BAO-Ag-NPs as Promising Suppressor of ET-1/ICAM-1/VCAM-1 Signaling Pathway in ISO-induced AMI in Rats

  • Authors: Mosaad Y.1, Ateyya H.2, Hussein M.3, Moro A.4, Abdel-Wahab E.5, El-Ella A.6, Nassar Z.7
  • Affiliations:
    1. Department of Pharmacy, Practice & Clinical Pharmacy, Faculty of Pharmacy,, Future University
    2. Department of Medical Pharmacology, Faculty of Medicine,, Cairo University
    3. Department of Biochemistry, Faculty of Applied Medical Science, October 6th University
    4. Department of Biophysics, Faculty of Applied Health Sciences,, October 6 University
    5. Department of Biophysics, Faculty of Applied Health Sciences, October 6 University,
    6. Department of Measurements, Photochemistry and Agriculture Applications, National Institute of Laser Enhanced Science,, Cairo University
    7. Medical Laboratory Department, Faculty of Applied Medical Sciences,, October 6 University
  • Issue: Vol 25, No 6 (2024)
  • Pages: 772-786
  • Section: Biotechnology
  • URL: https://rjeid.com/1389-2010/article/view/644889
  • DOI: https://doi.org/10.2174/0113892010256434231010062233
  • ID: 644889

Cite item

Full Text

Abstract

Objectives:Acute myocardial infarction (AMI) is the most prevalent cause of myocardial fibrosis and the leading cause of mortality from cardiovascular disease. The goal of this work was to synthesize Balanites aegyptiaca oil-silver nanoparticles (BAO-Ag-NPs) and evaluate their cardioprotective effect against ISO-induced myocardial infarction in rats, as well as their mechanism.

Materials and Methods:BAO was isolated, and the unsaturated fatty acids were estimated. BAO-Ag-NPs was prepared, LD50 was calculated to evaluate its cardioprotective activity against ISO (85 mg/kg)-induced AMI. Different doses of BAO-Ag-NPs (1/50 LD50; 46.6 mg/kg.b.w and 1/20 LD50; 116.5 mg) were received to the rats.

Results:The total fatty acids and unsaturated fatty acids generated by BAO were 909.63 and 653.47 mg/100 g oil, respectively. Oleic acid methyl ester, 9-octadecenoic acid methyl ester, and 9, 12-Octadecadienoic acid methyl ester were the predominant ingredients, with concentrations of 107.6, 243.42, and 256.77 mg/100 g oil, respectively. According to TEM and DLS examinations, BAO-Ag-NPs have a size of 38.20 ± 2.5 nm and a negative zeta potential of -19.82 ± 0.30 mV, respectively. The LD50 of synthesized BAO-Ag-NPs is 2330 mg. On the other hand, BAOAg- NPs reduce myocardial necrosis by lowering increased BNP, cTnI, CK-MB, TC, TG, MDA, MMP2, TGF-β1, PGE2, and IL-6 levels. Furthermore, BAO-Ag-NPs inhibit the expression of ET-1, ICAM-1, and VCAM-1 genes as well as enhance HDL-C, CAT, and GSH levels when compared to the ISO-treated group of rats. Histopathological findings suggested that BAO-Ag- NPs enhance cardiac function by increasing posterior wall thickness in heart tissues.

Conclusion:BAO-Ag-NPs protect against AMI in vivo by regulating inflammation, excessive autophagy, and oxidative stress, as well as lowering apoptosis via suppression of the ET-1, ICAM-1, and VCAM-1 signaling pathways.

About the authors

Yasser Mosaad

Department of Pharmacy, Practice & Clinical Pharmacy, Faculty of Pharmacy,, Future University

Email: info@benthamscience.net

Hayam Ateyya

Department of Medical Pharmacology, Faculty of Medicine,, Cairo University

Email: info@benthamscience.net

Mohammed Hussein

Department of Biochemistry, Faculty of Applied Medical Science, October 6th University

Email: info@benthamscience.net

Ahmed Moro

Department of Biophysics, Faculty of Applied Health Sciences,, October 6 University

Email: info@benthamscience.net

Ebtsam Abdel-Wahab

Department of Biophysics, Faculty of Applied Health Sciences, October 6 University,

Email: info@benthamscience.net

Amr El-Ella

Department of Measurements, Photochemistry and Agriculture Applications, National Institute of Laser Enhanced Science,, Cairo University

Email: info@benthamscience.net

Zahraa Nassar

Medical Laboratory Department, Faculty of Applied Medical Sciences,, October 6 University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Geng, Z.H.; Huang, L.; Song, M.B.; Song, Y.M. Protective effect of a polysaccharide from Salvia miltiorrhiza on isoproterenol (ISO)-induced myocardial injury in rats. Carbohydr. Polym., 2015, 132, 638-642. doi: 10.1016/j.carbpol.2015.06.086 PMID: 26256391
  2. Dhivya, V.; Priya, L.B.; Chirayil, H.T.; Sathiskumar, S.; Huang, C.Y.; Padma, V.V. Piperine modulates isoproterenol induced myocardial ischemia through antioxidant and anti-dyslipidemic effect in male Wistar rats. Biomed. Pharmacother., 2017, 87, 705-713. doi: 10.1016/j.biopha.2017.01.002 PMID: 28088738
  3. Abou-Taleb, N.I.; Elblasy, O.A.; Elbesoumy, E.A.; Basuny, H.I.; Elhamadi, E.A.; Nasr eldin, M.S.; Emara, A.A.; Ali, A.A.; Salem, M.A.; Ahmed, F.M.; Hussein, M.A. Mechanism of antiangiogenic and antioxidant activity of newly synthesized CAMBA in ehrlich ascites carcinoma-bearing mice. Asian J. Chem., 2021, 33(10), 2465-2471. doi: 10.14233/ajchem.2021.23310
  4. Elgizawy, H.A.; Ali, A.A.; Hussein, M.A. Resveratrol: Isolation, and its nanostructured lipid carriers, inhibits cell proliferation, induces cell apoptosis in certain human cell lines carcinoma and exerts protective effect against paraquat-induced hepatotoxicity. J. Med. Food, 2021, 24(1), 89-100. doi: 10.1089/jmf.2019.0286 PMID: 32580673
  5. El-gizawy, H.A.E.; Hussein, M.A. Isolation, structure elucidation of ferulic and coumaric acids from fortunella japonica swingle leaves and their structure antioxidant activity relationship. Free Radic. Antioxid., 2016, 7(1), 23-30. doi: 10.5530/fra.2017.1.4
  6. Boarescu, P.M.; Chirilă, I.; Bulboacă, A.E.; Pârvu, A.; Gheban, D.; Sorana, S.D. Isoproterenol induced myocardial infarction in rats: dose identification. Clujul Med., 2018, 91, S39-S40.
  7. Wang, N.P.; Wang, Z.F.; Tootle, S.; Philip, T.; Zhao, Z.Q. Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction. Br. J. Pharmacol., 2012, 167(7), 1550-1562. doi: 10.1111/j.1476-5381.2012.02109.x PMID: 22823335
  8. Hussein, M.A. Synthesis of some novel triazoloquinazolines and triazinoquinazolines and their evaluation for anti-inflammatory activity. Med. Chem. Res., 2012, 21(8), 1876-1886. doi: 10.1007/s00044-011-9707-0
  9. Abdel Maksoud, H.A.; Elharrif, M.G.; Mahfouz, M.K.; Omnia, M.A.; Abdullah, M.H.; Eltabey, M.E. Biochemical study on occupational inhalation of benzene vapours in petrol station. Respir. Med. Case Rep., 2019, 27, 100836. doi: 10.1016/j.rmcr.2019.100836 PMID: 31008048
  10. Hussein, M.A. Anti-obesity, antiatherogenic, anti-diabetic and antioxidant activities of J. montana ethanolic formulation in obese diabetic rats fed high-fat diet. Free Radic. Antioxid., 2011, 1(1), 49-60. doi: 10.5530/ax.2011.1.9
  11. Ezzat, S.M.; Abdel Motaal, A.; El Awdan, S.A.W. In vitro and in vivo antidiabetic potential of extracts and a furostanol saponin from Balanites aegyptiaca. Pharm. Biol., 2017, 55(1), 1931-1936. doi: 10.1080/13880209.2017.1343358 PMID: 28659002
  12. Shafik, N.H.; Shafek, R.E.; Michel, H.N.; Eskander, E.F. Phytochemical study and antihyperglycemic effect of Balanites aegyptiaca kernel extract on alloxan induced diabetic male rat. J. Chem. Pharm. Res., 2016, 8, 128-136.
  13. Hassan, D.M.; Anigo, K.M.; Umar, I.A.; Alegbejo, J.O. Evaluation of phytoconstituent of Balanites aegyptiaca leaves and fruit-mesocarp extracts. M.O.J. Bioorg. Org. Chem, 2017, 1, 228-232.
  14. Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol., 2020, 10, 1614. doi: 10.3389/fphar.2019.01614 PMID: 32116665
  15. Khamis, G.; Saleh, A.M.; Habeeb, T.H.; Hozzein, W.N.; Wadaan, M.A.M.; Papenbrock, J.; AbdElgawad, H. Provenance effect on bioactive phytochemicals and nutritional and health benefits of the desert date Balanites aegyptiaca. J. Food Biochem., 2020, 44(6), e13229. doi: 10.1111/jfbc.13229 PMID: 32250478
  16. Hussein, M.A.; Abdel‐Gawad, S.M. In vivo hepato-protective properties of purslane extracts on paracetamol-induced liver damage. Malays J. Nutr., 2010, 16(1), 161-70. doi: 10.1023/A:1015237612018 PMID: 12049150
  17. Al Ashaal, H.A.; Farghaly, A.A.; Abd El Aziz, M.M.; Ali, M.A. Phytochemical investigation and medicinal evaluation of fixed oil of Balanites aegyptiaca fruits (Balantiaceae). J. Ethnopharmacol., 2010, 127(2), 495-501. doi: 10.1016/j.jep.2009.10.007 PMID: 19833185
  18. Hussein, M.A.; Ismail, N.E.; Mohamed, A.H.; Borik, R.M.; Ali, A.A.; Mosaad, Y.O. Plasma Phospholipids: A Promising Simple Biochemical Parameter to Evaluate COVID-19 Infection Severity. Bioinform Biol Insights, 2021, 15, 11779322211055891.
  19. Hussein, MA. Cardioprotective effects of astaxanthin against isoproterenol-induced cardiotoxicity in rats. J. Nutr. Food Sci., 2014, 5(1), 335. doi: 10.4172/2155-9600.1000335
  20. Kwon, B.; Lee, H.K.; Querfurth, H.W. Oleate prevents palmitate-induced mitochondrial dysfunction, insulin resistance and inflammatory signaling in neuronal cells. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(7), 1402-1413. doi: 10.1016/j.bbamcr.2014.04.004 PMID: 24732014
  21. Mohamad, E.A.; Mohamed, Z.N.; Hussein, M.A.; Elneklawi, M.S. GANE can improve lung fibrosis by reducing inflammation via promoting p38MAPK/TGF-β1/NF-κB signaling pathway downregulation. ACS Omega, 2022, 7(3), 3109-3120. doi: 10.1021/acsomega.1c06591 PMID: 35097306
  22. Asgharzadeh, F.; Hashemzadeh, A.; Yaghoubi, A.; Avan, A.; Nazari, S.E.; Soleimanpour, S.; Hassanian, S.M.; Ferns, G.A.; Rahmani, F.; Khazaei, M. Therapeutic effects of silver nanoparticle containing sulfasalazine on DSS-induced colitis model. J. Drug Deliv. Sci. Technol., 2021, 61, 102133. doi: 10.1016/j.jddst.2020.102133
  23. Yang, Y.; Guo, L.; Wang, Z.; Liu, P.; Liu, X.; Ding, J.; Zhou, W. Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and Re-polarization. Biomaterials, 2021, 264, 120390. doi: 10.1016/j.biomaterials.2020.120390 PMID: 32980634
  24. Salvadó, L.; Coll, T.; Gómez-Foix, A.M.; Salmerón, E.; Barroso, E.; Palomer, X.; Vázquez-Carrera, M. Oleate prevents saturatedfatty-acid-induced ER stress, inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia, 2013, 56(6), 1372-1382. doi: 10.1007/s00125-013-2867-3 PMID: 23460021
  25. Baimark, Y. Preparation of Surfactant-free Linear and Star-shaped Poly(L-lactide)-b-methoxy Polyethylene Glycol Nanoparticles for Drug Delivery. J. Appl. Sci. (Faisalabad), 2012, 12(3), 263-270. doi: 10.3923/jas.2012.263.270
  26. Schulte, E.; Weber, K. Schnelle herstellung der fettsaeuremethylester aus fetten mit trimethylsulfoniumhydroxid oder natriummethylat. Fat Sci Technol, 1989, 91, 181-183.
  27. Yang, G.; Wang, C.; Hong, F.; Yang, X.; Cao, Z. Preparation and characterization of BC/PAM-AgNPs nanocomposites for antibacterial applications. Carbohydr. Polym., 2015, 115, 636-642. doi: 10.1016/j.carbpol.2014.09.042 PMID: 25439942
  28. Paula, A.P.; Carmen, L.M.; Antelo, A.; Alvarez, M.; Cagide, E.; Vilariño, N.; Vieytes, M.R.; Botana, L.M. Acute Oral Toxicity of Tetrodotoxin in Mice: Determination of Lethal Dose 50 (LD50) and No Observed Adverse Effect Level (NOAEL). Toxins, 2017, 9, 1-7. doi: 10.3390/toxins9030075
  29. Boshra, S.A.; Hussein, M.A. Cranberry extract as a supplemented food in treatment of oxidative stress and breast cancer induced by N-Methyl-N-Nitrosourea in female virgin rats. Int. J. Phytomed., 2016, 8, 217-227.
  30. Fossati, P.; Prencipe, L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin. Chem., 1982, 28(10), 2077-2080. doi: 10.1093/clinchem/28.10.2077 PMID: 6812986
  31. Allain, C.C.; Poon, L.S.; Chan, C.S.G.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem., 1974, 20(4), 470-475. doi: 10.1093/clinchem/20.4.470 PMID: 4818200
  32. Burstein, M.; Scholnick, H.R.; Morfin, R. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J. Lipid Res., 1970, 11(6), 583-595. doi: 10.1016/S0022-2275(20)42943-8 PMID: 4100998
  33. Feng, D.; Ling, W.H.; Duan, R.D. Lycopene suppresses LPS-induced NO and IL-6 production by inhibiting the activation of ERK, p38MAPK, and NF-κB in macrophages. Inflamm. Res., 2010, 59(2), 115-121. doi: 10.1007/s00011-009-0077-8 PMID: 19693648
  34. Bancroft, G.D.; Steven, A. Theory and Practice of Histological Technique, 4th ed; Churchill Livingstone: New York, 1983, pp. 99-112.
  35. Parveen, K.; Banse, V.; Ledwani, L. Green synthesis of nanoparticles: Their advantages and disadvantages. AIP Conf. Proc., 1724, 2016. doi: 10.1063/1.49451688
  36. Guilger-Casagrande, M.; Lima, R. Synthesis of silver Nanoparticles mediated by fungi: A review. Front. Bioeng. Biotechnol., 2019, 7, 287. doi: 10.3389/fbioe.2019.00287 PMID: 31696113
  37. Ansari, M.A. One-pot facile green synthesis of silver nanoparticles using seed extract of phoenix dactylifera and their bactericidal potential against MRSA. In: Evid Based Complement Altern Med; , 2018; pp. 1860280-1860289. doi: 10.1155/2018/1860280
  38. Borik, R.M.; Hussein, M.A. Synthesis, molecular docking, biological potentials, and structure activity relationship of new quinazoline and quinazoline-4-one derivatives. Asian J. Chem., 2021, 33(2), 423-438. doi: 10.14233/ajchem.2021.23036
  39. Han, S.H.; Yang, B.S.; Kim, H.J. Effectiveness of aromatherapy massage on abdominal obesity among middle aged women. Taehan Kanho Hakhoe Chi, 2003, 33(6), 839-846. doi: 10.4040/jkan.2003.33.6.839 PMID: 15314402
  40. Roy, A.; Bulut, O.; Some, S.; Mandal, A.K.; Yilmaz, M.D. Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. Royal Society of Chemistry, 2019, 9(5), 2673-2702. doi: 10.1039/C8RA08982E
  41. Zhao, X.; Xia, Y.; Li, Q.; Ma, X.; Quan, F.; Geng, C.; Han, Z. Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloids Surf. A Physicochem. Eng. Asp., 2014, 444, 180-188. doi: 10.1016/j.colsurfa.2013.12.008
  42. Mukherjee, P.; Roy, M.; Mandal, B.P.; Dey, G.K.; Mukherjee, P.K.; Ghatak, J.; Tyagi, A.K.; Kale, S.P. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology, 2008, 19(7), 075103. doi: 10.1088/0957-4484/19/7/075103 PMID: 21817628
  43. Gasmalla, H.B.; Idris, A.M.; Shinger, M.I.; Qin, D.; Shan, D.; Lu, X. Balanites aegyptiaca oil synthesized iron oxide nanoparticles: Characterization and antibacterial activity. J. Biomater. Nanobiotechnol., 2016, 7(3), 154-165. doi: 10.4236/jbnb.2016.73016
  44. Vlaeminck, B.; Dufour, C.; van Vuuren, A.M.; Cabrita, A.R.J.; Dewhurst, R.J.; Demeyer, D.; Fievez, V. Use of odd and branched-chain fatty acids in rumen contents and milk as a potential microbial marker. J. Dairy Sci., 2005, 88(3), 1031-1042. doi: 10.3168/jds.S0022-0302(05)72771-5 PMID: 15738238
  45. Zhao, S.Y.; Lee, D.G.; Kim, C.W.; Cha, H.G.; Kim, Y.H.; Kang, Y.S. Synthesis of magnetic nanoparticles of Fe3O4 and CoFe2O4 and their surface modification by surfactant adsorption. Bull. Korean Chem. Soc., 2006, 27(2), 237-242. doi: 10.5012/bkcs.2006.27.2.237
  46. Zhang, W.; Shi, X.; Huang, J.; Zhang, Y.; Wu, Z.; Xian, Y. Bacitracin-conjugated superparamagnetic iron oxide nanoparticles: synthesis, characterization and antibacterial activity. ChemPhysChem, 2012, 13(14), 3388-3396. doi: 10.1002/cphc.201200161 PMID: 22753190
  47. Brady, S.; Jamalfar, S.; York, M.; Scudamore, C.; Roman, I.; Stamp, C.; Swain, A.; Williams, T.; Griffiths, W.; Patterson, L.; Turton, J. Cardiotoxicity of isoproterenol and levels of serum cardiac troponin I in the Han Wistar rat: a threshold dose response study. Toxicol, 2005, 213, 244-251.
  48. Zhang, J.; Knapton, A.; Lipshultz, S.E.; Weaver, J.L.; Herman, E.H. Isoproterenol-induced cardiotoxicity in sprague-dawley rats: correlation of reversible and irreversible myocardial injury with release of cardiac troponin T and roles of iNOS in myocardial injury. Toxicol. Pathol., 2008, 36(2), 277-278. doi: 10.1177/0192623307313010 PMID: 18349426
  49. York, M.; Scudamore, C.; Brady, S.; Chen, C.; Wilson, S.; Curtis, M.; Evans, G.; Griffiths, W.; Whayman, M.; Williams, T.; Turton, J. Characterization of troponin responses in isoproterenol-induced cardiac injury in the Hanover Wistar rat. Toxicol. Pathol., 2007, 35(4), 606-617. doi: 10.1080/01926230701389316 PMID: 17654401
  50. Mikaelian, I.; Coluccio, D.; Morgan, K.T.; Johnson, T.; Ryan, A.L.; Rasmussen, E.; Nicklaus, R.; Kanwal, C.; Hilton, H.; Frank, K.; Fritzky, L.; Wheeldon, E.B. Temporal gene expression profiling indicates early up-regulation of interleukin-6 in isoproterenol-induced myocardial necrosis in rat. Toxicol. Pathol., 2008, 36(2), 256-264. doi: 10.1177/0192623307312696 PMID: 18413786
  51. Nakajima, Y.; Yamagishi, T.; Hokari, S.; Nakamura, H. Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: Roles of transforming growth factor (TGF)-β and bone morphogenetic protein (BMP). Anat. Rec., 2000, 258(2), 119-127. doi: 10.1002/(SICI)1097-0185(20000201)258:23.0.CO;2-U PMID: 10645959
  52. Brady, S.; York, M.; Scudamore, C.; Williams, T.; Griffiths, W.; Turton, J. Cardiac troponin I in isoproterenol-induced cardiac injury in the Hanover Wistar rat: studies on low dose levels and routes of administration. Toxicol. Pathol., 2010, 38(2), 287-291. doi: 10.1177/0192623309357948 PMID: 20100841
  53. Morrow, D.A.; Cannon, C.P.; Jesse, R.L.; Newby, L.K.; Ravkilde, J.; Storrow, A.B.; Wu, A.H.B.; Christenson, R.H.; Christenson, R.H.; Apple, F.S.; Cannon, C.P.; Francis, G.; Jesse, R.L.; Morrow, D.A.; Newby, L.K.; Ravkilde, J.; Storrow, A.B.; Tang, W.; Wu, A.H.B. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Clin. Chem., 2007, 53(4), 552-574. doi: 10.1373/clinchem.2006.084194 PMID: 17384001
  54. Hari Senthil Kumar, S.; Anandan, R.; Devaki, T.; Santhosh Kumar, M. Cardioprotective effects of Picrorrhiza kurroa against isoproterenol-induced myocardial stress in rats. Fitoterapia, 2001, 72(4), 402-405. doi: 10.1016/S0367-326X(01)00264-7 PMID: 11395263
  55. Farvin, K.H.S.; Anandan, R.; Sankar, T.V.; Nair, P.G.V. Protective effect of squalene against isoproterenol induced myocardial infarction in rats. J. Clin. Biochem. Nutr., 2005, 37(2), 55-60. doi: 10.3164/jcbn.37.55
  56. Shirafkan, A.; Marjani, A.; Zaker, F. Serum lipid profiles in acute myocardial infarction patients in Gorgan. Biomed. Res. (Aligarh), 2021, 23, 119-124.
  57. Murthy, H.N.; Yadav, G.G.; Dewir, Y.H.; Ibrahim, A. Phytochemicals and biological activity of desert date (Balanites aegyptiaca (L.) Delile). Plants, 2020, 10(1), 32. doi: 10.3390/plants10010032 PMID: 33375570
  58. Bresson, J.; Flywn, A.; Heinonen, M.; Hulsh, K.; Korhonen, H.; Lagiou, P.; Louk, M. Labeling reference intake value for n-3 and n-6 polyunsaturated fatty acids. European Food Safety Authority, 2000, 1, 1-11.
  59. Schaefer, E.J.; Asztalos, B.F. Cholesteryl ester transfer protein inhibition, high-density lipoprotein metabolism and heart disease risk reduction. Curr. Opin. Lipidol., 2006, 17(4), 394-398. doi: 10.1097/01.mol.0000236364.63840.d8 PMID: 16832162
  60. De Caterina, R.; Madonna, R.; Bertolotto, A.; Schmidt, E.B.; Ma-Donna, R.; Lotto, A.B.; Schmidt, E.B. N-3 fatty acids in the treatment of diabetic patients. Diabetes Care, 2007, 30(4), 1012-1026. doi: 10.2337/dc06-1332 PMID: 17251279
  61. Morise, A.; Mourot, J.; Riottot, M.; Weill, P.; Fénart, E.; Hermier, D. Dose effect of alpha-linolenic acid on lipid metabolism in the hamster. Reprod. Nutr. Dev., 2005, 45(4), 405-418. doi: 10.1051/rnd:2005037 PMID: 16045889
  62. Pullaiah, C.P.; Nelson, V.K.; Rayapu, S.; G v, N.K.; Kedam, T. Exploring cardioprotective potential of esculetin against isoproterenol induced myocardial toxicity in rats: in vivo and in vitro evidence. BMC Pharmacol. Toxicol., 2021, 22(1), 43. doi: 10.1186/s40360-021-00510-0 PMID: 34266475
  63. Gaafar, T.; Attia, W.; Mahmoud, S.; Sabry, D.; Aziz, O.A.; Rasheed, D.; Hamza, H. Cardioprotective effects of wharton jelly derived mesenchymal stem cell transplantation in a rodent model of myocardial injury. Int. J. Stem Cells, 2017, 10(1), 48-59. doi: 10.15283/ijsc16063 PMID: 28446005
  64. Garrel, C.; Alessandri, J.M.; Guesnet, P.; Al-Gubory, K.H. Omega-3 fatty acids enhance mitochondrial superoxide dismutase activity in rat organs during post-natal development. Int. J. Biochem. Cell Biol., 2012, 44(1), 123-131. doi: 10.1016/j.biocel.2011.10.007 PMID: 22062949
  65. Bedlovičová, Z.; Strapáč, I.; Baláž, M.; Salayová, A. A brief overview on antioxidant activity determination of silver nanoparticles. Molecules, 2020, 25(14), 3191. doi: 10.3390/molecules25143191 PMID: 32668682
  66. Ahn, E.Y.; Jin, H.; Park, Y. Green synthesis and biological activities of silver nanoparticles prepared by Carpesium cernuum extract. Arch. Pharm. Res., 2019, 42(10), 926-934. doi: 10.1007/s12272-019-01152-x PMID: 30972559
  67. Ahn, E.Y.; Jin, H.; Park, Y. Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Mater. Sci. Eng. C, 2019, 101, 204-216. doi: 10.1016/j.msec.2019.03.095 PMID: 31029313
  68. Reddy, N.J.; Nagoor Vali, D.; Rani, M.; Rani, S.S. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater. Sci. Eng. C, 2014, 34, 115-122. doi: 10.1016/j.msec.2013.08.039 PMID: 24268240
  69. Alshahrani, S.; Rapoport, R.M.; Soleimani, M. Vascular contractile reactivity in hypotension due to reduced renal reabsorption of Na+ and restricted dietary Na+. Naunyn Schmiedebergs Arch. Pharmacol., 2017, 390(3), 321-326. doi: 10.1007/s00210-017-1340-0 PMID: 28108829
  70. Whaley-Connell, A.; Habibi, J.; Rehmer, N.; Ardhanari, S.; Hayden, M.R.; Pulakat, L.; Krueger, C.; Ferrario, C.M.; DeMarco, V.G.; Sowers, J.R. Renin Inhibition and AT1R blockade improve metabolic signaling, oxidant stress and myocardial tissue remodeling. Metabolism, 2013, 62(6), 861-872. doi: 10.1016/j.metabol.2012.12.012 PMID: 23352204
  71. Pérez-Martínez, P.I.; Rojas-Espinosa, O.; Hernández-Chávez, V.G.; Arce-Paredes, P.; Estrada-Parra, S. Anti‐inflammatory effect of omega unsaturated fatty acids and dialysable leucocyte extracts on collagen‐induced arthritis in DBA/1 mice. Int. J. Exp. Pathol., 2020, 101(1-2), 55-64. doi: 10.1111/iep.12348 PMID: 32459025
  72. El Gizawy, H.A.E.H.; Hussein, M.A.; Abdel-Sattar, E. Biological activities, isolated compounds and HPLC profile of Verbascum nubicum. Pharm. Biol., 2019, 57(1), 485-497. doi: 10.1080/13880209.2019.1643378 PMID: 31401911
  73. Mosaad, Y.O.; Hussein, M.A.; Ateyya, H.; Mohamed, A.H.; Ali, A.A.; Ramadan Youssuf, A.; Wink, M.; El-Kholy, A.A. Vanin 1 gene role in modulation of iNOS/MCP-1/TGF-β1 signaling pathway in obese diabetic patients. J. Inflamm. Res., 2022, 15, 6745-6759. doi: 10.2147/JIR.S386506 PMID: 36540060
  74. El Gizawy, H.A.; Abo-Salem, H.M.; Ali, A.A.; Hussein, M.A. Phenolic profiling and therapeutic potential of certain isolated compounds from Parkia roxburghii against AChE activity as well as GABA A α5, GSK-3β, and p38α MAP-kinase genes. ACS Omega, 2021, 6(31), 20492-20511. doi: 10.1021/acsomega.1c02340 PMID: 34395996
  75. M Soliman, S.; Mosallam, S.; Mamdouh, M.A.; Hussein, M.A.; M Abd El-Halim, S. Design and optimization of cranberry extract loaded bile salt augmented liposomes for targeting of MCP-1/STAT3/VEGF signaling pathway in DMN-intoxicated liver in rats. Drug Deliv., 2022, 29(1), 427-439. doi: 10.1080/10717544.2022.2032875 PMID: 35098843
  76. Mostafa, M.M.; Amin, M.M.; Zakaria, M.Y.; Hussein, M.A.; Shamaa, M.M.; Abd El-Halim, S.M. Chitosan surface-modified PLGA nanoparticles loaded with cranberry powder extract as a potential oral delivery platform for targeting colon cancer cells. Pharmaceutics, 2023, 15(2), 606. doi: 10.3390/pharmaceutics15020606 PMID: 36839928
  77. Ghorab, M.; Ismail, Z.; Abdala, M. Synthesis and biological activities of some novel triazoloquinazolines and triazinoquinazolines containing benzenesulfonamide moieties. Arzneimittelforschung, 2011, 60(2), 87-95. doi: 10.1055/s-0031-1296254 PMID: 20329657
  78. Sibson, N.R.; Blamire, A.M.; Perry, V.H.; Gauldie, J.; Styles, P.; Anthony, D.C. TNF-alpha reduces cerebral blood volume and disrupts tissue homeostasis via an endothelin- and TNFR2-dependent pathway. Brain, 2002, 125(11), 2446-2459. doi: 10.1093/brain/awf256 PMID: 12390971
  79. Khaksar, S.; Bigdeli, M.R. Intra-cerebral cannabidiol infusion-induced neuroprotection is partly associated with the TNF-α/TNFR1/NF-кB pathway in transient focal cerebral ischaemia. Brain Inj., 2017, 31(13-14), 1932-1943. doi: 10.1080/02699052.2017.1358397 PMID: 28872345
  80. Chisaki, K.; Okuda, Y.; Suzuki, S.; Miyauchi, T.; Soma, M.; Ohkoshi, N.; Sone, H.; Yamada, N.; Nakajima, T. Eicosapentaenoic acid suppresses basal and insulin-stimulated endothelin-1 production in human endothelial cells. Hypertens. Res., 2003, 26(8), 655-661. doi: 10.1291/hypres.26.655 PMID: 14567505
  81. Vidanapathirana, A.K.; Thompson, L.C.; Herco, M.; Odom, J.; Sumner, S.J.; Fennell, T.R.; Brown, J.M.; Wingard, C.J. Acute intravenous exposure to silver nanoparticles during pregnancy induces particle size and vehicle dependent changes in vascular tissue contractility in Sprague Dawley rats. Reprod. Toxicol., 2018, 75, 10-22. doi: 10.1016/j.reprotox.2017.11.002 PMID: 29154916
  82. Giles, L.V.; Tebbutt, S.J.; Carlsten, C.; Koehle, M.S. Effects of low-intensity and high-intensity cycling with diesel exhaust exposure on soluble P-selectin, E-selectin, I-CAM-1, VCAM-1 and complete blood count. BMJ Open Sport Exerc. Med., 2019, 5(1), e000625. doi: 10.1136/bmjsem-2019-000625 PMID: 31803496
  83. El-Faham, A.; Al-Rasheed, H.H.; Sholkamy, E.N.; Osman, S.M.; ALOthman, Z.A. Simple approaches for the synthesis of AgNPs in solution and solid phase using modified methoxypolyethylene glycol and evaluation of their antimicrobial activity. Int. J. Nanomedicine, 2020, 15, 2353-2362. doi: 10.2147/IJN.S244678 PMID: 32308387

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers