High Mobility Group Box 1 Protein: A Plausible Therapeutic Molecular Target in Parkinsons Disease
- Authors: Goyal A.1, Agrawal A.2, Dubey N.2, Verma A.2
-
Affiliations:
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University
- Department of Pharmacology, Institute of Pharmaceutical Research,, GLA University
- Issue: Vol 25, No 8 (2024)
- Pages: 937-943
- Section: Biotechnology
- URL: https://rjeid.com/1389-2010/article/view/644924
- DOI: https://doi.org/10.2174/1389201025666230905092218
- ID: 644924
Cite item
Full Text
Abstract
Parkinsons disease (PD) is a widespread neurodegenerative disorder that exerts a broad variety of detrimental effects on peoples health. Accumulating evidence suggests that mitochondrial dysfunction, neuroinflammation, α-synuclein aggregation and autophagy dysfunction may all play a role in the development of PD. However, the molecular mechanisms behind these pathophysiological processes remain unknown. Currently, research in PD has focussed on high mobility group box 1 (HMGB1), and different laboratory approaches have shown promising outcomes to some level for blocking HMGB1. Given that HMGB1 regulates mitochondrial dysfunction, participates in neuroinflammation, and modulates autophagy and apoptosis, it is hypothesised that HMGB1 has significance in the onset of PD. In the current review, research targeting multiple roles of HMGB1 in PD pathology was integrated, and the issues that need future attention for targeted therapeutic approaches are mentioned.
Keywords
About the authors
Ahsas Goyal
Department of Pharmacology, Institute of Pharmaceutical Research, GLA University
Author for correspondence.
Email: info@benthamscience.net
Anant Agrawal
Department of Pharmacology, Institute of Pharmaceutical Research,, GLA University
Email: info@benthamscience.net
Nandini Dubey
Department of Pharmacology, Institute of Pharmaceutical Research,, GLA University
Email: info@benthamscience.net
Aanchal Verma
Department of Pharmacology, Institute of Pharmaceutical Research,, GLA University
Email: info@benthamscience.net
References
- Agrawal, N.; Mishra, R.; Pathak, S.; Goyal, A.; Shah, K. Hydrazides and hydrazones: Robust scaffolds in neurological and neurodegenerative disorders. Lett. Org. Chem., 2023, 20(2), 123-136. doi: 10.2174/1570178619666220831122614
- Varshney, K.K.; Gupta, J.K.; Mujwar, S. Homocysteine induced neurological dysfunctions: A link to neurodegenerative disorders. IJMRHS, 2019, 8(4), 135-146.
- Garabadu, D.; Agrawal, N.; Sharma, A.; Sharma, S. Mitochondrial metabolism: A common link between neuroinflammation and neurodegeneration. Behav. Pharmacol., 2019, 30(8), 641-651. doi: 10.1097/FBP.0000000000000505 PMID: 31625975
- Verma, A.; Goyal, A. Reformative effect of daidzein on motor dysfunction following rotenone injection in ovariectomized rats. Rev. Bras. Farmacogn., 2022, 32(4), 563-574. doi: 10.1007/s43450-022-00277-3
- Goyal, A.; Verma, A.; Dubey, N.; Raghav, J.; Agrawal, A. Naringenin: A prospective therapeutic agent for Alzheimers and Parkinsons disease. J. Food Biochem., 2022, 46(12), e14415. doi: 10.1111/jfbc.14415 PMID: 36106706
- Garabadu, D.; Agrawal, N. Naringin exhibits neuroprotection against rotenone-induced neurotoxicity in experimental rodents. Neuromolecular Med., 2020, 22(2), 314-330. doi: 10.1007/s12017-019-08590-2 PMID: 31916219
- Goyal, A.; Agrawal, A.; Verma, A.; Dubey, N. The PI3K-AKT pathway: A plausible therapeutic target in Parkinsons disease. Exp. Mol. Pathol., 2023, 129, 104846. doi: 10.1016/j.yexmp.2022.104846 PMID: 36436571
- Sasaki, T.; Liu, K.; Agari, T.; Yasuhara, T.; Morimoto, J.; Okazaki, M.; Takeuchi, H.; Toyoshima, A.; Sasada, S.; Shinko, A.; Kondo, A.; Kameda, M.; Miyazaki, I.; Asanuma, M.; Borlongan, C.V.; Nishibori, M.; Date, I. Anti-high mobility group box 1 antibody exerts neuroprotection in a rat model of Parkinsons disease. Exp. Neurol., 2016, 275(Pt 1), 220-231. doi: 10.1016/j.expneurol.2015.11.003 PMID: 26555088
- Gao, H.M.; Zhou, H.; Zhang, F.; Wilson, B.C.; Kam, W.; Hong, J.S. HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J. Neurosci., 2011, 31(3), 1081-1092. doi: 10.1523/JNEUROSCI.3732-10.2011 PMID: 21248133
- Huang, J.; Yang, J.; Shen, Y.; Jiang, H.; Han, C.; Zhang, G.; Liu, L.; Xu, X.; Li, J.; Lin, Z.; Xiong, N.; Zhang, Z.; Xiong, J.; Wang, T. HMGB1 mediates autophagy dysfunction via perturbing beclin1-Vps34 complex in dopaminergic cell model. Front. Mol. Neurosci., 2017, 10, 13. doi: 10.3389/fnmol.2017.00013 PMID: 28197072
- Lotze, M.T.; Tracey, K.J. High-mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal. Nat. Rev. Immunol., 2005, 5(4), 331-342. doi: 10.1038/nri1594 PMID: 15803152
- Goodwin, G.H.; Johns, E.W. Isolation and characterisation of two calf-thymus chromatin non-histone proteins with high contents of acidic and basic amino acids. Eur. J. Biochem., 1973, 40(1), 215-219. doi: 10.1111/j.1432-1033.1973.tb03188.x PMID: 4772679
- Xue, J.; Suarez, J.S.; Minaai, M.; Li, S.; Gaudino, G.; Pass, H.I.; Carbone, M.; Yang, H. HMGB1 as a therapeutic target in disease. J. Cell. Physiol., 2021, 236(5), 3406-3419. doi: 10.1002/jcp.30125 PMID: 33107103
- Bianchi, M.E.; Beltrame, M. Flexing DNA: HMG-box proteins and their partners. Am. J. Hum. Genet., 1998, 63(6), 1573-1577. doi: 10.1086/302170 PMID: 9837808
- Bustin, M. Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem. Sci., 2001, 26(3), 152-153. doi: 10.1016/S0968-0004(00)01777-1 PMID: 11246012
- Kang, R.; Chen, R.; Zhang, Q.; Hou, W.; Wu, S.; Cao, L.; Huang, J.; Yu, Y.; Fan, X.; Yan, Z.; Sun, X.; Wang, H.; Wang, Q.; Tsung, A.; Billiar, T.R.; Zeh, H.J., III; Lotze, M.T.; Tang, D. HMGB1 in health and disease. Mol. Aspects Med., 2014, 40, 1-116. doi: 10.1016/j.mam.2014.05.001 PMID: 25010388
- Bianchi, M.E.; Beltrame, M. Upwardly mobile proteins. EMBO Rep., 2000, 1(2), 109-114. doi: 10.1093/embo-reports/kvd030 PMID: 11265747
- Müller, S.; Scaffidi, P.; Degryse, B.; Bonaldi, T.; Ronfani, L.; Agresti, A.; Beltrame, M.; Bianchi, M.E. NEW EMBO MEMBERS REVIEW: The double life of HMGB1 chromatin protein: Architectural factor and extracellular signal. EMBO J., 2001, 20(16), 4337-4340. doi: 10.1093/emboj/20.16.4337 PMID: 11500360
- Wang, H.; Bloom, O.; Zhang, M.; Vishnubhakat, J.M.; Ombrellino, M.; Che, J.; Frazier, A.; Yang, H.; Ivanova, S.; Borovikova, L.; Manogue, K.R.; Faist, E.; Abraham, E.; Andersson, J.; Andersson, U.; Molina, P.E.; Abumrad, N.N.; Sama, A.; Tracey, K.J. HMG-1 as a late mediator of endotoxin lethality in mice. Science, 1999, 285(5425), 248-251. doi: 10.1126/science.285.5425.248 PMID: 10398600
- Andersson, U.; Wang, H.; Palmblad, K.; Aveberger, A.C.; Bloom, O.; Erlandsson-Harris, H.; Janson, A.; Kokkola, R.; Zhang, M.; Yang, H.; Tracey, K.J. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med., 2000, 192(4), 565-570. doi: 10.1084/jem.192.4.565 PMID: 10952726
- Enokido, Y.; Yoshitake, A.; Ito, H.; Okazawa, H. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain. Biochem. Biophys. Res. Commun., 2008, 376(1), 128-133. doi: 10.1016/j.bbrc.2008.08.108 PMID: 18762169
- Daston, M.M.; Ratner, N. Expression of P30, a protein with adhesive properties, in Schwann cells and neurons of the developing and regenerating peripheral nerve. J. Cell Biol., 1991, 112(6), 1229-1239. doi: 10.1083/jcb.112.6.1229 PMID: 1999471
- Huang, Q.; Liu, J.; Shi, Z.; Zhu, X. Correlation of MMP-9 and HMGB1 expression with the cognitive function in patients with epilepsy and factors affecting the prognosis. Cell. Mol. Biol., 2020, 66(3), 39-47. doi: 10.14715/cmb/2020.66.3.6 PMID: 32538745
- Makris, G.; Chouliaras, G.; Apostolakou, F.; Papageorgiou, C.; Chrousos, G.P.; Papassotiriou, I.; Pervanidou, P. Increased serum concentrations of high mobility group box 1 (HMGB1) protein in children with autism spectrum disorder. Children, 2021, 8(6), 478. doi: 10.3390/children8060478 PMID: 34198762
- Bucova, M.; Majernikova, B.; Durmanova, V.; Cudrakova, D.; Gmitterova, K.; Lisa, I.; Klimova, E.; Kluckova, K.; Buc, M. HMGB1 as a potential new marker of disease activity in patients with multiple sclerosis. Neurol. Sci., 2020, 41(3), 599-604. doi: 10.1007/s10072-019-04136-3 PMID: 31728855
- Lian, Y.J.; Gong, H.; Wu, T.Y.; Su, W.J.; Zhang, Y.; Yang, Y.Y.; Peng, W.; Zhang, T.; Zhou, J.R.; Jiang, C.L.; Wang, Y.X. Ds-HMGB1 and fr-HMGB induce depressive behavior through neuroinflammation in contrast to nonoxid-HMGB1. Brain Behav. Immun., 2017, 59, 322-332. doi: 10.1016/j.bbi.2016.09.017 PMID: 27647532
- Le, K.; Mo, S.; Lu, X.; Idriss Ali, A.; Yu, D.; Guo, Y. Association of circulating blood HMGB1 levels with ischemic stroke: A systematic review and meta-analysis. Neurol. Res., 2018, 40(11), 907-916. doi: 10.1080/01616412.2018.1497254 PMID: 30015578
- Webster, K.M.; Shultz, S.R.; Ozturk, E.; Dill, L.K.; Sun, M.; Casillas-Espinosa, P.; Jones, N.C.; Crack, P.J.; OBrien, T.J.; Semple, B.D. Targeting high-mobility group box protein 1 (HMGB1) in pediatric traumatic brain injury: Chronic neuroinflammatory, behavioral, and epileptogenic consequences. Exp. Neurol., 2019, 320, 112979. doi: 10.1016/j.expneurol.2019.112979 PMID: 31229637
- Hwang, C.S.; Liu, G.T.; Chang, M.D.T.; Liao, I.L.; Chang, H.T. Elevated serum autoantibody against high mobility group box 1 as a potent surrogate biomarker for amyotrophic lateral sclerosis. Neurobiol. Dis., 2013, 58, 13-18. doi: 10.1016/j.nbd.2013.04.013 PMID: 23639787
- Gendy, A.M.; El-Sadek, H.M.; Amin, M.M.; Ahmed, K.A.; El-Sayed, M.K.; El-Haddad, A.E.; Soubh, A. Glycyrrhizin prevents 3-nitropropionic acid-induced neurotoxicity by downregulating HMGB1/TLR4/NF-κB p65 signaling, and attenuating oxidative stress, inflammation, and apoptosis in rats. Life Sci., 2023, 314, 121317. doi: 10.1016/j.lfs.2022.121317 PMID: 36566881
- Gaikwad, S.; Puangmalai, N.; Bittar, A.; Montalbano, M.; Garcia, S.; McAllen, S.; Bhatt, N.; Sonawane, M.; Sengupta, U.; Kayed, R. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimers disease and frontotemporal dementia. Cell Rep., 2021, 36(3), 109419. doi: 10.1016/j.celrep.2021.109419 PMID: 34289368
- Gao, J.; Zhang, X.; Shu, G.; Chen, N.; Zhang, J.; Xu, F.; Li, F.; Liu, Y.; Wei, Y.; He, Y.; Shi, J.; Gong, Q. Trilobatin rescues cognitive impairment of Alzheimers disease by targeting HMGB1 through mediating SIRT3/SOD2 signaling pathway. Acta Pharmacol. Sin., 2022, 43(10), 2482-2494. doi: 10.1038/s41401-022-00888-5 PMID: 35292770
- Kwak, M.S.; Kim, H.S.; Lee, B.; Kim, Y.H.; Son, M.; Shin, J.S. Immunological significance of HMGB1 post-translational modification and redox biology. Front. Immunol., 2020, 11, 1189. doi: 10.3389/fimmu.2020.01189 PMID: 32587593
- Rana, T.; Behl, T.; Mehta, V.; Uddin, M.S.; Bungau, S. Molecular insights into the therapeutic promise of targeting HMGB1 in depression. Pharmacol. Rep., 2021, 73(1), 31-42. doi: 10.1007/s43440-020-00163-6 PMID: 33015736
- Gong, W.; Li, Y.; Chao, F.; Huang, G.; He, F. Amino acid residues 201-205 in C-terminal acidic tail region plays a crucial role in antibacterial activity of HMGB1. J. Biomed. Sci., 2009, 16(1), 83. doi: 10.1186/1423-0127-16-83 PMID: 19751520
- Yang, H.; Wang, H.; Czura, C.J.; Tracey, K.J. HMGB1 as a cytokine and therapeutic target. J. Endotoxin Res., 2002, 8(6), 469-472. doi: 10.1179/096805102125001091 PMID: 12697092
- Gong, W.; Zheng, Y.; Chao, F.; Li, Y.; Xu, Z.; Huang, G.; Gao, X.; Li, S.; He, F. The anti-inflammatory activity of HMGB1 A box is enhanced when fused with C-terminal acidic tail. J. Biomed. Biotechnol., 2010, 2010, 1-6. doi: 10.1155/2010/915234 PMID: 20379370
- Gao, H.M.; Hong, J.S. Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression. Trends Immunol., 2008, 29(8), 357-365. doi: 10.1016/j.it.2008.05.002 PMID: 18599350
- VanPatten, S.; Al-Abed, Y. High mobility group box-1 (HMGb1): Current wisdom and advancement as a potential drug target. J. Med. Chem., 2018, 61(12), 5093-5107. doi: 10.1021/acs.jmedchem.7b01136 PMID: 29268019
- Meneghini, V.; Bortolotto, V.; Francese, M.T.; Dellarole, A.; Carraro, L.; Terzieva, S.; Grilli, M. High-mobility group box-1 protein and β-amyloid oligomers promote neuronal differentiation of adult hippocampal neural progenitors via receptor for advanced glycation end products/nuclear factor-κB axis: Relevance for Alzheimers disease. J. Neurosci., 2013, 33(14), 6047-6059. doi: 10.1523/JNEUROSCI.2052-12.2013 PMID: 23554486
- Grilli, M.; Bortolotto, V. Not only a bad guy: Potential proneurogenic role of the RAGE/NF-κB axis in Alzheimers disease brain. Neural Regen. Res., 2016, 11(12), 1924-1925. doi: 10.4103/1673-5374.197130 PMID: 28197185
- Kalathur, R.K.R.; Giner-Lamia, J.; Machado, S.; Ayasolla, K.R.S.; Futschik, M.E. The unfolded protein response and its potential role in Huntington ́s disease elucidated by a systems biology approach. F1000 Res., 2015, 4, 103. doi: 10.12688/f1000research.6358.1
- Son, S.; Bowie, L.E.; Maiuri, T.; Hung, C.L.K.; Desmond, C.R.; Xia, J.; Truant, R. High-mobility group box 1 links sensing of reactive oxygen species by huntingtin to its nuclear entry. J. Biol. Chem., 2019, 294(6), 1915-1923. doi: 10.1074/jbc.RA117.001440 PMID: 30538129
- Min, H.J.; Ko, E.A.; Wu, J.; Kim, E.S.; Kwon, M.K.; Kwak, M.S.; Choi, J.E.; Lee, J.E.; Shin, J.S. Chaperone-like activity of high-mobility group box 1 protein and its role in reducing the formation of polyglutamine aggregates. J. Immunol., 2013, 190(4), 1797-1806. doi: 10.4049/jimmunol.1202472 PMID: 23303669
- Brambilla, L.; Martorana, F.; Guidotti, G.; Rossi, D. Dysregulation of astrocytic HMGB1 signaling in amyotrophic lateral sclerosis. Front. Neurosci., 2018, 12, 622. doi: 10.3389/fnins.2018.00622 PMID: 30210286
- Gerhard, A.; Pavese, N.; Hotton, G.; Turkheimer, F.; Es, M.; Hammers, A.; Eggert, K.; Oertel, W.; Banati, R.B.; Brooks, D.J. In vivo imaging of microglial activation with 11C(R)-PK11195 PET in idiopathic Parkinsons disease. Neurobiol. Dis., 2006, 21(2), 404-412. doi: 10.1016/j.nbd.2005.08.002 PMID: 16182554
- Theodore, S.; Cao, S.; McLean, P.J.; Standaert, D.G. Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J. Neuropathol. Exp. Neurol., 2008, 67(12), 1149-1158. doi: 10.1097/NEN.0b013e31818e5e99 PMID: 19018246
- Williams-Gray, C.H.; Wijeyekoon, R.; Yarnall, A.J.; Lawson, R.A.; Breen, D.P.; Evans, J.R.; Cummins, G.A.; Duncan, G.W.; Khoo, T.K.; Burn, D.J.; Barker, R.A. S erum immune markers and disease progression in an incident P arkinsons disease cohort (ICICLE‐PD). Mov. Disord., 2016, 31(7), 995-1003. doi: 10.1002/mds.26563 PMID: 26999434
- Imamura, K.; Hishikawa, N.; Sawada, M.; Nagatsu, T.; Yoshida, M.; Hashizume, Y. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinsons disease brains. Acta Neuropathol., 2003, 106(6), 518-526. doi: 10.1007/s00401-003-0766-2 PMID: 14513261
- Santoro, M.; Maetzler, W.; Stathakos, P.; Martin, H.L.; Hobert, M.A.; Rattay, T.W.; Gasser, T.; Forrester, J.V.; Berg, D.; Tracey, K.J.; Riedel, G.; Teismann, P. In-vivo evidence that high mobility group box 1 exerts deleterious effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model and Parkinsons disease which can be attenuated by glycyrrhizin. Neurobiol. Dis., 2016, 91, 59-68. doi: 10.1016/j.nbd.2016.02.018 PMID: 26921471
- Lv, R.; Du, L.; Liu, X.; Zhou, F.; Zhang, Z.; Zhang, L. Rosmarinic acid attenuates inflammatory responses through inhibiting HMGB1/TLR4/NF-κB signaling pathway in a mouse model of Parkinsons disease. Life Sci., 2019, 223, 158-165. doi: 10.1016/j.lfs.2019.03.030 PMID: 30880023
- Ren, Q.; Jiang, X.; Paudel, Y.N.; Gao, X.; Gao, D.; Zhang, P.; Sheng, W.; Shang, X.; Liu, K.; Zhang, X.; Jin, M. Co-treatment with natural HMGB1 inhibitor Glycyrrhizin exerts neuroprotection and reverses Parkinsons disease like pathology in Zebrafish. J. Ethnopharmacol., 2022, 292, 115234. doi: 10.1016/j.jep.2022.115234 PMID: 35358621
- Gan, P.; Ding, L.; Hang, G.; Xia, Q.; Huang, Z.; Ye, X.; Qian, X. Oxymatrine attenuates dopaminergic neuronal damage and microglia-mediated neuroinflammation through Cathepsin D-dependent HMGB1/TLR4/NF-KB pathway in Parkinsons disease. Front. Pharmacol., 2020, 11, 776. doi: 10.3389/fphar.2020.00776 PMID: 32528295
- Tian, Y.; Cao, Y.; Chen, R.; Jing, Y.; Xia, L.; Zhang, S.; Xu, H.; Su, Z. HMGB1 A box protects neurons by potently inhibiting both microglia and T cell-mediated inflammation in a mouse Parkinsons disease model. Clin. Sci., 2020, 134(15), 2075-2090. doi: 10.1042/CS20200553 PMID: 32706028
- More, S.V.; Kumar, H.; Kim, I.S.; Song, S.Y.; Choi, D.K. Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinsons disease. Mediators Inflamm., 2013, 2013, 952375. doi: 10.1155/2013/952375
- Dehay, B.; Bourdenx, M.; Gorry, P.; Przedborski, S.; Vila, M.; Hunot, S.; Singleton, A.; Olanow, C.W.; Merchant, K.M.; Bezard, E.; Petsko, G.A.; Meissner, W.G. Targeting α-synuclein for treatment of Parkinsons disease: mechanistic and therapeutic considerations. Lancet Neurol., 2015, 14(8), 855-866. doi: 10.1016/S1474-4422(15)00006-X PMID: 26050140
- Bennett, M.C. The role of α-synuclein in neurodegenerative diseases. Pharmacol. Ther., 2005, 105(3), 311-331. doi: 10.1016/j.pharmthera.2004.10.010 PMID: 15737408
- Lindersson, E.K.; Højrup, P.; Gai, W.P.; Locker, D.; Martin, D.; Jensen, P.H. alpha-Synuclein filaments bind the transcriptional regulator HMGB-1. Neuroreport, 2004, 15(18), 2735-2739. PMID: 15597044
- Song, J.X.; Lu, J.H.; Liu, L.F.; Chen, L.L.; Durairajan, S.S.K.; Yue, Z.; Zhang, H.Q.; Li, M. HMGB1 is involved in autophagy inhibition caused by SNCA/α-synuclein overexpression. Autophagy, 2014, 10(1), 144-154. doi: 10.4161/auto.26751 PMID: 24178442
- Yan, D.; Ma, Z.; Liu, C.; Wang, C.; Deng, Y.; Liu, W.; Xu, B. Corynoxine B ameliorates HMGB1-dependent autophagy dysfunction during manganese exposure in SH-SY5Y human neuroblastoma cells. Food Chem. Toxicol., 2019, 124, 336-348. doi: 10.1016/j.fct.2018.12.027 PMID: 30578841
- Liu, J.; Liu, W.; Yang, H. Balancing apoptosis and autophagy for Parkinsons disease therapy: Targeting BCL-2. ACS Chem. Neurosci., 2019, 10(2), 792-802. doi: 10.1021/acschemneuro.8b00356 PMID: 30400738
- Tang, D.; Kang, R.; Livesey, K.M.; Cheh, C.W.; Farkas, A.; Loughran, P.; Hoppe, G.; Bianchi, M.E.; Tracey, K.J.; Zeh, H.J., III; Lotze, M.T. Endogenous HMGB1 regulates autophagy. J. Cell Biol., 2010, 190(5), 881-892. doi: 10.1083/jcb.200911078 PMID: 20819940
- Angelopoulou, E.; Piperi, C.; Papavassiliou, A.G. High-mobility group box 1 in Parkinsons disease: From pathogenesis to therapeutic approaches. J. Neurochem., 2018, 146(3), 211-218. doi: 10.1111/jnc.14450 PMID: 29676481
- Wang, K.; Zhang, B.; Zhang, B.; Wu, K.; Tian, T.; Yan, W.; Huang, M. Paraquat inhibits autophagy via intensifying the interaction between HMGB1 and α-synuclein. Neurotox. Res., 2022, 40(2), 520-529. doi: 10.1007/s12640-022-00490-x PMID: 35316522
- Guan, Y.; Li, Y.; Zhao, G.; Li, Y. HMGB1 promotes the starvation-induced autophagic degradation of α-synuclein in SH-SY5Y cells Atg 5-dependently. Life Sci., 2018, 202, 1-10. doi: 10.1016/j.lfs.2018.03.031 PMID: 29551576
- Wang, K.; Huang, J.; Xie, W.; Huang, L.; Zhong, C.; Chen, Z. Beclin1 and HMGB1 ameliorate the α-synuclein-mediated autophagy inhibition in PC12 cells. Diagn. Pathol., 2016, 11(1), 15. doi: 10.1186/s13000-016-0459-5 PMID: 26822891
- Langston, J.W.; Ballard, P.; Tetrud, J.W.; Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 1983, 219(4587), 979-980. doi: 10.1126/science.6823561 PMID: 6823561
- Burns, R.S.; LeWitt, P.A.; Ebert, M.H.; Pakkenberg, H.; Kopin, I.J. The clinical syndrome of striatal dopamine deficiency. Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N. Engl. J. Med., 1985, 312(22), 1418-1421. doi: 10.1056/NEJM198505303122203 PMID: 2581135
- Chaturvedi, R.K.; Beal, M.F. Mitochondrial approaches for neuroprotection. Ann. N. Y. Acad. Sci., 2008, 1147(1), 395-412. doi: 10.1196/annals.1427.027 PMID: 19076459
- Panov, A.; Dikalov, S.; Shalbuyeva, N.; Taylor, G.; Sherer, T.; Greenamyre, J.T. Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J. Biol. Chem., 2005, 280(51), 42026-42035. doi: 10.1074/jbc.M508628200 PMID: 16243845
- Borland, M.K.; Trimmer, P.A.; Rubinstein, J.D.; Keeney, P.M.; Mohanakumar, K.P.; Liu, L.; Bennett, J.P. Jr Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinsons disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells. Mol. Neurodegener., 2008, 3(1), 21. doi: 10.1186/1750-1326-3-21 PMID: 19114014
- Qi, L.; Sun, X.; Li, F.E.; Zhu, B.S.; Braun, F.K.; Liu, Z.Q.; Tang, J.L.; Wu, C.; Xu, F.; Wang, H.H.; Velasquez, L.A.; Zhao, K.; Lei, F.R.; Zhang, J.G.; Shen, Y.T.; Zou, J.X.; Meng, H.M.; An, G.L.; Yang, L.; Zhang, X.D. HMGB1 promotes mitochondrial dysfunction-triggered striatal neurodegeneration via autophagy and apoptosis activation. PLoS One, 2015, 10(11), e0142901. doi: 10.1371/journal.pone.0142901 PMID: 26565401
Supplementary files
