Delivery of Agarose-aided Sprays to the Posterior Nose for Mucosa Immunization and Short-term Protection against Infectious Respiratory Diseases
- Authors: Seifelnasr A.1, Talaat M.1, Si X.2, Xi J.1
-
Affiliations:
- Department of Biomedical Engineering, University of Massachusetts
- Department of Aerospace, Industrial, and Mechanical Engineering,, California Baptist University,
- Issue: Vol 25, No 6 (2024)
- Pages: 787-798
- Section: Biotechnology
- URL: https://rjeid.com/1389-2010/article/view/644893
- DOI: https://doi.org/10.2174/1389201024666230801142913
- ID: 644893
Cite item
Full Text
Abstract
Aim:The study aimed to deliver sprays to the posterior nose for mucosa immunization or short-term protection.
Background:Respiratory infectious diseases often enter the human body through the nose. Sars- Cov-2 virus preferentially binds to the ACE2-rich tissue cells in the Nasopharynx (NP). Delivering medications to the nose, especially to the NP region, provides either a short-term protective/ therapeutic layer or long-term mucosa immunization. Hydrogel-aided medications can assist film formation, prolong film life, and control drug release. However, conventional nasal sprays have failed to dispense mediations to the posterior nose, with most sprays lost in the nasal valve and front turbinate.
Objective:The objective of the study was to develop a practical delivery system targeting the posterior nose and quantify the dosimetry distribution of agarose-saline solutions in the nasal cavity.
Methods:The solution viscosities with various hydrogel concentrations (0.1-1%) were measured at different temperatures. Dripping tests on a vertical plate were conducted to understand the hydrogel concentration effects on the liquid film stability and mobility. Transparent nasal airway models were used to visualize the nasal spray deposition and liquid film translocation.
Result:Spray dosimetry with different hydrogel concentrations and inhalation flow rates was quantified on a total and regional basis. The solution viscosity increased with decreasing temperature, particularly in the range of 60-40oC. The liquid viscosity, nasal spray atomization, and liquid film mobility were highly sensitive to the hydrogel concentration. Liquid film translocations significantly enhanced delivered doses to the caudal turbinate and nasopharynx when the sprays were administered at 60oC under an inhalation flow rate of 11 L/min with hydrogel concentrations no more than 0.5%. On the other hand, sprays with 1% hydrogel or administered at 40oC would significantly compromise the delivered doses to the posterior nose.
Conclusion:Delivering sufficient doses of hydrogel sprays to the posterior nose is feasible by leveraging the post-administration liquid film translocation.
About the authors
Amr Seifelnasr
Department of Biomedical Engineering, University of Massachusetts
Email: info@benthamscience.net
Mohamed Talaat
Department of Biomedical Engineering, University of Massachusetts
Email: info@benthamscience.net
Xiuhua Si
Department of Aerospace, Industrial, and Mechanical Engineering,, California Baptist University,
Email: info@benthamscience.net
Jinxiang Xi
Department of Biomedical Engineering, University of Massachusetts
Author for correspondence.
Email: info@benthamscience.net
References
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273. doi: 10.1038/s41586-020-2012-7 PMID: 32015507
- Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G.; Kim, S.J.; Lee, J.O.; Kim, B.T.; Park, E.C.; Kim, S.I. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 2020, 14(4), 5135-5142. doi: 10.1021/acsnano.0c02823 PMID: 32293168
- Shawon, J.; Akter, Z.; Hossen, M.M.; Akter, Y.; Sayeed, A.; Junaid, M.; Afrose, S.S.; Khan, M.A. Current landscape of natural products against coronaviruses: perspectives in COVID-19 treatment and anti-viral mechanism. Curr. Pharm. Des., 2020, 26(41), 5241-5260. doi: 10.2174/1381612826666201106093912 PMID: 33155902
- Ferrer, G.; Sanchez-Gonzalez, M.A. Effective nasal disinfection as an overlooked strategy in our fight against COVID-19. Ear Nose Throat J., 2021, 1455613211002929. PMID: 33765853
- Figueroa, J.M.; Lombardo, M.E.; Dogliotti, A.; Flynn, L.P.; Giugliano, R.; Simonelli, G.; Valentini, R.; Ramos, A.; Romano, P.; Marcote, M.; Michelini, A.; Salvado, A.; Sykora, E.; Kniz, C.; Kobelinsky, M.; Salzberg, D.M.; Jerusalinsky, D.; Uchitel, O. Efficacy of a nasal spray containing Iota-Carrageenan in the postexposure prophylaxis of COVID-19 in hospital personnel dedicated to patients care with COVID-19 disease. Int. J. Gen. Med., 2021, 14, 6277-6286. doi: 10.2147/IJGM.S328486 PMID: 34629893
- Lavelle, E.C.; Ward, R.W. Mucosal vaccines fortifying the frontiers. Nat. Rev. Immunol., 2022, 22(4), 236-250. doi: 10.1038/s41577-021-00583-2 PMID: 34312520
- Guo, Y.; Laube, B.; Dalby, R. The effect of formulation variables and breathing patterns on the site of nasal deposition in an anatomically correct model. Pharm. Res., 2005, 22(11), 1871-1878. doi: 10.1007/s11095-005-7391-9 PMID: 16091994
- Li, Q.; Shao, X.; Dai, X.; Guo, Q.; Yuan, B.; Liu, Y.; Jiang, W. Recent trends in the development of hydrogel therapeutics for the treatment of central nervous system disorders. NPG Asia Mater., 2022, 14(1), 14. doi: 10.1038/s41427-022-00362-y
- Udeni Gunathilake, T.; Ching, Y.; Chuah, C. Enhancement of curcumin bioavailability using nanocellulose reinforced chitosan hydrogel. Polymers (Basel), 2017, 9(12), 64. doi: 10.3390/polym9020064 PMID: 30970742
- Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Target. Ther., 2021, 6(1), 426. doi: 10.1038/s41392-021-00830-x PMID: 34916490
- Buwalda, S.J.; Vermonden, T.; Hennink, W.E. Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules, 2017, 18(2), 316-330. doi: 10.1021/acs.biomac.6b01604 PMID: 28027640
- Nikjoo, D.; van der Zwaan, I.; Brülls, M.; Tehler, U.; Frenning, G. Hyaluronic acid hydrogels for controlled pulmonary drug deliverya particle engineering approach. Pharmaceutics, 2021, 13(11), 1878. doi: 10.3390/pharmaceutics13111878 PMID: 34834293
- Stocke, N.A.; Arnold, S.M.; Zach Hilt, J. Responsive hydrogel nanoparticles for pulmonary delivery. J. Drug Deliv. Sci. Technol., 2015, 29, 143-151. doi: 10.1016/j.jddst.2015.06.013 PMID: 26339298
- Ousingsawat, J.; Centeio, R.; Cabrita, I.; Talbi, K.; Zimmer, O.; Graf, M.; Göpferich, A.; Schreiber, R.; Kunzelmann, K. Airway delivery of hydrogel-encapsulated niclosamide for the treatment of inflammatory airway aisease. Int. J. Mol. Sci., 2022, 23(3), 1085. doi: 10.3390/ijms23031085 PMID: 35163010
- Cunha, S.; Swedrowska, M.; Bellahnid, Y.; Xu, Z.; Sousa Lobo, J.M.; Forbes, B.; Silva, A.C. Thermosensitive In situ hydrogels of rivastigmine-loaded lipid-based nanosystems for nose-to-brain delivery: characterisation, biocompatibility, and drug deposition studies. Int. J. Pharm., 2022, 620, 121720. doi: 10.1016/j.ijpharm.2022.121720 PMID: 35413397
- Akel, H.; Ismail, R.; Csóka, I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimers disease. Eur. J. Pharm. Biopharm., 2020, 148, 38-53. doi: 10.1016/j.ejpb.2019.12.014 PMID: 31926222
- Cheng, S.; Wang, H.; Pan, X.; Zhang, C.; Zhang, K.; Chen, Z.; Dong, W.; Xie, A.; Qi, X. Dendritic hydrogels with robust inherent antibacterial properties for promoting bacteria-infected wound healing. ACS Appl. Mater. Interfaces, 2022, 14(9), 11144-11155. doi: 10.1021/acsami.1c25014 PMID: 35195389
- Xiang, Y.; Qi, X.; Cai, E.; Zhang, C.; Wang, J.; Lan, Y.; Deng, H.; Shen, J.; Hu, R. Highly efficient bacteria-infected diabetic wound healing employing a melanin-reinforced biopolymer hydrogel. Chem. Eng. J., 2023, 460, 141852. doi: 10.1016/j.cej.2023.141852
- Costa-Almeida, R.; Calejo, I.; Altieri, R.; Domingues, R.M.A.; Giordano, E.; Reis, R.L.; Gomes, M.E. Exploring platelet lysate hydrogel-coated suture threads as biofunctional composite living fibers for cell delivery in tissue repair. Biomed. Mater., 2019, 14(3), 034104. doi: 10.1088/1748-605X/ab0de6 PMID: 30844766
- Salati, M.A.; Khazai, J.; Tahmuri, A.M.; Samadi, A.; Taghizadeh, A.; Taghizadeh, M.; Zarrintaj, P.; Ramsey, J.D.; Habibzadeh, S.; Seidi, F.; Saeb, M.R.; Mozafari, M. Agarose-based biomaterials: opportunities and challenges in cartilage tissue engineering. Polymers (Basel), 2020, 12(5), 1150. doi: 10.3390/polym12051150 PMID: 32443422
- Kim, C.; Jeong, D.; Kim, S.; Kim, Y.; Jung, S. Cyclodextrin functionalized agarose gel with low gelling temperature for controlled drug delivery systems. Carbohydr. Polym., 2019, 222, 115011. doi: 10.1016/j.carbpol.2019.115011 PMID: 31320040
- Hafezi, M.; Qin, L.; Mahmoodi, P.; Dong, G. Osmosis effect on protein sustained release of Agarose hydrogel for anti-friction performance. Tribol. Int., 2019, 132, 108-117. doi: 10.1016/j.triboint.2018.12.013
- Hasan, M.L.; Padalhin, A.R.; Kim, B.; Lee, B.T. Preparation and evaluation of BCP‐CSD‐agarose composite microsphere for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater., 2019, 107(7), 2263-2272. doi: 10.1002/jbm.b.34318 PMID: 30676689
- Tripathi, A.; Kumar, A. Multi-featured macroporous agarose-alginate cryogel: synthesis and characterization for bioengineering applications. Macromol. Biosci., 2011, 11(1), 22-35. doi: 10.1002/mabi.201000286 PMID: 21077225
- Awadhiya, A.; Kumar, D.; Rathore, K.; Fatma, B.; Verma, V. Synthesis and characterization of agarosebacterial cellulose biodegradable composites. Polym. Bull., 2017, 74(7), 2887-2903. doi: 10.1007/s00289-016-1872-3
- Pearl, G.S.; Check, I.J.; Hunter, R.L. Agarose electrophoresis and immunonephelometric quantitation of cerebrospinal fluid immunoglobulins: criteria for application in the diagnosis of neurologic disease. Am. J. Clin. Pathol., 1984, 81(5), 575-580. doi: 10.1093/ajcp/81.5.575 PMID: 6720628
- Zheng, H.; Lang, Y.; Yu, J.; Han, Z.; Chen, B.; Wang, Y. Affinity binding of aptamers to agarose with DNA tetrahedron for removal of hepatitis B virus surface antigen. Colloids Surf. B Biointerfaces, 2019, 178, 80-86. doi: 10.1016/j.colsurfb.2019.02.040 PMID: 30844563
- Bachelder, E.M.; Beaudette, T.T.; Broaders, K.E.; Dashe, J.; Fréchet, J.M.J. Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications. J. Am. Chem. Soc., 2008, 130(32), 10494-10495. doi: 10.1021/ja803947s PMID: 18630909
- Broaders, K.E.; Cohen, J.A.; Beaudette, T.T.; Bachelder, E.M.; Fréchet, J.M.J. Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy. Proc. Natl. Acad. Sci. USA, 2009, 106(14), 5497-5502. doi: 10.1073/pnas.0901592106 PMID: 19321415
- Chen, N.; Johnson, M.M.; Collier, M.A.; Gallovic, M.D.; Bachelder, E.M.; Ainslie, K.M. Tunable degradation of acetalated dextran microparticles enables controlled vaccine adjuvant and antigen delivery to modulate adaptive immune responses. J. Control. Release, 2018, 273, 147-159. doi: 10.1016/j.jconrel.2018.01.027 PMID: 29407676
- Kretzer, C.; Shkodra, B.; Klemm, P.; Jordan, P.M.; Schröder, D.; Cinar, G.; Vollrath, A.; Schubert, S.; Nischang, I.; Hoeppener, S.; Stumpf, S.; Banoglu, E.; Gladigau, F.; Bilancia, R.; Rossi, A.; Eggeling, C.; Neugebauer, U.; Schubert, U.S.; Werz, O. Ethoxy acetalated dextran-based nanocarriers accomplish efficient inhibition of leukotriene formation by a novel FLAP antagonist in human leukocytes and blood. Cell. Mol. Life Sci., 2022, 79(1), 40. doi: 10.1007/s00018-021-04039-7 PMID: 34971430
- Meenach, S.A.; Kim, Y.J.; Kauffman, K.J.; Kanthamneni, N.; Bachelder, E.M.; Ainslie, K.M. Synthesis, optimization, and characterization of camptothecin-loaded acetalated dextran porous microparticles for pulmonary delivery. Mol. Pharm., 2012, 9(2), 290-298. doi: 10.1021/mp2003785 PMID: 22149217
- Xi, J. Development and challenges of nasal spray vaccines for short-term COVID-19 protection. Curr. Pharm. Biotechnol., 2022, 23(14), 1671-1677. doi: 10.2174/1389201023666220307092527 PMID: 35255788
- Xi, J.; Si, X.A. A next‐generation vaccine for broader and long‐lasting COVID‐19 protection. MedComm, 2022, 3(2), e138. doi: 10.1002/mco2.138 PMID: 35509871
- Xi, J.; Lei, L.R.; Zouzas, W.; April Si, X. Nasally inhaled therapeutics and vaccination for COVID‐19: Developments and challenges. MedComm, 2021, 2(4), 569-586. doi: 10.1002/mco2.101 PMID: 34977869
- Jabbal-Gill, I. Nasal vaccine innovation. J. Drug Target., 2010, 18(10), 771-786. doi: 10.3109/1061186X.2010.523790 PMID: 21047271
- Rahman, M.; Akter, R.; Behl, T.; Chowdhury, M.A.R.; Mohammed, M.; Bulbul, I.J.; Elshenawy, S.E.; Kamal, M.A. COVID-19 outbreak and emerging management through pharmaceutical therapeutic strategy. Curr. Pharm. Des., 2020, 26(41), 5224-5240. doi: 10.2174/18734286MTA4xMTM7z PMID: 32660401
- Glezen, W.P. The new nasal spray influenza vaccine. Pediatr. Infect. Dis. J., 2001, 20(8), 731-732. doi: 10.1097/00006454-200108000-00002 PMID: 11734731
- Xi, J.; Yuan, J.E.; Zhang, Y.; Nevorski, D.; Wang, Z.; Zhou, Y. Visualization and quantification of nasal and olfactory deposition in a sectional adult nasal airway cast. Pharm. Res., 2016, 33(6), 1527-1541. doi: 10.1007/s11095-016-1896-2 PMID: 26943943
- Inthavong, K.; Fung, M.C.; Yang, W.; Tu, J. Measurements of droplet size distribution and analysis of nasal spray atomization from different actuation pressure. J. Aerosol Med. Pulm. Drug Deliv., 2015, 28(1), 59-67. doi: 10.1089/jamp.2013.1093 PMID: 24914675
- Cheng, Y.S.; Holmes, T.D.; Gao, J.; Guilmette, R.A.; Li, S.; Surakitbanharn, Y.; Rowlings, C. Characterization of nasal spray pumps and deposition pattern in a replica of the human nasal airway. J. Aerosol Med., 2001, 14(2), 267-280. doi: 10.1089/08942680152484199 PMID: 11681658
- Kundoor, V.; Dalby, R.N. Effect of formulation- and administration-related variables on deposition pattern of nasal spray pumps evaluated using a nasal cast. Pharm. Res., 2011, 28(8), 1895-1904. doi: 10.1007/s11095-011-0417-6 PMID: 21499839
- Djupesland, P.G. Nasal drug delivery devices: characteristics and performance in a clinical perspectivea review. Drug Deliv. Transl. Res., 2013, 3(1), 42-62. doi: 10.1007/s13346-012-0108-9 PMID: 23316447
- Neutra, M.R.; Kozlowski, P.A. Mucosal vaccines: the promise and the challenge. Nat. Rev. Immunol., 2006, 6(2), 148-158. doi: 10.1038/nri1777 PMID: 16491139
- Guenezan, J.; Garcia, M.; Strasters, D.; Jousselin, C.; Lévêque, N.; Frasca, D.; Mimoz, O. Povidone Iodine mouthwash, gargle, and nasal spray to reduce nasopharyngeal viral load in patients with COVID-19: a randomized clinical trial. JAMA Otolaryngol. Head Neck Surg., 2021, 147(4), 400-401. doi: 10.1001/jamaoto.2020.5490 PMID: 33538761
- Burton, M.J.; Clarkson, J.E.; Goulao, B.; Glenny, A.M.; McBain, A.J.; Schilder, A.G.; Webster, K.E.; Worthington, H.V. Antimicrobial mouthwashes (gargling) and nasal sprays administered to patients with suspected or confirmed COVID-19 infection to improve patient outcomes and to protect healthcare workers treating them. Cochrane Database Syst. Rev., 2020, 9(9), CD013627. PMID: 32936948
- Garg, P. Role of povidone-iodine gargles in COVID-19 pandemic and a ray of hope for future. J. Family Med. Prim. Care, 2021, 10(10), 3941-3942. doi: 10.4103/jfmpc.jfmpc_2611_20 PMID: 34934711
- Frank, S.; Brown, S.M.; Capriotti, J.A.; Westover, J.B.; Pelletier, J.S.; Tessema, B. In vitro efficacy of a povidone-iodine nasal antiseptic for rapid inactivation of SARS-CoV-2. JAMA Otolaryngol. Head Neck Surg., 2020, 146(11), 1054-1058. doi: 10.1001/jamaoto.2020.3053 PMID: 32940656
- Arefin, M.K.; Rumi, S.K.N.F.; Uddin, A.K.M.N.; Banu, S.S.; Khan, M.; Kaiser, A.; Chowdhury, J.A.; Khan, M.A.S.; Hasan, M.J. Virucidal effect of povidone iodine on COVID-19 in the nasopharynx: an open-label randomized clinical trial. Indian J. Otolaryngol. Head Neck Surg., 2022, 74(S2)(Suppl. 2), 2963-2967. doi: 10.1007/s12070-021-02616-7 PMID: 34026595
- Frank, S.; Capriotti, J.; Brown, S.M.; Tessema, B. Povidone-Iodine use in sinonasal and oral cavities: a review of safety in the COVID-19 era. Ear Nose Throat J., 2020, 99(9), 586-593. doi: 10.1177/0145561320932318 PMID: 32520599
- Zou, L.; Ruan, F.; Huang, M.; Liang, L.; Huang, H.; Hong, Z.; Yu, J.; Kang, M.; Song, Y.; Xia, J.; Guo, Q.; Song, T.; He, J.; Yen, H.L.; Peiris, M.; Wu, J. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med., 2020, 382(12), 1177-1179. doi: 10.1056/NEJMc2001737 PMID: 32074444
- Butowt, R.; Bilinska, K. SARS-CoV-2: Olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem. Neurosci., 2020, 11(9), 1200-1203. doi: 10.1021/acschemneuro.0c00172 PMID: 32283006
- Sungnak, W.; Huang, N.; Bécavin, C.; Berg, M.; Queen, R.; Litvinukova, M.; Talavera-López, C.; Maatz, H.; Reichart, D.; Sampaziotis, F.; Worlock, K.B.; Yoshida, M.; Barnes, J.L. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med., 2020, 26(5), 681-687. doi: 10.1038/s41591-020-0868-6 PMID: 32327758
- Seifelnasr, A.; Talaat, M.; Ramaswamy, P.; Si, X.A.; Xi, J. A supine position and dual applications enhance spray dosing to posterior nose: paving the way for mucosal immunization. Pharmaceutics, 2023, 15(2), 359. doi: 10.3390/pharmaceutics15020359 PMID: 36839681
- Xi, J.; Kim, J.; Si, X.A.; Corley, R.A.; Zhou, Y. Modeling of inertial deposition in scaled models of rat and human nasal airways: Towards in vitro regional dosimetry in small animals. J. Aerosol Sci., 2016, 99, 78-93. doi: 10.1016/j.jaerosci.2016.01.013
- Si, X.A.; Sami, M.; Xi, J. Liquid film translocation significantly enhances nasal spray delivery to olfactory region: a numerical simulation study. Pharmaceutics, 2021, 13(6), 903. doi: 10.3390/pharmaceutics13060903 PMID: 34207109
- Sung, Y.K.; Kim, S.W. Recent advances in polymeric drug delivery systems. Biomater. Res., 2020, 24(1), 12. doi: 10.1186/s40824-020-00190-7 PMID: 32537239
- Mahmood, A.; Patel, D.; Hickson, B.; DesRochers, J.; Hu, X. Recent progress in biopolymer-based hydrogel materials for biomedical applications. Int. J. Mol. Sci., 2022, 23(3), 1415. doi: 10.3390/ijms23031415 PMID: 35163339
- Viner, R.M.; Ward, J.L.; Hudson, L.D.; Ashe, M.; Patel, S.V.; Hargreaves, D.; Whittaker, E. Systematic review of reviews of symptoms and signs of COVID-19 in children and adolescents. Arch. Dis. Child., 2021, 106(8), 802-807. doi: 10.1136/archdischild-2020-320972 PMID: 33334728
- Zare-Zardini, H.; Soltaninejad, H.; Ferdosian, F.; Hamidieh, A.A.; Memarpoor-Yazdi, M. Coronavirus disease 2019 (COVID-19) in children: Prevalence, diagnosis, clinical symptoms, and treatment. Int. J. Gen. Med., 2020, 13, 477-482. doi: 10.2147/IJGM.S262098 PMID: 32848446
- Perkuić, M.; Niić Nodilo, L.; Ugrina, I.; poljarić, D.; Jakobuić Brala, C.; Pepić, I.; Lovrić, J.; Safundić Kučuk, M.; Trenkel, M.; Scherließ, R.; Zadravec, D.; Kalogjera, L.; Hafner, A. Chitosan-based thermogelling system for nose-to-brain donepezil delivery: optimising formulation properties and nasal deposition profile. Pharmaceutics, 2023, 15(6), 1660. doi: 10.3390/pharmaceutics15061660
- Rabago, D.; Zgierska, A.; Mundt, M.; Barrett, B.; Bobula, J.; Maberry, R. Efficacy of daily hypertonic saline nasal irrigation among patients with sinusitis: a randomized controlled trial. J. Fam. Pract., 2002, 51(12), 1049-1055. PMID: 12540331
- Farrell, N.F.; Klatt-Cromwell, C.; Schneider, J.S. Benefits and safety of nasal saline irrigations in a pandemicwashing COVID-19 away. JAMA Otolaryngol. Head Neck Surg., 2020, 146(9), 787-788. doi: 10.1001/jamaoto.2020.1622 PMID: 32722777
- Head, K.; Snidvongs, K.; Glew, S.; Scadding, G.; Schilder, A.G.; Philpott, C.; Hopkins, C. Saline irrigation for allergic rhinitis. Cochrane Database Syst. Rev., 2018, 6(6), CD012597. PMID: 29932206
- Si, X.; Xi, J.; Kim, J. Effect of laryngopharyngeal anatomy on expiratory airflow and submicrometer particle deposition in human extrathoracic airways. Open J. Fluid Dyn., 2013, 3(4), 286-301. doi: 10.4236/ojfd.2013.34036
- Xi, J.; April Si, X.; Dong, H.; Zhong, H. Effects of glottis motion on airflow and energy expenditure in a human upper airway model. Eur. J. Mech. BFluids, 2018, 72, 23-37. doi: 10.1016/j.euromechflu.2018.04.011
- Xi, J.; Yang, T. Variability in oropharyngeal airflow and aerosol deposition due to changing tongue positions. J. Drug Deliv. Sci. Technol., 2019, 49, 674-682. doi: 10.1016/j.jddst.2019.01.006
- Mead-Hunter, R.; King, A.J.C.; Larcombe, A.N.; Mullins, B.J. The influence of moving walls on respiratory aerosol deposition modelling. J. Aerosol Sci., 2013, 64, 48-59. doi: 10.1016/j.jaerosci.2013.05.006
- Xi, J.; Talaat, M. Nanoparticle deposition in rhythmically moving acinar models with interalveolar septal apertures. Nanomaterials (Basel), 2019, 9(8), 1126. doi: 10.3390/nano9081126 PMID: 31382669
- Shang, Y.D.; Inthavong, K.; Tu, J.Y. Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone. Comput. Fluids, 2015, 114, 141-150. doi: 10.1016/j.compfluid.2015.02.020
Supplementary files
