applications. J. Chem. Technol. Biotechnol., 2006, 81(4), 491-499. doi: 10.1002/jctb.1468
- Nguyen, K.T.; West, J.L. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 2002, 23(22), 4307-4314. doi: 10.1016/S0142-9612(02)00175-8 PMID: 12219820
- Cao, Z.; Bian, Q.; Chen, Y.; Liang, F.; Wang, G. Light-responsive janus-particle-based coatings for cell capture and release. ACS Macro Lett., 2017, 6(10), 1124-1128. doi: 10.1021/acsmacrolett.7b00714 PMID: 35650929
- Yu, L.; Schlaich, C.; Hou, Y.; Zhang, J.; Noeske, P.L.M.; Haag, R. Photoregulating antifouling and bioadhesion functional coating surface based on spiropyran. Chemistry, 2018, 24(30), 7742-7748. doi: 10.1002/chem.201801051 PMID: 29578259
- Fedele, C.; Netti, P.A.; Cavalli, S. Azobenzene-based polymers: Emerging applications as cell culture platforms. Biomater. Sci., 2018, 6(5), 990-995. doi: 10.1039/C8BM00019K PMID: 29528057
- Shi, P.; Ju, E.; Yan, Z.; Gao, N.; Wang, J.; Hou, J.; Zhang, Y.; Ren, J.; Qu, X. Spatiotemporal control of cellcell reversible interactions using molecular engineering. Nat. Commun., 2016, 7(1), 13088. doi: 10.1038/ncomms13088 PMID: 27708265
- Andrade, F.; Roca-Melendres, M.M.; Durán-Lara, E.F.; Rafael, D.; Schwartz, S., Jr Stimuli-responsive hydrogels for cancer treatment: The role of pH, light, ionic strength and magnetic field. Cancers, 2021, 13(5), 1164. doi: 10.3390/cancers13051164 PMID: 33803133
- Lee, I.N.; Dobre, O.; Richards, D.; Ballestrem, C.; Curran, J.M.; Hunt, J.A.; Richardson, S.M.; Swift, J.; Wong, L.S. Photoresponsive hydrogels with photoswitchable mechanical properties allow time-resolved analysis of cellular responses to matrix stiffening. ACS Appl. Mater. Interfaces, 2018, 10(9), 7765-7776. doi: 10.1021/acsami.7b18302 PMID: 29430919
- OBrien, P.; Thomas, P.J. Specialist periodical reports. In: Nanoscience Royal Society of Chemistry; Cambridge: UK, 2013
- Chen, Y.; Li, H.; Deng, Y.; Sun, H.; Ke, X.; Ci, T. Near infrared light triggered drug delivery system for higher efficacy of combined chemo-photothermal treatment. Acta Biomater., 2017, 51, 374-392. doi: 10.1016/j.actbio.2016.12.004 PMID: 28088668
- Guha, S.; Shaw, S.K.; Spence, G.T.; Roland, F.M.; Smith, B.D. Clean photothermal heating and controlled release from near-infrared dye doped nanoparticles without oxygen photosensitization. Langmuir, 2015, 31(28), 7826-7834. doi: 10.1021/acs.langmuir.5b01878 PMID: 26149326
- Bao, Z.; Liu, X.; Liu, Y.; Liu, H.; Zhao, K. Near-infrared light-responsive inorganic nanomaterials for photothermal therapy. Asian Journal of Pharmaceutical Sciences, 2016, 11(3), 349-364. doi: 10.1016/j.ajps.2015.11.123
- Ou, Y.C.; Webb, J.A.; Faley, S.; Shae, D.; Talbert, E.M.; Lin, S.; Cutright, C.C.; Wilson, J.T.; Bellan, L.M.; Bardhan, R. Gold nanoantenna-mediated photothermal drug delivery from thermosensitive liposomes in breast cancer. ACS Omega, 2016, 1(2), 234-243. doi: 10.1021/acsomega.6b00079 PMID: 27656689
- Zhang, J.; Huang, Q.; Du, J. Recent advances in magnetic hydrogels. Polym. Int., 2016, 65(12), 1365-1372. doi: 10.1002/pi.5170
- Luo, R.C.; Lim, Z.H.; Li, W.; Shi, P.; Chen, C.H. Near-infrared light triggerable deformation-free polysaccharide double network hydrogels. Chem. Commun., 2014, 50(53), 7052-7055. doi: 10.1039/C4CC02216E PMID: 24849317
- Lin, H.; Xiao, W.; Qin, S.Y.; Cheng, S.X.; Zhang, X.Z. Switch on/off microcapsules for controllable photosensitive drug release in a release-cease-recommence mode. Polym. Chem., 2014, 5(15), 4396. doi: 10.1039/c4py00564c
- Wajs, E.; Nielsen, T.T.; Larsen, K.L.; Fragoso, A. Preparation of stimuli-responsive nano-sized capsules based on cyclodextrin polymers with redox or light switching properties. Nano Res., 2016, 9(7), 2070-2078. doi: 10.1007/s12274-016-1097-7
- Lo, C.W.; Zhu, D.; Jiang, H. An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter, 2011, 7(12), 5604-5609. doi: 10.1039/c1sm00011j
- Han, L.; Zhang, Y.; Lu, X.; Wang, K.; Wang, Z.; Zhang, H. Polydopamine nanoparticles modulating stimuli-responsive PNIPAM hydrogels with cell/tissue adhesiveness. ACS Appl. Mater. Interfaces, 2016, 8(42), 29088-29100. doi: 10.1021/acsami.6b11043 PMID: 27709887
- Wu, Y.; Wang, K.; Huang, S.; Yang, C.; Wang, M. Near-infrared light-responsive semiconductor polymer composite hydrogels: Spatial/temporal-controlled release via a photothermal "sponge" effect. ACS Appl. Mater. Interfaces, 2017, 9(15), 13602-13610. doi: 10.1021/acsami.7b01016 PMID: 28304158
- Wankar, J.; Kotla, N.G.; Gera, S.; Rasala, S.; Pandit, A.; Rochev, Y.A. Recent advances in hostguest self-assembled cyclodextrin carriers: Implications for responsive drug delivery and biomedical engineering. Adv. Funct. Mater., 2020, 30(44), 1909049. doi: 10.1002/adfm.201909049
- Zheng, Y.; Chen, Z.; Jiang, Q.; Feng, J.; Wu, S.; del Campo, A. Near-infrared-light regulated angiogenesis in a 4D hydrogel. Nanoscale, 2020, 12(25), 13654-13661. doi: 10.1039/D0NR02552F PMID: 32567640
- Chen, G.; Cao, Y.; Tang, Y.; Yang, X.; Liu, Y.; Huang, D.; Zhang, Y.; Li, C.; Wang, Q. Advanced near-infrared light for monitoring and modulating the spatiotemporal dynamics of cell functions in living systems. Adv. Sci., 2020, 7(8), 1903783. doi: 10.1002/advs.201903783 PMID: 32328436
- Chen, S.; Weitemier, A.Z.; Zeng, X.; He, L.; Wang, X.; Tao, Y.; Huang, A.J.Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H.; Parajuli, L.K.; Okabe, S.; Teh, D.B.L.; All, A.H.; Tsutsui-Kimura, I.; Tanaka, K.F.; Liu, X.; McHugh, T.J. Near-infrared deep brain stimulation via upconversion nanoparticlemediated optogenetics. Science, 2018, 359(6376), 679-684. doi: 10.1126/science.aaq1144 PMID: 29439241
- Chu, H.; Zhao, J.; Mi, Y.; Di, Z.; Li, L. NIR-light-mediated spatially selective triggering of anti-tumor immunity via upconversion nanoparticle-based immunodevices. Nat. Commun., 2019, 10(1), 2839. doi: 10.1038/s41467-019-10847-0 PMID: 31253798
- Sasaki, Y.; Oshikawa, M.; Bharmoria, P.; Kouno, H.; Hayashi-Takagi, A.; Sato, M.; Ajioka, I.; Yanai, N.; Kimizuka, N. Near infrared optogenetic genome engineering based on photon upconversion hydrogels. Angew. Chem. Int. Ed., 2019, 58(49), 17827-17833. doi: 10.1002/anie.201911025 PMID: 31544993
- Hamcerencu, M.; Desbrieres, J.; Popa, M.; Riess, G. Thermo sensitive gellan maleate/N-isopropylacrylamide hydrogels: initial "in vitro" and "in vivo" evaluation as ocular inserts. Polym. Bull., 2020, 77(2), 741-755. doi: 10.1007/s00289-019-02772-5
- Ghadban, A.; Ahmed, A.S.; Ping, Y.; Ramos, R.; Arfin, N.; Cantaert, B.; Ramanujan, R.V.; Miserez, A. Bioinspired pH and magnetic responsive catechol-functionalized chitosan hydrogels with tunable elastic properties. Chem. Commun., 2016, 52(4), 697-700. doi: 10.1039/C5CC08617E PMID: 26558317
- Satarkar, N.S.; Hilt, J.Z. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J. Contr. Release, 2008, 130(3), 246-251.
- Hendawy, H.; Uemura, A.; Ma, D.; Namiki, R.; Samir, H.; Ahmed, M.F.; Elfadadny, A.; El-Husseiny, H.M.; Chieh-Jen, C.; Tanaka, R. Tissue harvesting site effect on the canine adipose stromal vascular fraction quantity and quality. Animals, 2021, 11(2), 460. doi: 10.3390/ani11020460 PMID: 33572472
- Mehrali, M.; Thakur, A.; Pennisi, C.P.; Talebian, S.; Arpanaei, A.; Nikkhah, M.; Dolatshahi-Pirouz, A. Nanoreinforced hydrogels for tissue engineering: Biomaterials that are compatible with load bearing and electroactive tissues. Adv. Mater., 2017, 29(8), 1603612. doi: 10.1002/adma.201603612 PMID: 27966826
- Frachini, E.; Petri, D. Magneto-responsive hydrogels: preparation, characterization, biotechnological and environmental applications. J. Braz. Chem. Soc., 2019, 30(10), 2010-2028. doi: 10.21577/0103-5053.20190074
- Guerrero, A.R.; Hassan, N.; Escobar, C.A.; Albericio, F.; Kogan, M.J.; Araya, E. Gold nanoparticles for photothermally controlled drug release. Nanomedicine, 2014, 9(13), 2023-2039. doi: 10.2217/nnm.14.126 PMID: 25343351
- Häring, M.; Schiller, J.; Mayr, J.; Grijalvo, S.; Eritja, R.; Díaz, D. Magnetic gel composites for hyperthermia cancer therapy. Gels, 2015, 1(2), 135-161. doi: 10.3390/gels1020135 PMID: 30674170
- Shin, M.K.; Kim, S.I.; Kim, S.J.; Park, S.Y.; Hyun, Y.H.; Lee, Y.; Lee, K.E.; Han, S.S.; Jang, D.P.; Kim, Y.B.; Cho, Z.H.; So, I.; Spinks, G.M. Controlled magnetic nanofiber hydrogels by clustering ferritin. Langmuir, 2008, 24(21), 12107-12111. doi: 10.1021/la802155a PMID: 18847290
- Beaune, G.; Ménager, C. In situ precipitation of magnetic fluid encapsulated in giant liposomes. J. Colloid Interface Sci., 2010, 343(1), 396-399. doi: 10.1016/j.jcis.2009.11.016 PMID: 20022022
- Horst, M.F.; Ninago, M.D.; Lassalle, V. Magnetically responsive gels based on crosslinked gelatin: An overview on the synthesis, properties, and their potential in water remediation, Int. J. Polymer. Mater. Polymer. Biomaterials, 2018, 67(11), 647-659.
- Glaser, T.; Bueno, V.B.; Cornejo, D.R.; Petri, D.F.S.; Ulrich, H. Neuronal adhesion, proliferation and differentiation of embryonic stem cells on hybrid scaffolds made of xanthan and magnetite nanoparticles. Biomed. Mater., 2015, 10(4), 045002. doi: 10.1088/1748-6041/10/4/045002 PMID: 26154495
- Castro, P.S.; Bertotti, M.; Naves, A.F.; Catalani, L.H.; Cornejo, D.R.; Bloisi, G.D.; Petri, D.F.S. Hybrid magnetic scaffolds: The role of scaffolds charge on the cell proliferation and Ca2+ ions permeation. Colloids Surf. B Biointerfaces, 2017, 156, 388-396. doi: 10.1016/j.colsurfb.2017.05.046 PMID: 28551573
- Thambi, T.; Park, J.H.; Lee, D.S. Stimuli-responsive polymersomes for cancer therapy. Biomater. Sci., 2016, 4(1), 55-69. doi: 10.1039/C5BM00268K PMID: 26456625
- Zhi, X.; Liu, P.; Li, Y.; Li, P.; Yuan, J.; Lin, J. One-step fabricated keratin nanoparticles as pH and redox-responsive drug nanocarriers. J. Biomater. Sci. Polym. Ed., 2018, 29(15), 1920-1934. doi: 10.1080/09205063.2018.1519987 PMID: 30183550
- Li, Q.; Yang, S.; Zhu, L.; Kang, H.; Qu, X.; Liu, R.; Huang, Y. Dual-stimuli sensitive keratin graft PHPMA as physiological trigger responsive drug carriers. Polym. Chem., 2015, 6(15), 2869-2878. doi: 10.1039/C4PY01750A
- Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7. doi: 10.1038/s41392-017-0004-3 PMID: 29560283
- Huo, M.; Yuan, J.; Tao, L.; Wei, Y. Redox-responsive polymers for drug delivery: From molecular design to applications. Polym. Chem., 2014, 5(5), 1519-1528. doi: 10.1039/C3PY01192E
- Pietschnig, R. Polymers with pendant ferrocenes. Chem. Soc. Rev., 2016, 45(19), 5216-5231. doi: 10.1039/C6CS00196C PMID: 27156979
- Wu, J.; Wang, L.; Yu, H.; Zain-ul-Abdin; Khan, R.U.; Haroon, M. Ferrocene-based redox responsive polymer gels: Synthesis, structures and applications. J. Organomet. Chem., 2017, 828, 38-51. doi: 10.1016/j.jorganchem.2016.10.041
- Chen, J.; Huang, Y.; Ma, X.; Lei, Y. Functional self healing materials and their potential applications in biomedical engineering. Adv. Compos. Hybrid Mater., 2018, 1(1), 94-113. doi: 10.1007/s42114-017-0009-y
- Taylor, D.L. in het Panhuis, M. Self-healing hydrogels. Adv. Mater., 2016, 28(41), 9060-9093. doi: 10.1002/adma.201601613 PMID: 27488822
- Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Redox-responsive self-healing materials formed from hostguest polymers. Nat. Commun., 2011, 2(1), 511-517. doi: 10.1038/ncomms1521 PMID: 22027591
- Fang, Y.; Wang, C.F.; Zhang, Z.H.; Shao, H.; Chen, S. Robust self-healing hydrogels assisted by cross-linked nanofiber networks. Sci. Rep., 2013, 3(1), 2811-2818. doi: 10.1038/srep02811 PMID: 24091865
- Greene, A.F.; Danielson, M.K.; Delawder, A.O.; Liles, K.P.; Li, X.; Natraj, A.; Wellen, A.; Barnes, J.C. Redox-responsive artificial molecular muscles: reversible radical-based self-assembly for actuating hydrogels. Chem. Mater., 2017, 29(21), 9498-9508. doi: 10.1021/acs.chemmater.7b03635
- Qiao, Y.; Wan, J.; Zhou, L.; Ma, W.; Yang, Y.; Luo, W.; Yu, Z.; Wang, H. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(1), e1527. doi: 10.1002/wnan.1527
- Riba-Moliner, M.; Gómez-Rodríguez, A.; Amabilino, D.B.; Puigmartí-Luis, J.; González-Campo, A. Functional supramolecular tetrathiafulvalene-based films with mixed valences states. Polymer, 2016, 103, 251-260. doi: 10.1016/j.polymer.2016.09.039
- Schröder, H.V.; Schalley, C.A. Tetrathiafulvalene: A redox switchable building block to control motion in mechanically interlocked molecules. Beilstein J. Org. Chem., 2018, 14, 2163-2185. doi: 10.3762/bjoc.14.190 PMID: 30202469
- Zhang, X.; Zeng, Y.; Yu, T.; Chen, J.; Yang, G.; Li, Y. Tetrathiafulvalene terminal-decorated PAMAM Dendrimers for triggered release synergistically stimulated by redox and CB7. Langmuir, 2014, 30(3), 718-726. doi: 10.1021/la404349w PMID: 24417726
- Bigot, J.; Charleux, B.; Cooke, G.; Delattre, F.; Fournier, D.; Lyskawa, J.; Sambe, L.; Stoffelbach, F.; Woisel, P. Tetrathiafulvalene end-functionalized poly(N-isopropylacrylamide): A new class of amphiphilic polymer for the creation of multistimuli responsive micelles. J. Am. Chem. Soc., 2010, 132(31), 10796-10801. doi: 10.1021/ja1027452 PMID: 20681712
- Ning, C.; Zhou, Z.; Tan, G.; Zhu, Y.; Mao, C. Electroactive polymers for tissue regeneration: Developments and perspectives. Prog. Polym. Sci., 2018, 81, 144-162. doi: 10.1016/j.progpolymsci.2018.01.001 PMID: 29983457
- Clancy, K.F.A.; Hardy, J.G. Gene delivery with organic electronic biomaterials. Curr. Pharm. Des., 2017, 23(24), 3614-3625. PMID: 28699530
- Svirskis, D.; Travas-Sejdic, J.; Rodgers, A.; Garg, S. Electrochemically controlled drug delivery based on intrinsically conducting polymers. J. Control. Release, 2010, 146(1), 6-15. doi: 10.1016/j.jconrel.2010.03.023 PMID: 20359512
- Yang, Y-M.; Wang, H-B.; Zhao, Y-H.; Niu, C-M.; Shi, J-Q.; Wang, Y.Y. Novel conductive polypyrrole/silk fibroin scaffold for neural tissue repair. Neural Regen. Res., 2018, 13(8), 1455-1464. doi: 10.4103/1673-5374.235303 PMID: 30106059
- Guex, A.G.; Puetzer, J.L.; Armgarth, A.; Littmann, E.; Stavrinidou, E.; Giannelis, E.P.; Malliaras, G.G.; Stevens, M.M. Highly porous scaffolds of PEDOT:PSS for bone tissue engineering. Acta Biomater., 2017, 62, 91-101. doi: 10.1016/j.actbio.2017.08.045 PMID: 28865991
- Gelmi, A.; Ljunggren, M.K.; Rafat, M.; Jager, E.W.H. Influence of conductive polymer doping on the viability of cardiac progenitor cells. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(24), 3860-3867. doi: 10.1039/C4TB00142G PMID: 32261732
- Baumgartner, J.; Jönsson, J.I.; Jager, E.W.H. Switchable presentation of cytokines on electroactive polypyrrole surfaces for hematopoietic stem and progenitor cells. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(28), 4665-4675. doi: 10.1039/C8TB00782A PMID: 32254411
- Balint, R.; Cassidy, N.J.; Cartmell, S.H. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater., 2014, 10(6), 2341-2353. doi: 10.1016/j.actbio.2014.02.015 PMID: 24556448
- Fortunato, G.M.; De Maria, C.; Eglin, D.; Serra, T.; Vozzi, G. An ink-jet printed electrical stimulation platform for muscle tissue regeneration. Bioprinting, 2018, 11, e00035. doi: 10.1016/j.bprint.2018.e00035
- Pires, F.; Ferreira, Q.; Rodrigues, C.A.V.; Morgado, J.; Ferreira, F.C. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(6), 1158-1168. doi: 10.1016/j.bbagen.2015.01.020 PMID: 25662071
- Hoop, M.; Chen, X.Z.; Ferrari, A.; Mushtaq, F.; Ghazaryan, G.; Tervoort, T.; Poulikakos, D.; Nelson, B.; Pané, S. Ultrasound mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Sci. Rep., 2017, 7(1), 4028-4036. doi: 10.1038/s41598-017-03992-3 PMID: 28642614
- Vannozzi, L.; Ricotti, L.; Filippeschi, C.; Sartini, S.; Coviello, V.; Piazza, V.; Pingue, P.; La Motta, C.; Dario, P.; Menciassi, A. Nanostructured ultra-thin patches for ultrasound-modulated delivery of anti-restenotic drug. Int. J. Nanomedicine, 2015, 11, 69-91. doi: 10.2147/IJN.S92031 PMID: 26730191
- Kim, O.; Shin, T.J.; Park, M.J. Fast low-voltage electroactive actuators using nanostructured polymer electrolytes. Nat. Commun., 2013, 4(1), 2208. doi: 10.1038/ncomms3208 PMID: 23896756
- Shin, S.R.; Jung, S.M.; Zalabany, M.; Kim, K.; Zorlutuna, P.; Kim, S.; Nikkhah, M.; Khabiry, M.; Azize, M.; Kong, J.; Wan, K.; Palacios, T.; Dokmeci, M.R.; Bae, H.; Tang, X.S.; Khademhosseini, A. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano, 2013, 7(3), 2369-2380. doi: 10.1021/nn305559j PMID: 23363247
- Chen, Z.; Wu, C.; Zhang, Z.; Wu, W.; Wang, X.; Yu, Z. Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chin. Chem. Lett., 2018, 29(11), 1601-1608. doi: 10.1016/j.cclet.2018.08.007
- Tuttolomondo, M.V.; Villanueva, M.E.; Alvarez, G.S.; Desimone, M.F.; Díaz, L.E. Preparation of submicrometer monodispersed magnetic silica particles using a novel water in oil microemulsion: properties and application for enzyme immobilization. Biotechnol. Lett., 2013, 35(10), 1571-1577. doi: 10.1007/s10529-013-1259-6 PMID: 23801114
- Zhao, Y.; Fan, T.; Chen, J.; Su, J.; Zhi, X.; Pan, P.; Zou, L.; Zhang, Q. Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Colloids Surf. B Biointerfaces, 2019, 174, 70-79. doi: 10.1016/j.colsurfb.2018.11.003 PMID: 30439640
- Ridi, F.; Bonini, M.; Baglioni, P. Magneto-responsive nanocomposites: Preparation and integration of magnetic nanoparticles into films, capsules, and gels. Adv. Colloid Interface Sci., 2014, 207, 3-13. doi: 10.1016/j.cis.2013.09.006 PMID: 24139510
- Abu-Dief, A.M.; Abdel-Fatah, S.M. Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7(1), 55-67. doi: 10.1016/j.bjbas.2017.05.008
- Kayode, B.; Abdul, A. Journal of magnetism and magnetic materials recent advances in synthesis and surface modi fi cation of superparamagnetic iron oxide nanoparticles with silica. J. Magn. Magn. Mater., 2016, 416, 275-291. doi: 10.1016/j.jmmm.2016.05.019
- de Mendonça, E.S.D.T.; de Faria, A.C.B.; Dias, S.C.L.; Aragón, F.F.H.; Mantilla, J.C.; Coaquira, J.A.H.; Dias, J.A. Effects of silica coating on the magnetic properties of magnetite nanoparticles. Surf. Interfaces, 2019, 14, 34-43. doi: 10.1016/j.surfin.2018.11.005
- Zhang, Y.; Zhen, B.; Li, H.; Feng, Y. Preparation of water-soluble magnetic nanoparticles with controllable silica coating. Chin. J. Chem. Eng., 2018, 26(1), 213-217. doi: 10.1016/j.cjche.2017.05.017
- Bui, T.Q.; Ngo, H.T.M.; Tran, H.T. Surface-protective assistance of ultrasound in synthesis of superparamagnetic magnetite nanoparticles and in preparation of mono-core magnetite-silica nanocomposites. J. Sci. Adv. Mater. Devices, 2018, 3(3), 323-330. doi: 10.1016/j.jsamd.2018.07.002
- Hou, Y.; Sellmyer, D. J. Magnetic nanomaterials: Fundamentals, synthesis and applications; Wiley: Hoboken, NJ, USA, 2017. doi: 10.1002/9783527803255
- Basith, M.A.; Ngo, D.T.; Quader, A.; Rahman, M.A.; Sinha, B.L.; Ahmmad, B.; Hirose, F.; Mølhave, K. Simple top-down preparation of magnetic Bi 0.9 Gd 0.1 Fe 1−x Ti x O 3 nanoparticles by ultrasonication of multiferroic bulk material. Nanoscale, 2014, 6(23), 14336-14342. doi: 10.1039/C4NR03150D PMID: 25327219
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110. doi: 10.1021/cr068445e PMID: 18543879
- Liang, J.; Liu, B. ROS-responsive drug delivery systems. Bioeng. Transl. Med., 2016, 1(3), 239-251. doi: 10.1002/btm2.10014 PMID: 29313015
- Xu, Q.; He, C.; Xiao, C.; Chen, X. Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol. Biosci., 2016, 16(5), 635-646. doi: 10.1002/mabi.201500440 PMID: 26891447
Supplementary files
