Stimuli-responsive Biomaterials for Tissue Engineering Applications


Cite item

Full Text

Abstract

The use of ''smart materials,'' or ''stimulus responsive'' materials, has proven useful in a variety of fields, including tissue engineering and medication delivery. Many factors, including temperature, pH, redox state, light, and magnetic fields, are being studied for their potential to affect a material's properties, interactions, structure, and/or dimensions. New tissue engineering and drug delivery methods are made possible by the ability of living systems to respond to both external stimuli and their own internal signals) for example, materials composed of stimuliresponsive polymers that self assemble or undergo phase transitions or morphology transfor- mation. The researcher examines the potential of smart materials as controlled drug release vehicles in tissue engineering, aiming to enable the localized regeneration of injured tissue by delivering precisely dosed drugs at precisely timed intervals.

About the authors

Deepika Yadav

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Author for correspondence.
Email: info@benthamscience.net

Pramod Sharma

Department of Pharmacy, School of Medical and Allied Sciences,, Galgotias University

Email: info@benthamscience.net

Rishabha Malviya

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Author for correspondence.
Email: info@benthamscience.net

Prem Mishra

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Email: info@benthamscience.net

Amareswarapu Surendra

College of Pharmacy,, Koneru Lakshmaiah Education Foundation

Email: info@benthamscience.net

G.S.N. Rao

Shobhaben Pratapbhai Patel School of Pharmacy, NMIMS Deemed University

Email: info@benthamscience.net

Budha Rani

Institute of Pharmaceutical Technology,, Sri Padmavathi Mahila Visvavidyalayam

Email: info@benthamscience.net

References

  1. Lumelsky, N.; O’Hayre, M.; Chander, P.; Shum, L.; Somerman, M.J. Autotherapies: Enhancing endogenous healing and regeneration. Trends Mol. Med., 2018, 24(11), 919-930. doi: 10.1016/j.molmed.2018.08.004 PMID: 30213702
  2. Lavrador, P.; Gaspar, V.M.; Mano, J.F. Stimuli-responsive nanocarriers for delivery of bone therapeutics: Barriers and progresses. J. Control. Release, 2018, 273, 51-67. doi: 10.1016/j.jconrel.2018.01.021 PMID: 29407678
  3. Rogina, A.; Ressler, A.; Matić, I.; Gallego Ferrer, G.; Marijanović, I.; Ivanković, M.; Ivanković, H. Cellular hydrogels based on pH-responsive chitosan-hydroxyapatite system. Carbohydr. Polym., 2017, 166, 173-182. doi: 10.1016/j.carbpol.2017.02.105 PMID: 28385221
  4. Alvarez Echazú, M.I.; Olivetti, C.E.; Peralta, I.; Alonso, M.R.; Anesini, C.; Perez, C.J.; Alvarez, G.S.; Desimone, M.F. Development of pH-responsive biopolymer-silica composites loaded with larrea divaricata Cav. Extract with antioxidant activity. Colloids Surf. B Biointerfaces, 2018, 169, 82-91. doi: 10.1016/j.colsurfb.2018.05.015 PMID: 29751344
  5. Parani, M.; Lokhande, G.; Singh, A.; Gaharwar, A.K. Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Appl. Mater. Interfaces, 2016, 8(16), 10049-10069. doi: 10.1021/acsami.6b00291 PMID: 27043006
  6. Hamdan, S.; Pastar, I.; Drakulich, S.; Dikici, E.; Tomic-Canic, M.; Deo, S.; Daunert, S. Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Cent. Sci., 2017, 3(3), 163-175. doi: 10.1021/acscentsci.6b00371 PMID: 28386594
  7. Bose, S.; Robertson, S.F.; Bandyopadhyay, A. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater., 2018, 66, 6-22. doi: 10.1016/j.actbio.2017.11.003
  8. Pezzoni, M.; Catalano, P.N.; Pizarro, R.A.; Desimone, M.F.; Soler-Illia, G.J.A.A.; Bellino, M.G.; Costa, C.S. Antibiofilm effect of supramolecularly templated mesoporous silica coatings. Mater. Sci. Eng. C, 2017, 77, 1044-1049. doi: 10.1016/j.msec.2017.04.022 PMID: 28531977
  9. Catalano, P.N.; Pezzoni, M.; Costa, C.; Soler-Illia, G.J.A.A.; Bellino, M.G.; Desimone, M.F. Optically transparent silver-loaded mesoporous thin film coating with long-lasting antibacterial activity. Microporous Mesoporous Mater., 2016, 236, 158-166. doi: 10.1016/j.micromeso.2016.08.034
  10. Bellino, M.G.; Golbert, S.; De Marzi, M.C.; Soler-Illia, G.J.A.A.; Desimone, M.F. Controlled adhesion and proliferation of a human osteoblastic cell line by tuning the nanoporosity of titania and silica coatings. Biomater. Sci., 2013, 1(2), 186-189. doi: 10.1039/C2BM00136E PMID: 32481797
  11. Badeau, B.A.; DeForest, C.A. Programming stimuli-responsive behavior into biomaterials. Annu. Rev. Biomed. Eng., 2019, 21(1), 241-265. doi: 10.1146/annurev-bioeng-060418-052324 PMID: 30857392
  12. Ooi, H.W.; Hafeez, S.; van Blitterswijk, C.A.; Moroni, L.; Baker, M.B. Hydrogels that listen to cells: A review of cell-responsive strategies in biomaterial design for tissue regeneration. Mater. Horiz., 2017, 4(6), 1020-1040. doi: 10.1039/C7MH00373K
  13. Kondiah, P.; Choonara, Y.; Kondiah, P.; Marimuthu, T.; Kumar, P.; du Toit, L.; Pillay, V. A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules, 2016, 21(11), 1580. doi: 10.3390/molecules21111580 PMID: 27879635
  14. Albert, K.; Hsu, H.Y. Carbon-based materials for photo-triggered theranostic applications. Molecules, 2016, 21(11), 1585. doi: 10.3390/molecules21111585 PMID: 27879628
  15. Shen, L. Biocompatible polymer/quantum dots hybrid materials: Current status and future developments. J. Funct. Biomater., 2011, 2(4), 355-372. doi: 10.3390/jfb2040355 PMID: 24956449
  16. Galdopórpora, J.M.; Morcillo, M.F.; Ibar, A.; Perez, C.J.; Tuttolomondo, M.V.; Desimone, M.F. Development of silver nanoparticles/gelatin thermoresponsive nanocomposites: Characterization and antimicrobial activity. Curr. Pharm. Des., 2019, 25(38), 4121-4129. doi: 10.2174/1381612825666191007163152 PMID: 31589116
  17. Mousavi, S.T.; Harper, G.R.; Municoy, S.; Ashton, M.D.; Townsend, D.; Alsharif, G.H.K.; Oikonomou, V.K.; Firlak, M.; Au-Yong, S.; Murdock, B.E. Electroactive silk fibroin films for electrochemically enhanced delivery of drugs. Macromol. Mater. Eng., 2020, 2000130. doi: 10.1002/mame.202000130
  18. Gonçalves, G.A.R.; Paiva, R.M.A. Gene therapy: Advances, challenges and perspectives. Einstein, 2017, 15(3), 369-375. doi: 10.1590/s1679-45082017rb4024 PMID: 29091160
  19. Pattni, B.S.; Torchilin, V.P. Targeted drug delivery systems: Strategies and challenges. In: Targeted Drug Delivery: Concepts and Design; Devarajan, P.V.; Jain, S., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 3-38. doi: 10.1007/978-3-319-11355-5_1
  20. Khademhosseini, A.; Langer, R. A decade of progress in tissue engineering. Nat. Protoc., 2016, 11(10), 1775-1781. doi: 10.1038/nprot.2016.123 PMID: 27583639
  21. Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003. doi: 10.1038/nmat3776 PMID: 24150417
  22. Gracia, R.; Mecerreyes, D. Polymers with redox properties: Materials for batteries, biosensors and more. Polym. Chem., 2013, 4(7), 2206-2214. doi: 10.1039/c3py21118e
  23. Guo, X.; Cheng, Y.; Zhao, X.; Luo, Y.; Chen, J.; Yuan, W.E. Advances in redox-responsive drug delivery systems of tumor microenvironment. J. Nanobiotechnology, 2018, 16(1), 74. doi: 10.1186/s12951-018-0398-2 PMID: 30243297
  24. Hardy, J.G.; Lee, J.Y.; Schmidt, C.E. Biomimetic conducting polymer-based tissue scaffolds. Curr. Opin. Biotechnol., 2013, 24(5), 847-854. doi: 10.1016/j.copbio.2013.03.011 PMID: 23578463
  25. Rajabi, A.H.; Jaffe, M.; Arinzeh, T.L. Piezoelectric materials for tissue regeneration: A review. Acta Biomater., 2015, 24, 12-23. doi: 10.1016/j.actbio.2015.07.010 PMID: 26162587
  26. Baxter, F.R.; Bowen, C.R.; Turner, I.G.; Dent, A.C.E. Electrically active bioceramics: A review of interfacial responses. Ann. Biomed. Eng., 2010, 38(6), 2079-2092. doi: 10.1007/s10439-010-9977-6 PMID: 20198510
  27. Ribeiro, C.; Sencadas, V.; Correia, D.M.; Lanceros-Méndez, S. Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids Surf. B Biointerfaces, 2015, 136, 46-55. doi: 10.1016/j.colsurfb.2015.08.043 PMID: 26355812
  28. Chorsi, M.T.; Curry, E.J.; Chorsi, H.T.; Das, R.; Baroody, J.; Purohit, P.K.; Ilies, H.; Nguyen, T.D. Piezoelectric biomaterials for sensors and actuators. Adv. Mater., 2019, 31(1), 1802084. doi: 10.1002/adma.201802084 PMID: 30294947
  29. Yuan, H.; Lei, T.; Qin, Y.; He, J.H.; Yang, R. Design and application of piezoelectric biomaterials. J. Phys. D Appl. Phys., 2019, 52(19), 194002-194012. doi: 10.1088/1361-6463/ab0532
  30. Kapat, K.; Shubhra, Q.T.H.; Zhou, M.; Leeuwenburgh, S. Piezoelectric nano-biomaterials for biomedicine and tissue regeneration. Adv. Funct. Mater., 2020, 30(44), 1909045. doi: 10.1002/adfm.201909045
  31. Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polym. Chem., 2017, 8(1), 144-176. doi: 10.1039/C6PY01872F
  32. Omidi, M.; Yadegari, A.; Tayebi, L. Wound dressing application of pH-sensitive carbon dots/chitosan hydrogel. RSC Advances, 2017, 7(18), 10638-10649. doi: 10.1039/C6RA25340G
  33. Banerjee, I.; Mishra, D.; Das, T.; Maiti, T.K. Wound pH-responsive sustained release of therapeutics from a poly(NIPAAm-co-AAc) hydrogel. J. Biomater. Sci. Polym. Ed., 2012, 23(1-4), 111-132. doi: 10.1163/092050610X545049 PMID: 22133349
  34. Ninan, N.; Forget, A.; Shastri, V.P.; Voelcker, N.H.; Blencowe, A. Antibacterial and anti-inflammatory ph-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Appl. Mater. Interfaces, 2016, 8(42), 28511-28521. doi: 10.1021/acsami.6b10491 PMID: 27704757
  35. Tamesue, S.; Noguchi, S.; Kimura, Y.; Endo, T. Reversing redox responsiveness of hydrogels due to supramolecular interactions by utilizing double-network structures. ACS Appl. Mater. Interfaces, 2018, 10(32), 27381-27390. doi: 10.1021/acsami.8b10001 PMID: 30028125
  36. Ferreira, N.N.; Ferreira, L.M.B.; Cardoso, V.M.O.; Boni, F.I.; Souza, A.L.R.; Gremião, M.P.D. Recent advances in smart hydrogels for biomedical applications: From self-assembly to functional approaches. Eur. Polym. J., 2018, 99, 117-133. doi: 10.1016/j.eurpolymj.2017.12.004
  37. Karimi, M.; Eslami, M.; Sahandi-Zangabad, P.; Mirab, F.; Farajisafiloo, N.; Shafaei, Z.; Ghosh, D.; Bozorgomid, M.; Dashkhaneh, F.; Hamblin, M.R. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(5), 696-716. doi: 10.1002/wnan.1389 PMID: 26762467
  38. Adedoyin, A.A.; Ekenseair, A.K. Biomedical applications of magneto-responsive scaffolds. Nano Res., 2018, 11(10), 5049-5064. doi: 10.1007/s12274-018-2198-2
  39. Katz, J.S.; Burdick, J.A. Light-responsive biomaterials: Development and applications. Macromol. Biosci., 2010, 10(4), 339-348. doi: 10.1002/mabi.200900297 PMID: 20014197
  40. Ward, M.A.; Georgiou, T.K. Thermoresponsive polymers for biomedical applications. Polymers, 2011, 3(3), 1215-1242. doi: 10.3390/polym3031215
  41. Sponchioni, M.; Capasso Palmiero, U.; Moscatelli, D. Thermo-responsive polymers: Applications of smart materials in drug delivery and tissue engineering. Mater. Sci. Eng. C, 2019, 102, 589-605. doi: 10.1016/j.msec.2019.04.069 PMID: 31147031
  42. Zarrintaj, P.; Jouyandeh, M.; Ganjali, M.R.; Hadavand, B.S.; Mozafari, M.; Sheiko, S.S.; Vatankhah-Varnoosfaderani, M.; Gutiérrez, T.J.; Saeb, M.R. Thermo-sensitive polymers in medicine: A review. Eur. Polym. J., 2019, 117, 402-423. doi: 10.1016/j.eurpolymj.2019.05.024
  43. Zhang, J.; Jiang, X.; Wen, X.; Xu, Q.; Zeng, H.; Zhao, Y.; Liu, M.; Wang, Z.; Hu, X.; Wang, Y. Bio-responsive smart polymers and biomedical applications. Journal of Physics: Materials, 2019, 2(3), 032004. doi: 10.1088/2515-7639/ab1af5
  44. Fu, X.; Hosta-Rigau, L.; Chandrawati, R.; Cui, J. Multi-stimuli-responsive polymer particles, films, and hydrogels for drug delivery. Chem, 2018, 4(9), 2084-2107. doi: 10.1016/j.chempr.2018.07.002
  45. Hajebi, S.; Rabiee, N.; Bagherzadeh, M.; Ahmadi, S.; Rabiee, M.; Roghani-Mamaqani, H.; Tahriri, M.; Tayebi, L.; Hamblin, M.R. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater., 2019, 92, 1-18. doi: 10.1016/j.actbio.2019.05.018 PMID: 31096042
  46. Chung, B.G.; Lee, K.H.; Khademhosseini, A.; Lee, S.H. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip, 2012, 12(1), 45-59. doi: 10.1039/C1LC20859D PMID: 22105780
  47. Dong, R.; Pang, Y.; Su, Y.; Zhu, X. Supramolecular hydrogels: Synthesis, properties and their biomedical applications. Biomater. Sci., 2015, 3(7), 937-954. doi: 10.1039/C4BM00448E PMID: 26221932
  48. Koutsopoulos, S. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications. J. Biomed. Mater. Res. A, 2016, 104(4), 1002-1016. doi: 10.1002/jbm.a.35638 PMID: 26707893
  49. Khang, G. Handbook of intelligent scaffolds for tissue engineering and regenerative medicine; CRC Press, 2017.
  50. Annabi, N.; Tamayol, A.; Uquillas, J.A.; Akbari, M.; Bertassoni, L.E.; Cha, C.; Camci-Unal, G.; Dokmeci, M.R.; Peppas, N.A.; Khademhosseini, A. 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv. Mater., 2014, 26(1), 85-124. doi: 10.1002/adma.201303233 PMID: 24741694
  51. Tsihlis, N.D.; Murar, J.; Kapadia, M.R.; Ahanchi, S.S.; Oustwani, C.S.; Saavedra, J.E.; Keefer, L.K.; Kibbe, M.R. Isopropylamine NONOate (IPA/NO) moderates neointimal hyperplasia following vascular injury. J. Vasc. Surg., 2010, 51(5), 1248-1259. doi: 10.1016/j.jvs.2009.12.028 PMID: 20223627
  52. Seidel, J.M.; Malmonge, S.M. Synthesis of polyHEMA hydrogels for using as biomaterials. Bulk and solution radical-initiated polymerization techniques. Mater. Res., 2000, 3(3), 79-83. doi: 10.1590/S1516-14392000000300006
  53. Hennink, W.E.; van Nostrum, C.F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev., 2002, 54(1), 13-36. doi: 10.1016/S0169-409X(01)00240-X PMID: 11755704
  54. Billiet, T.; Vandenhaute, M.; Schelfhout, J.; Van Vlierberghe, S.; Dubruel, P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, 2012, 33(26), 6020-6041. doi: 10.1016/j.biomaterials.2012.04.050 PMID: 22681979
  55. Abdel-Azim, A.A.A.; Farahat, M.S.; Atta, A.M.; Abdel-Fattah, A.A. Preparation and properties of two-component hydrogels based on 2-acrylamido-2-methylpropane sulphonic acid. Polym. Adv. Technol., 1998, 9(5), 282-289. doi: 10.1002/(SICI)1099-1581(199805)9:53.0.CO;2-N
  56. Carraher, C.E., Jr Introduction to polymer chemistry; CRC Press, 2017. doi: 10.1201/9781315369488
  57. Sikdar, P.; Uddin, M.M.; Dip, T.M.; Islam, S.; Hoque, M.S.; Dhar, A.K.; Wu, S. Recent advances in the synthesis of smart hydrogels. Materials Advances, 2021, 2(14), 4532-4573. doi: 10.1039/D1MA00193K
  58. Achilias, D.S.; Verros, G.D. Modeling of diffusion-controlled reactions in free radical solution and bulk polymerization: Model validation by DSC experiments. J. Appl. Polym. Sci., 2010, 116(3) NA. doi: 10.1002/app.31675
  59. Ranganathan, N.; Joseph Bensingh, R.; Abdul Kader, M.; Nayak, S.K. Synthesis and properties of hydrogels prepared by various polymerization reaction systems.Cellulose-Based Superabsorbent Hydrogels; Mondal, M.I.H., Ed.; Springer International Publishing: Cham, 2018, pp. 1-25. doi: 10.1007/978-3-319-76573-0_18-1
  60. Chanda, M. Introduction to polymer science and chemistry: A problem-solving approach; CRC Press, 2006. doi: 10.1201/9781420007329
  61. Liu, M.; Liang, R.; Zhan, F.; Liu, Z.; Niu, A. Preparation of superabsorbent slow release nitrogen fertilizer by inverse suspension polymerization. Polym. Int., 2007, 56(6), 729-737. doi: 10.1002/pi.2196
  62. Tibbitt, M.W.; Kloxin, A.M.; Sawicki, L.A.; Anseth, K.S. Mechanical properties and degradation of chain and step-polymerized photodegradable hydrogels. Macromolecules, 2013, 46(7), 2785-2792. doi: 10.1021/ma302522x PMID: 24496435
  63. Shin, B.M.; Kim, J.H.; Chung, D.J. Synthesis of pH-responsive and adhesive super-absorbent hydrogel through bulk polymerization. Macromol. Res., 2013, 21(5), 582-587. doi: 10.1007/s13233-013-1051-4
  64. Young, R.J.; Lovell, P.A. Introduction to polymers; CRC Press, 2011. doi: 10.1201/9781439894156
  65. Liu, J.; Yin, Y. Temperature responsive hydrogels: Construction and applications. Polym. Sci., 2015, 1(13), 1-6.
  66. Carraher, C.E. Carraher’s polymer chemistry; CRC Press, 2017.
  67. Ebdon, J. Introduction to polymers RJ Young and PA lovell chapman and hall; Wiley Online Library: London, 1992, p. 443.
  68. Essawy, H.A.; Ghazy, M.B.M.; El-Hai, F.A.; Mohamed, M.F. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Int. J. Biol. Macromol., 2016, 89, 144-151. doi: 10.1016/j.ijbiomac.2016.04.071 PMID: 27126169
  69. El-Sherbiny, I.M.; Khalil, I.A.; Ali, I.H. Updates on stimuli-responsive polymers: Synthesis approaches and features, polymer gels; Springer, 2018, pp. 129-146.
  70. Bauri, K.; Nandi, M.; De, P. Amino acid-derived stimuli-responsive polymers and their applications. Polym. Chem., 2018, 9(11), 1257-1287. doi: 10.1039/C7PY02014G
  71. Mondal, M.; Trivedy, K.; Nirmal, K.S. The silk proteins, sericin and fibroin in silkworm Bombyx mori Linn.,-a review, 2007.
  72. Jin, R. In-situ forming biomimetic hydrogels for tissue regeneration. Biomedicine, 2012, 2, 35-58. doi: 10.5772/38852
  73. Ebara, M.; Kotsuchibashi, Y.; Uto, K.; Aoyagi, T.; Kim, Y-J.; Narain, R.; Idota, N.; Hoffman, J.M. Smart hydrogels. In: Smart Biomaterials; Ebara, M.; Kotsuchibashi, Y.; Narain, R.; Idota, N.; Kim, Y-J.; Hoffman, J.M.; Uto, K.; Aoyagi, T., Eds.; Springer Japan, Tokyo, 2014; pp. 9-65. doi: 10.1007/978-4-431-54400-5_2
  74. Lutz, J.F.; Zarafshani, Z. Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide–alkyne "click" chemistry. Adv. Drug Deliv. Rev., 2008, 60(9), 958-970. doi: 10.1016/j.addr.2008.02.004 PMID: 18406491
  75. Mather, B.D.; Viswanathan, K.; Miller, K.M.; Long, T.E. Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci., 2006, 31(5), 487-531. doi: 10.1016/j.progpolymsci.2006.03.001
  76. Rodrıguez-Cabello, J.C.; Fernandez-Colino, A.; Pina, M.; Alonso, M.; Santos, M.A. Testera; Bioactive and smart hydrogel surfaces; Biomaterials Surface Science, 2013.
  77. Pereira, R.F.; Barrias, C.C.; Bártolo, P.J.; Granja, P.L. Cell-instructive pectin hydrogels crosslinked via thiol-norbornene photo-click chemistry for skin tissue engineering. Acta Biomater., 2018, 66, 282-293. doi: 10.1016/j.actbio.2017.11.016 PMID: 29128530
  78. Wang, X.; Schmidt, F.; Hanaor, D.; Kamm, P.H.; Li, S.; Gurlo, A. Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiol-ene click chemistry. Addit. Manuf., 2019, 27, 80-90. doi: 10.1016/j.addma.2019.02.012
  79. Arnfast, L.; Madsen, C.G.; Jorgensen, L.; Baldursdottir, S. Design and processing of nanogels as delivery systems for peptides and proteins. Ther. Deliv., 2014, 5(6), 691-708. doi: 10.4155/tde.14.38 PMID: 25090282
  80. Wei, H.L.; Yao, K.; Yang, Z.; Chu, H.J.; Zhu, J.; Ma, C.C.; Zhao, Z.X. Preparation of thermosensitive hydrogels by means of tandem physical and chemical crosslinking. Macromol. Res., 2011, 19(3), 294-299. doi: 10.1007/s13233-011-0308-z
  81. Hu, W.; Wang, Z.; Xiao, Y.; Zhang, S.; Wang, J. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci., 2019, 7(3), 843-855. doi: 10.1039/C8BM01246F PMID: 30648168
  82. Siqueira, N.M.; Cirne, M.F.; Immich, M.F.; Poletto, F. Stimuli-responsive polymeric hydrogels and nanogels for drug delivery applications, stimuli responsive polymeric nanocarriers for drug delivery applications; Elsevier, 2018, Vol. 1, pp. 343-374. doi: 10.1016/B978-0-08-101997-9.00017-5
  83. Russo, E.; Villa, C. Poloxamer hydrogels for biomedical applications. Pharmaceutics, 2019, 11(12), 671. doi: 10.3390/pharmaceutics11120671 PMID: 31835628
  84. Kumar, A.; Han, S.S. PVA-based hydrogels for tissue engineering: a review, Int. J. Polymer. Mater. Polymer. Biomaterials, 2017, 66(4), 159-182.
  85. Pennacchio, F.A.; Fedele, C.; De Martino, S.; Cavalli, S.; Vecchione, R.; Netti, P.A. Three-dimensional microstructured azobenzene-containing gelatin as a photoactuable cell confining system. ACS Appl. Mater. Interfaces, 2018, 10(1), 91-97. doi: 10.1021/acsami.7b13176 PMID: 29260543
  86. Choi, J.R.; Yong, K.W.; Choi, J.Y.; Cowie, A.C. Recent advances in photo-crosslinkable hydrogels for biomedical applications. Biotechniques, 2019, 66(1), 40-53. doi: 10.2144/btn-2018-0083 PMID: 30730212
  87. McHale, M.K.; Setton, L.A.; Chilkoti, A. Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng., 2005, 11(11-12), 1768-1779. doi: 10.1089/ten.2005.11.1768 PMID: 16411822
  88. Liu, D.; Wang, S.; Xu, S.; Liu, H. Photocontrollable intermittent release of doxorubicin hydrochloride from liposomes embedded by azobenzene-contained glycolipid. Langmuir, 2017, 33(4), 1004-1012. doi: 10.1021/acs.langmuir.6b03051 PMID: 27668306
  89. Cui, Z.K.; Phoeung, T.; Rousseau, P.A.; Rydzek, G.; Zhang, Q.; Bazuin, C.G.; Lafleur, M. Nonphospholipid fluid liposomes with switchable photocontrolled release. Langmuir, 2014, 30(36), 10818-10825. doi: 10.1021/la502131h PMID: 25149436
  90. Son, S.; Shin, E.; Kim, B.S. Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery. Biomacromolecules, 2014, 15(2), 628-634. doi: 10.1021/bm401670t PMID: 24432713
  91. Brunelle, A.R.; Horner, C.B.; Low, K.; Ico, G.; Nam, J. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells. Acta Biomater., 2018, 66, 166-176. doi: 10.1016/j.actbio.2017.11.020 PMID: 29128540
  92. op ’t Veld, R.C.; van den Boomen, O.I.; Lundvig, D.M.S.; Bronkhorst, E.M.; Kouwer, P.H.J.; Jansen, J.A.; Middelkoop, E.; Von den Hoff, J.W.; Rowan, A.E.; Wagener, F.A.D.T.G. Thermosensitive biomimetic polyisocyanopeptide hydrogels may facilitate wound repair. Biomaterials, 2018, 181, 392-401. doi: 10.1016/j.biomaterials.2018.07.038
  93. Zimoch, J.; Padial, J.S.; Klar, A.S.; Vallmajo-Martin, Q.; Meuli, M.; Biedermann, T.; Wilson, C.J.; Rowan, A.; Reichmann, E. Polyisocyanopeptide hydrogels: A novel thermo-responsive hydrogel supporting pre-vascularization and the development of organotypic structures. Acta Biomater., 2018, 70, 129-139. doi: 10.1016/j.actbio.2018.01.042 PMID: 29454158
  94. Hsieh, F.Y.; Lin, H.H.; Hsu, S. 3D bioprinting of neural stem cell laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials, 2015, 71, 48-57. doi: 10.1016/j.biomaterials.2015.08.028 PMID: 26318816
  95. Mouser, V.H.M.; Abbadessa, A.; Levato, R.; Hennink, W.E.; Vermonden, T.; Gawlitta, D.; Malda, J. Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs. Biofabrication, 2017, 9(1), 015026. doi: 10.1088/1758-5090/aa6265 PMID: 28229956
  96. Shi, K.; Liu, Z.; Yang, C.; Li, X.Y.; Sun, Y.M.; Deng, Y.; Wang, W.; Ju, X.J.; Xie, R.; Chu, L.Y. Novel biocompatible thermoresponsive poly(n -vinyl caprolactam)/clay nanocomposite hydrogels with macroporous structure and improved mechanical characteristics. ACS Appl. Mater. Interfaces, 2017, 9(26), 21979-21990. doi: 10.1021/acsami.7b04552 PMID: 28603958
  97. Bhullar, S.K.; Lala, N.L.; Ramkrishna, S. Smart biomaterials—A review. Rev. Adv. Mater. Sci., 2015, 40, 303-314. doi: 10.21315/tlsr2018.29.2.9
  98. Ruskowitz, E.R.; DeForest, C.A. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat. Rev. Mater., 2018, 3(2), 17087-17104. doi: 10.1038/natrevmats.2017.87
  99. Leung, S.J.; Romanowski, M. Light-activated content release from liposomes. Theranostics, 2012, 2(10), 1020-1036. doi: 10.7150/thno.4847 PMID: 23139729
  100. Jerca, F.A.; Jerca, V.; Stancu, I-C. Development and characterization of photoresponsive polymers. In: Polymer and Photonic Materials Towards Biomedical Breakthroughs; Springer International Publishing: Cham, Switzerland, 2018.
  101. Ercole, F.; Davis, T.P.; Evans, R.A. Photo-responsive systems and biomaterials: Photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym. Chem., 2010, 1(1), 37-54. doi: 10.1039/B9PY00300B
  102. Wu, S.; Butt, H.J. Near-infrared-sensitive materials based on upconverting nanoparticles. Adv. Mater., 2016, 28(6), 1208-1226. doi: 10.1002/adma.201502843 PMID: 26389516
  103. Linsley, C.S.; Wu, B.M. Recent advances in light-responsive on-demand drug-delivery systems. Ther. Deliv., 2017, 8(2), 89-107. doi: 10.4155/tde-2016-0060 PMID: 28088880
  104. Bandara, H.M.D.; Burdette, S.C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev., 2012, 41(5), 1809-1825. doi: 10.1039/C1CS15179G PMID: 22008710
  105. Udayabhaskararao, T.; Kundu, P.K.; Ahrens, J.; Klajn, R. Reversible photoisomerization of spiropyran on the surfaces of Au 25 nanoclusters. ChemPhysChem, 2016, 17(12), 1805-1809. doi: 10.1002/cphc.201500897 PMID: 26593975
  106. Ahmad, Z.; Shah, A.; Siddiq, M.; Kraatz, H.B. Polymeric micelles as drug delivery vehicles. RSC Advances, 2014, 4(33), 17028-17038. doi: 10.1039/C3RA47370H
  107. Pandita, D.; Madaan, K.; Kumar, S.; Poonia, N.; Lather, V. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci., 2014, 6(3), 139-150. doi: 10.4103/0975-7406.130965 PMID: 25035633
  108. Alavi, M.; Karimi, N.; Safaei, M. Application of various types of liposomes in drug delivery systems. Adv. Pharm. Bull., 2017, 7(1), 3-9. doi: 10.15171/apb.2017.002 PMID: 28507932
  109. Urban, P.; Pritzl, S.D.; Konrad, D.B.; Frank, J.A.; Pernpeintner, C.; Roeske, C.R.; Trauner, D.; Lohmüller, T. Light-controlled lipid interaction and membrane organization in photolipid bilayer vesicles. Langmuir, 2018, 34(44), 13368-13374. doi: 10.1021/acs.langmuir.8b03241 PMID: 30346771
  110. Yao, C.; Wang, P.; Li, X.; Hu, X.; Hou, J.; Wang, L.; Zhang, F. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv. Mater., 2016, 28(42), 9341-9348. doi: 10.1002/adma.201503799 PMID: 27578301
  111. Pearson, S.; Vitucci, D.; Khine, Y.Y.; Dag, A.; Lu, H.; Save, M.; Billon, L.; Stenzel, M.H. Light-responsive azobenzene-based glycopolymer micelles for targeted drug delivery to melanoma cells. Eur. Polym. J., 2015, 69, 616-627. doi: 10.1016/j.eurpolymj.2015.04.001
  112. Zhu, L.; Bratlie, K.M. pH sensitive methacrylated chitosan hydrogels with tunable physical and chemical properties. Biochem. Eng. J., 2018, 132, 38-46. doi: 10.1016/j.bej.2017.12.012
  113. You, J.O.; Rafat, M.; Almeda, D.; Maldonado, N.; Guo, P.; Nabzdyk, C.S.; Chun, M.; LoGerfo, F.W.; Hutchinson, J.W.; Pradhan-Nabzdyk, L.K.; Auguste, D.T. pH-responsive scaffolds generate a pro-healing response. Biomaterials, 2015, 57, 22-32. doi: 10.1016/j.biomaterials.2015.04.011 PMID: 25956194
  114. Yang, C.; Guo, W.; Cui, L.; Xiang, D.; Cai, K.; Lin, H.; Qu, F. pH-responsive controlled-release system based on mesoporous bioglass materials capped with mineralized hydroxyapatite. Mater. Sci. Eng. C, 2014, 36, 237-243. doi: 10.1016/j.msec.2013.12.006 PMID: 24433909
  115. Cicuéndez, M.; Doadrio, J.C.; Hernández, A.; Portolés, M.T.; Izquierdo-Barba, I.; Vallet-Regí, M. Multifunctional pH sensitive 3D scaffolds for treatment and prevention of bone infection. Acta Biomater., 2018, 65, 450-461. doi: 10.1016/j.actbio.2017.11.009 PMID: 29127064
  116. Gulzar, A.; Gai, S.; Yang, P.; Li, C.; Ansari, M.B.; Lin, J. Stimuli responsive drug delivery application of polymer and silica in biomedicine. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(44), 8599-8622. doi: 10.1039/C5TB00757G PMID: 32262717
  117. Lennox, K.A.; Owczarzy, R.; Thomas, D.M.; Walder, J.A.; Behlke, M.A. Improved performance of anti-miRNA oligonucleotides using a novel non-nucleotide modifier. Mol. Ther. Nucleic Acids, 2013, 2(8), e117. doi: 10.1038/mtna.2013.46 PMID: 23982190
  118. Makovitzki, A.; Fink, A.; Shai, Y. Suppression of human solid tumor growth in mice by intratumor and systemic inoculation of histidine-rich and pH-dependent host defense-like lytic peptides. Cancer Res., 2009, 69(8), 3458-3463. doi: 10.1158/0008-5472.CAN-08-3021 PMID: 19351852
  119. Zhang, Q.; Ran, R.; Zhang, L.; Liu, Y.; Mei, L.; Zhang, Z.; Gao, H.; He, Q. Simultaneous delivery of therapeutic antagomirs with paclitaxel for the management of metastatic tumors by a pH-responsive anti-microbial peptide-mediated liposomal delivery system. J. Control. Release, 2015, 197, 208-218. doi: 10.1016/j.jconrel.2014.11.010 PMID: 25445692
  120. Petriashvili, G.; Devadze, L.; Zurabishvili, T.; Sepashvili, N.; Chubinidze, K. Light controlled drug delivery containers based on spiropyran doped liquid crystal micro spheres. Biomed. Opt. Express, 2016, 7(2), 442-447. doi: 10.1364/BOE.7.000442 PMID: 26977353
  121. Baroli, B. Photopolymerization of biomaterials: Issues and potentialities in drug delivery, tissue engineering, and cell encapsulation applications. J. Chem. Technol. Biotechnol., 2006, 81(4), 491-499. doi: 10.1002/jctb.1468
  122. Nguyen, K.T.; West, J.L. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 2002, 23(22), 4307-4314. doi: 10.1016/S0142-9612(02)00175-8 PMID: 12219820
  123. Cao, Z.; Bian, Q.; Chen, Y.; Liang, F.; Wang, G. Light-responsive janus-particle-based coatings for cell capture and release. ACS Macro Lett., 2017, 6(10), 1124-1128. doi: 10.1021/acsmacrolett.7b00714 PMID: 35650929
  124. Yu, L.; Schlaich, C.; Hou, Y.; Zhang, J.; Noeske, P.L.M.; Haag, R. Photoregulating antifouling and bioadhesion functional coating surface based on spiropyran. Chemistry, 2018, 24(30), 7742-7748. doi: 10.1002/chem.201801051 PMID: 29578259
  125. Fedele, C.; Netti, P.A.; Cavalli, S. Azobenzene-based polymers: Emerging applications as cell culture platforms. Biomater. Sci., 2018, 6(5), 990-995. doi: 10.1039/C8BM00019K PMID: 29528057
  126. Shi, P.; Ju, E.; Yan, Z.; Gao, N.; Wang, J.; Hou, J.; Zhang, Y.; Ren, J.; Qu, X. Spatiotemporal control of cell–cell reversible interactions using molecular engineering. Nat. Commun., 2016, 7(1), 13088. doi: 10.1038/ncomms13088 PMID: 27708265
  127. Andrade, F.; Roca-Melendres, M.M.; Durán-Lara, E.F.; Rafael, D.; Schwartz, S., Jr Stimuli-responsive hydrogels for cancer treatment: The role of pH, light, ionic strength and magnetic field. Cancers, 2021, 13(5), 1164. doi: 10.3390/cancers13051164 PMID: 33803133
  128. Lee, I.N.; Dobre, O.; Richards, D.; Ballestrem, C.; Curran, J.M.; Hunt, J.A.; Richardson, S.M.; Swift, J.; Wong, L.S. Photoresponsive hydrogels with photoswitchable mechanical properties allow time-resolved analysis of cellular responses to matrix stiffening. ACS Appl. Mater. Interfaces, 2018, 10(9), 7765-7776. doi: 10.1021/acsami.7b18302 PMID: 29430919
  129. O’Brien, P.; Thomas, P.J. Specialist periodical reports. In: Nanoscience Royal Society of Chemistry; Cambridge: UK, 2013
  130. Chen, Y.; Li, H.; Deng, Y.; Sun, H.; Ke, X.; Ci, T. Near infrared light triggered drug delivery system for higher efficacy of combined chemo-photothermal treatment. Acta Biomater., 2017, 51, 374-392. doi: 10.1016/j.actbio.2016.12.004 PMID: 28088668
  131. Guha, S.; Shaw, S.K.; Spence, G.T.; Roland, F.M.; Smith, B.D. Clean photothermal heating and controlled release from near-infrared dye doped nanoparticles without oxygen photosensitization. Langmuir, 2015, 31(28), 7826-7834. doi: 10.1021/acs.langmuir.5b01878 PMID: 26149326
  132. Bao, Z.; Liu, X.; Liu, Y.; Liu, H.; Zhao, K. Near-infrared light-responsive inorganic nanomaterials for photothermal therapy. Asian Journal of Pharmaceutical Sciences, 2016, 11(3), 349-364. doi: 10.1016/j.ajps.2015.11.123
  133. Ou, Y.C.; Webb, J.A.; Faley, S.; Shae, D.; Talbert, E.M.; Lin, S.; Cutright, C.C.; Wilson, J.T.; Bellan, L.M.; Bardhan, R. Gold nanoantenna-mediated photothermal drug delivery from thermosensitive liposomes in breast cancer. ACS Omega, 2016, 1(2), 234-243. doi: 10.1021/acsomega.6b00079 PMID: 27656689
  134. Zhang, J.; Huang, Q.; Du, J. Recent advances in magnetic hydrogels. Polym. Int., 2016, 65(12), 1365-1372. doi: 10.1002/pi.5170
  135. Luo, R.C.; Lim, Z.H.; Li, W.; Shi, P.; Chen, C.H. Near-infrared light triggerable deformation-free polysaccharide double network hydrogels. Chem. Commun., 2014, 50(53), 7052-7055. doi: 10.1039/C4CC02216E PMID: 24849317
  136. Lin, H.; Xiao, W.; Qin, S.Y.; Cheng, S.X.; Zhang, X.Z. Switch on/off microcapsules for controllable photosensitive drug release in a ‘release-cease-recommence’ mode. Polym. Chem., 2014, 5(15), 4396. doi: 10.1039/c4py00564c
  137. Wajs, E.; Nielsen, T.T.; Larsen, K.L.; Fragoso, A. Preparation of stimuli-responsive nano-sized capsules based on cyclodextrin polymers with redox or light switching properties. Nano Res., 2016, 9(7), 2070-2078. doi: 10.1007/s12274-016-1097-7
  138. Lo, C.W.; Zhu, D.; Jiang, H. An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter, 2011, 7(12), 5604-5609. doi: 10.1039/c1sm00011j
  139. Han, L.; Zhang, Y.; Lu, X.; Wang, K.; Wang, Z.; Zhang, H. Polydopamine nanoparticles modulating stimuli-responsive PNIPAM hydrogels with cell/tissue adhesiveness. ACS Appl. Mater. Interfaces, 2016, 8(42), 29088-29100. doi: 10.1021/acsami.6b11043 PMID: 27709887
  140. Wu, Y.; Wang, K.; Huang, S.; Yang, C.; Wang, M. Near-infrared light-responsive semiconductor polymer composite hydrogels: Spatial/temporal-controlled release via a photothermal "sponge" effect. ACS Appl. Mater. Interfaces, 2017, 9(15), 13602-13610. doi: 10.1021/acsami.7b01016 PMID: 28304158
  141. Wankar, J.; Kotla, N.G.; Gera, S.; Rasala, S.; Pandit, A.; Rochev, Y.A. Recent advances in host–guest self-assembled cyclodextrin carriers: Implications for responsive drug delivery and biomedical engineering. Adv. Funct. Mater., 2020, 30(44), 1909049. doi: 10.1002/adfm.201909049
  142. Zheng, Y.; Chen, Z.; Jiang, Q.; Feng, J.; Wu, S.; del Campo, A. Near-infrared-light regulated angiogenesis in a 4D hydrogel. Nanoscale, 2020, 12(25), 13654-13661. doi: 10.1039/D0NR02552F PMID: 32567640
  143. Chen, G.; Cao, Y.; Tang, Y.; Yang, X.; Liu, Y.; Huang, D.; Zhang, Y.; Li, C.; Wang, Q. Advanced near-infrared light for monitoring and modulating the spatiotemporal dynamics of cell functions in living systems. Adv. Sci., 2020, 7(8), 1903783. doi: 10.1002/advs.201903783 PMID: 32328436
  144. Chen, S.; Weitemier, A.Z.; Zeng, X.; He, L.; Wang, X.; Tao, Y.; Huang, A.J.Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H.; Parajuli, L.K.; Okabe, S.; Teh, D.B.L.; All, A.H.; Tsutsui-Kimura, I.; Tanaka, K.F.; Liu, X.; McHugh, T.J. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science, 2018, 359(6376), 679-684. doi: 10.1126/science.aaq1144 PMID: 29439241
  145. Chu, H.; Zhao, J.; Mi, Y.; Di, Z.; Li, L. NIR-light-mediated spatially selective triggering of anti-tumor immunity via upconversion nanoparticle-based immunodevices. Nat. Commun., 2019, 10(1), 2839. doi: 10.1038/s41467-019-10847-0 PMID: 31253798
  146. Sasaki, Y.; Oshikawa, M.; Bharmoria, P.; Kouno, H.; Hayashi-Takagi, A.; Sato, M.; Ajioka, I.; Yanai, N.; Kimizuka, N. Near infrared optogenetic genome engineering based on photon upconversion hydrogels. Angew. Chem. Int. Ed., 2019, 58(49), 17827-17833. doi: 10.1002/anie.201911025 PMID: 31544993
  147. Hamcerencu, M.; Desbrieres, J.; Popa, M.; Riess, G. Thermo sensitive gellan maleate/N-isopropylacrylamide hydrogels: initial "in vitro" and "in vivo" evaluation as ocular inserts. Polym. Bull., 2020, 77(2), 741-755. doi: 10.1007/s00289-019-02772-5
  148. Ghadban, A.; Ahmed, A.S.; Ping, Y.; Ramos, R.; Arfin, N.; Cantaert, B.; Ramanujan, R.V.; Miserez, A. Bioinspired pH and magnetic responsive catechol-functionalized chitosan hydrogels with tunable elastic properties. Chem. Commun., 2016, 52(4), 697-700. doi: 10.1039/C5CC08617E PMID: 26558317
  149. Satarkar, N.S.; Hilt, J.Z. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J. Contr. Release, 2008, 130(3), 246-251.
  150. Hendawy, H.; Uemura, A.; Ma, D.; Namiki, R.; Samir, H.; Ahmed, M.F.; Elfadadny, A.; El-Husseiny, H.M.; Chieh-Jen, C.; Tanaka, R. Tissue harvesting site effect on the canine adipose stromal vascular fraction quantity and quality. Animals, 2021, 11(2), 460. doi: 10.3390/ani11020460 PMID: 33572472
  151. Mehrali, M.; Thakur, A.; Pennisi, C.P.; Talebian, S.; Arpanaei, A.; Nikkhah, M.; Dolatshahi-Pirouz, A. Nanoreinforced hydrogels for tissue engineering: Biomaterials that are compatible with load bearing and electroactive tissues. Adv. Mater., 2017, 29(8), 1603612. doi: 10.1002/adma.201603612 PMID: 27966826
  152. Frachini, E.; Petri, D. Magneto-responsive hydrogels: preparation, characterization, biotechnological and environmental applications. J. Braz. Chem. Soc., 2019, 30(10), 2010-2028. doi: 10.21577/0103-5053.20190074
  153. Guerrero, A.R.; Hassan, N.; Escobar, C.A.; Albericio, F.; Kogan, M.J.; Araya, E. Gold nanoparticles for photothermally controlled drug release. Nanomedicine, 2014, 9(13), 2023-2039. doi: 10.2217/nnm.14.126 PMID: 25343351
  154. Häring, M.; Schiller, J.; Mayr, J.; Grijalvo, S.; Eritja, R.; Díaz, D. Magnetic gel composites for hyperthermia cancer therapy. Gels, 2015, 1(2), 135-161. doi: 10.3390/gels1020135 PMID: 30674170
  155. Shin, M.K.; Kim, S.I.; Kim, S.J.; Park, S.Y.; Hyun, Y.H.; Lee, Y.; Lee, K.E.; Han, S.S.; Jang, D.P.; Kim, Y.B.; Cho, Z.H.; So, I.; Spinks, G.M. Controlled magnetic nanofiber hydrogels by clustering ferritin. Langmuir, 2008, 24(21), 12107-12111. doi: 10.1021/la802155a PMID: 18847290
  156. Beaune, G.; Ménager, C. In situ precipitation of magnetic fluid encapsulated in giant liposomes. J. Colloid Interface Sci., 2010, 343(1), 396-399. doi: 10.1016/j.jcis.2009.11.016 PMID: 20022022
  157. Horst, M.F.; Ninago, M.D.; Lassalle, V. Magnetically responsive gels based on crosslinked gelatin: An overview on the synthesis, properties, and their potential in water remediation, Int. J. Polymer. Mater. Polymer. Biomaterials, 2018, 67(11), 647-659.
  158. Glaser, T.; Bueno, V.B.; Cornejo, D.R.; Petri, D.F.S.; Ulrich, H. Neuronal adhesion, proliferation and differentiation of embryonic stem cells on hybrid scaffolds made of xanthan and magnetite nanoparticles. Biomed. Mater., 2015, 10(4), 045002. doi: 10.1088/1748-6041/10/4/045002 PMID: 26154495
  159. Castro, P.S.; Bertotti, M.; Naves, A.F.; Catalani, L.H.; Cornejo, D.R.; Bloisi, G.D.; Petri, D.F.S. Hybrid magnetic scaffolds: The role of scaffolds charge on the cell proliferation and Ca2+ ions permeation. Colloids Surf. B Biointerfaces, 2017, 156, 388-396. doi: 10.1016/j.colsurfb.2017.05.046 PMID: 28551573
  160. Thambi, T.; Park, J.H.; Lee, D.S. Stimuli-responsive polymersomes for cancer therapy. Biomater. Sci., 2016, 4(1), 55-69. doi: 10.1039/C5BM00268K PMID: 26456625
  161. Zhi, X.; Liu, P.; Li, Y.; Li, P.; Yuan, J.; Lin, J. One-step fabricated keratin nanoparticles as pH and redox-responsive drug nanocarriers. J. Biomater. Sci. Polym. Ed., 2018, 29(15), 1920-1934. doi: 10.1080/09205063.2018.1519987 PMID: 30183550
  162. Li, Q.; Yang, S.; Zhu, L.; Kang, H.; Qu, X.; Liu, R.; Huang, Y. Dual-stimuli sensitive keratin graft PHPMA as physiological trigger responsive drug carriers. Polym. Chem., 2015, 6(15), 2869-2878. doi: 10.1039/C4PY01750A
  163. Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7. doi: 10.1038/s41392-017-0004-3 PMID: 29560283
  164. Huo, M.; Yuan, J.; Tao, L.; Wei, Y. Redox-responsive polymers for drug delivery: From molecular design to applications. Polym. Chem., 2014, 5(5), 1519-1528. doi: 10.1039/C3PY01192E
  165. Pietschnig, R. Polymers with pendant ferrocenes. Chem. Soc. Rev., 2016, 45(19), 5216-5231. doi: 10.1039/C6CS00196C PMID: 27156979
  166. Wu, J.; Wang, L.; Yu, H.; Zain-ul-Abdin; Khan, R.U.; Haroon, M. Ferrocene-based redox responsive polymer gels: Synthesis, structures and applications. J. Organomet. Chem., 2017, 828, 38-51. doi: 10.1016/j.jorganchem.2016.10.041
  167. Chen, J.; Huang, Y.; Ma, X.; Lei, Y. Functional self healing materials and their potential applications in biomedical engineering. Adv. Compos. Hybrid Mater., 2018, 1(1), 94-113. doi: 10.1007/s42114-017-0009-y
  168. Taylor, D.L. in het Panhuis, M. Self-healing hydrogels. Adv. Mater., 2016, 28(41), 9060-9093. doi: 10.1002/adma.201601613 PMID: 27488822
  169. Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Redox-responsive self-healing materials formed from host–guest polymers. Nat. Commun., 2011, 2(1), 511-517. doi: 10.1038/ncomms1521 PMID: 22027591
  170. Fang, Y.; Wang, C.F.; Zhang, Z.H.; Shao, H.; Chen, S. Robust self-healing hydrogels assisted by cross-linked nanofiber networks. Sci. Rep., 2013, 3(1), 2811-2818. doi: 10.1038/srep02811 PMID: 24091865
  171. Greene, A.F.; Danielson, M.K.; Delawder, A.O.; Liles, K.P.; Li, X.; Natraj, A.; Wellen, A.; Barnes, J.C. Redox-responsive artificial molecular muscles: reversible radical-based self-assembly for actuating hydrogels. Chem. Mater., 2017, 29(21), 9498-9508. doi: 10.1021/acs.chemmater.7b03635
  172. Qiao, Y.; Wan, J.; Zhou, L.; Ma, W.; Yang, Y.; Luo, W.; Yu, Z.; Wang, H. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(1), e1527. doi: 10.1002/wnan.1527
  173. Riba-Moliner, M.; Gómez-Rodríguez, A.; Amabilino, D.B.; Puigmartí-Luis, J.; González-Campo, A. Functional supramolecular tetrathiafulvalene-based films with mixed valences states. Polymer, 2016, 103, 251-260. doi: 10.1016/j.polymer.2016.09.039
  174. Schröder, H.V.; Schalley, C.A. Tetrathiafulvalene: A redox switchable building block to control motion in mechanically interlocked molecules. Beilstein J. Org. Chem., 2018, 14, 2163-2185. doi: 10.3762/bjoc.14.190 PMID: 30202469
  175. Zhang, X.; Zeng, Y.; Yu, T.; Chen, J.; Yang, G.; Li, Y. Tetrathiafulvalene terminal-decorated PAMAM Dendrimers for triggered release synergistically stimulated by redox and CB7. Langmuir, 2014, 30(3), 718-726. doi: 10.1021/la404349w PMID: 24417726
  176. Bigot, J.; Charleux, B.; Cooke, G.; Delattre, F.; Fournier, D.; Lyskawa, J.; Sambe, L.; Stoffelbach, F.; Woisel, P. Tetrathiafulvalene end-functionalized poly(N-isopropylacrylamide): A new class of amphiphilic polymer for the creation of multistimuli responsive micelles. J. Am. Chem. Soc., 2010, 132(31), 10796-10801. doi: 10.1021/ja1027452 PMID: 20681712
  177. Ning, C.; Zhou, Z.; Tan, G.; Zhu, Y.; Mao, C. Electroactive polymers for tissue regeneration: Developments and perspectives. Prog. Polym. Sci., 2018, 81, 144-162. doi: 10.1016/j.progpolymsci.2018.01.001 PMID: 29983457
  178. Clancy, K.F.A.; Hardy, J.G. Gene delivery with organic electronic biomaterials. Curr. Pharm. Des., 2017, 23(24), 3614-3625. PMID: 28699530
  179. Svirskis, D.; Travas-Sejdic, J.; Rodgers, A.; Garg, S. Electrochemically controlled drug delivery based on intrinsically conducting polymers. J. Control. Release, 2010, 146(1), 6-15. doi: 10.1016/j.jconrel.2010.03.023 PMID: 20359512
  180. Yang, Y-M.; Wang, H-B.; Zhao, Y-H.; Niu, C-M.; Shi, J-Q.; Wang, Y.Y. Novel conductive polypyrrole/silk fibroin scaffold for neural tissue repair. Neural Regen. Res., 2018, 13(8), 1455-1464. doi: 10.4103/1673-5374.235303 PMID: 30106059
  181. Guex, A.G.; Puetzer, J.L.; Armgarth, A.; Littmann, E.; Stavrinidou, E.; Giannelis, E.P.; Malliaras, G.G.; Stevens, M.M. Highly porous scaffolds of PEDOT:PSS for bone tissue engineering. Acta Biomater., 2017, 62, 91-101. doi: 10.1016/j.actbio.2017.08.045 PMID: 28865991
  182. Gelmi, A.; Ljunggren, M.K.; Rafat, M.; Jager, E.W.H. Influence of conductive polymer doping on the viability of cardiac progenitor cells. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(24), 3860-3867. doi: 10.1039/C4TB00142G PMID: 32261732
  183. Baumgartner, J.; Jönsson, J.I.; Jager, E.W.H. Switchable presentation of cytokines on electroactive polypyrrole surfaces for hematopoietic stem and progenitor cells. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(28), 4665-4675. doi: 10.1039/C8TB00782A PMID: 32254411
  184. Balint, R.; Cassidy, N.J.; Cartmell, S.H. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater., 2014, 10(6), 2341-2353. doi: 10.1016/j.actbio.2014.02.015 PMID: 24556448
  185. Fortunato, G.M.; De Maria, C.; Eglin, D.; Serra, T.; Vozzi, G. An ink-jet printed electrical stimulation platform for muscle tissue regeneration. Bioprinting, 2018, 11, e00035. doi: 10.1016/j.bprint.2018.e00035
  186. Pires, F.; Ferreira, Q.; Rodrigues, C.A.V.; Morgado, J.; Ferreira, F.C. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(6), 1158-1168. doi: 10.1016/j.bbagen.2015.01.020 PMID: 25662071
  187. Hoop, M.; Chen, X.Z.; Ferrari, A.; Mushtaq, F.; Ghazaryan, G.; Tervoort, T.; Poulikakos, D.; Nelson, B.; Pané, S. Ultrasound mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Sci. Rep., 2017, 7(1), 4028-4036. doi: 10.1038/s41598-017-03992-3 PMID: 28642614
  188. Vannozzi, L.; Ricotti, L.; Filippeschi, C.; Sartini, S.; Coviello, V.; Piazza, V.; Pingue, P.; La Motta, C.; Dario, P.; Menciassi, A. Nanostructured ultra-thin patches for ultrasound-modulated delivery of anti-restenotic drug. Int. J. Nanomedicine, 2015, 11, 69-91. doi: 10.2147/IJN.S92031 PMID: 26730191
  189. Kim, O.; Shin, T.J.; Park, M.J. Fast low-voltage electroactive actuators using nanostructured polymer electrolytes. Nat. Commun., 2013, 4(1), 2208. doi: 10.1038/ncomms3208 PMID: 23896756
  190. Shin, S.R.; Jung, S.M.; Zalabany, M.; Kim, K.; Zorlutuna, P.; Kim, S.; Nikkhah, M.; Khabiry, M.; Azize, M.; Kong, J.; Wan, K.; Palacios, T.; Dokmeci, M.R.; Bae, H.; Tang, X.S.; Khademhosseini, A. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano, 2013, 7(3), 2369-2380. doi: 10.1021/nn305559j PMID: 23363247
  191. Chen, Z.; Wu, C.; Zhang, Z.; Wu, W.; Wang, X.; Yu, Z. Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chin. Chem. Lett., 2018, 29(11), 1601-1608. doi: 10.1016/j.cclet.2018.08.007
  192. Tuttolomondo, M.V.; Villanueva, M.E.; Alvarez, G.S.; Desimone, M.F.; Díaz, L.E. Preparation of submicrometer monodispersed magnetic silica particles using a novel water in oil microemulsion: properties and application for enzyme immobilization. Biotechnol. Lett., 2013, 35(10), 1571-1577. doi: 10.1007/s10529-013-1259-6 PMID: 23801114
  193. Zhao, Y.; Fan, T.; Chen, J.; Su, J.; Zhi, X.; Pan, P.; Zou, L.; Zhang, Q. Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Colloids Surf. B Biointerfaces, 2019, 174, 70-79. doi: 10.1016/j.colsurfb.2018.11.003 PMID: 30439640
  194. Ridi, F.; Bonini, M.; Baglioni, P. Magneto-responsive nanocomposites: Preparation and integration of magnetic nanoparticles into films, capsules, and gels. Adv. Colloid Interface Sci., 2014, 207, 3-13. doi: 10.1016/j.cis.2013.09.006 PMID: 24139510
  195. Abu-Dief, A.M.; Abdel-Fatah, S.M. Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7(1), 55-67. doi: 10.1016/j.bjbas.2017.05.008
  196. Kayode, B.; Abdul, A. Journal of magnetism and magnetic materials recent advances in synthesis and surface modi fi cation of superparamagnetic iron oxide nanoparticles with silica. J. Magn. Magn. Mater., 2016, 416, 275-291. doi: 10.1016/j.jmmm.2016.05.019
  197. de Mendonça, E.S.D.T.; de Faria, A.C.B.; Dias, S.C.L.; Aragón, F.F.H.; Mantilla, J.C.; Coaquira, J.A.H.; Dias, J.A. Effects of silica coating on the magnetic properties of magnetite nanoparticles. Surf. Interfaces, 2019, 14, 34-43. doi: 10.1016/j.surfin.2018.11.005
  198. Zhang, Y.; Zhen, B.; Li, H.; Feng, Y. Preparation of water-soluble magnetic nanoparticles with controllable silica coating. Chin. J. Chem. Eng., 2018, 26(1), 213-217. doi: 10.1016/j.cjche.2017.05.017
  199. Bui, T.Q.; Ngo, H.T.M.; Tran, H.T. Surface-protective assistance of ultrasound in synthesis of superparamagnetic magnetite nanoparticles and in preparation of mono-core magnetite-silica nanocomposites. J. Sci. Adv. Mater. Devices, 2018, 3(3), 323-330. doi: 10.1016/j.jsamd.2018.07.002
  200. Hou, Y.; Sellmyer, D. J. Magnetic nanomaterials: Fundamentals, synthesis and applications; Wiley: Hoboken, NJ, USA, 2017. doi: 10.1002/9783527803255
  201. Basith, M.A.; Ngo, D.T.; Quader, A.; Rahman, M.A.; Sinha, B.L.; Ahmmad, B.; Hirose, F.; Mølhave, K. Simple top-down preparation of magnetic Bi 0.9 Gd 0.1 Fe 1−x Ti x O 3 nanoparticles by ultrasonication of multiferroic bulk material. Nanoscale, 2014, 6(23), 14336-14342. doi: 10.1039/C4NR03150D PMID: 25327219
  202. Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110. doi: 10.1021/cr068445e PMID: 18543879
  203. Liang, J.; Liu, B. ROS-responsive drug delivery systems. Bioeng. Transl. Med., 2016, 1(3), 239-251. doi: 10.1002/btm2.10014 PMID: 29313015
  204. Xu, Q.; He, C.; Xiao, C.; Chen, X. Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol. Biosci., 2016, 16(5), 635-646. doi: 10.1002/mabi.201500440 PMID: 26891447

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers