Cubosomes: An Emerging and Promising Drug Delivery System for Enhancing Cancer Therapy


Cite item

Full Text

Abstract

Cancer and other diseases can be treated with cubosomes, which are lyotropic nonlamellar liquid crystalline nanoparticles (LCNs). These cubosomes can potentially be a highly versatile carrier with theranostic efficacy, as they can be ingested, applied topically, or injected intravenously. Recent years have seen substantial progress in the synthesis, characterization, regulation of drug release patterns, and target selectivity of loaded anticancer bioactive compounds. However, its use in clinical settings has been slow and necessitates additional proof. Recent progress and roadblocks in using cubosomes as a nanotechnological intervention against various cancers are highlighted. In the last few decades, advances in biomedical nanotechnology have allowed for the development of \"smart\" drug delivery devices that can adapt to external stimuli. By improving therapeutic targeting efficacy and lowering the negative effects of payloads, these well-defined nanoplatforms can potentially promote patient compliance in response to specific stimuli. Liposomes and niosomes, two other well-known vesicular systems, share a lipid basis with cubosomes. Possible applications include a novel medication delivery system for hydrophilic, lipophilic, and amphiphilic drugs. We evaluate the literature on cubosomes, emphasizing their potential use in tumor-targeted drug delivery applications and critiquing existing explanations for cubosome self-assembly, composition, and production. As cubosome dispersion has bioadhesive and compatible features, numerous drug delivery applications, including oral, ocular, and transdermal, are also discussed in this review.

About the authors

Smita Singh

SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology

Email: info@benthamscience.net

Kapil Sachan

KIET School of Pharmacy, KIET Group of Institutions

Email: info@benthamscience.net

Suryakant Verma

School of Pharmacy, Bharat Institute of Technology

Email: info@benthamscience.net

Nidhi Singh

, Sunder Deep Pharmacy College

Email: info@benthamscience.net

Pranjal Singh

SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology

Author for correspondence.
Email: info@benthamscience.net

References

  1. Umar, H.; Wahab, H.A.; Gazzali, A.M.; Tahir, H.; Ahmad, W. Cubosomes: Design, development, and tumor-targeted drug delivery applications. Polymers, 2022, 14(15), 3118. doi: 10.3390/polym14153118 PMID: 35956633
  2. Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11(17-18), 812-818. doi: 10.1016/j.drudis.2006.07.005 PMID: 16935749
  3. Torchilin, V.P. Passive and active drug targeting: Drug delivery to tumors as an example. Handb. Exp. Pharmacol., 2010, 197(197), 3-53. doi: 10.1007/978-3-642-00477-3_1 PMID: 20217525
  4. Strebhardt, K.; Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer, 2008, 8(6), 473-480. doi: 10.1038/nrc2394 PMID: 18469827
  5. Mills, J.K.; Needham, D. Targeted drug delivery. Expert Opin. Ther. Pat., 1999, 9, 1499-1513. doi: 10.1517/13543776.9.11.1499
  6. Theek, B.; Gremse, F.; Kunjachan, S.; Fokong, S.; Pola, R.; Pechar, M.; Deckers, R.; Storm, G.; Ehling, J.; Kiessling, F.; Lammers, T. Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging. J. Control. Release, 2014, 182, 83-89. doi: 10.1016/j.jconrel.2014.03.007 PMID: 24631862
  7. Béduneau, A.; Saulnier, P.; Hindré, F.; Clavreul, A.; Leroux, J.C.; Benoit, J.P. Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab’ fragments. Biomaterials, 2007, 28(33), 4978-4990. doi: 10.1016/j.biomaterials.2007.05.014 PMID: 17716725
  8. Hong, M.; Zhu, S.; Jiang, Y.; Tang, G.; Pei, Y. Efficient tumor targeting of hydroxycamptothecin loaded PEGylated niosomes modified with transferrin. J. Control. Release, 2009, 133(2), 96-102. doi: 10.1016/j.jconrel.2008.09.005 PMID: 18840485
  9. Canal, F.; Vicent, M.J.; Pasut, G.; Schiavon, O. Relevance of folic acid/polymer ratio in targeted PEG–epirubicin conjugates. J. Control. Release, 2010, 146(3), 388-399. doi: 10.1016/j.jconrel.2010.05.027 PMID: 20621587
  10. Kirpotin, D.B.; Drummond, D.C.; Shao, Y.; Shalaby, M.R.; Hong, K.; Nielsen, U.B.; Marks, J.D.; Benz, C.C.; Park, J.W. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res., 2006, 66(13), 6732-6740. doi: 10.1158/0008-5472.CAN-05-4199 PMID: 16818648
  11. Mikhail, A.S.; Allen, C. Block copolymer micelles for delivery of cancer therapy: Transport at the whole body, tissue and cellular levels. J. Control. Release, 2009, 138(3), 214-223. doi: 10.1016/j.jconrel.2009.04.010 PMID: 19376167
  12. Alavi, M.; Nokhodchi, A. Micro- and nanoformulations of paclitaxel based on micelles, liposomes, cubosomes, and lipid nanoparticles: Recent advances and challenges. Drug Discov. Today, 2022, 27(2), 576-584. doi: 10.1016/j.drudis.2021.10.007 PMID: 34688912
  13. Faria, A.R.; Silvestre, O.F.; Maibohm, C.; Adão, R.M.R.; Silva, B.F.B.; Nieder, J.B. Cubosome nanoparticles for enhanced delivery of mitochondria anticancer drug elesclomol and therapeutic monitoring via sub-cellular NAD(P)H multi-photon fluorescence lifetime imaging. Nano Res., 2019, 12(5), 991-998. doi: 10.1007/s12274-018-2231-5
  14. Chaudhary, K.; Sharma, D. Cubosomes: A potential drug delivery system. Asian J Pharm Res Develop., 2021, 9(5), 93-101. doi: 10.22270/ajprd.v9i5.981
  15. Lee, K.; Nguyen, T.; Hanley, T.; Boyd, B. Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs. Int. J. Pharm., 2009, 365(1-2), 190-199. doi: 10.1016/j.ijpharm.2008.08.022 PMID: 18790030
  16. Wörle, G.; Siekmann, B.; Koch, M.H.J.; Bunjes, H. Transformation of vesicular into cubic nanoparticles by autoclaving of aqueous monoolein/poloxamer dispersions. Eur. J. Pharm. Sci., 2006, 27(1), 44-53. doi: 10.1016/j.ejps.2005.08.004 PMID: 16157479
  17. Fong, W.K.; Negrini, R.; Vallooran, J.J.; Mezzenga, R.; Boyd, B.J. Responsive self-assembled nanostructured lipid systems for drug delivery and diagnostics. J. Colloid Interface Sci., 2016, 484, 320-339. doi: 10.1016/j.jcis.2016.08.077 PMID: 27623190
  18. Barauskas, J.; Johnsson, M.; Joabsson, F.; Tiberg, F. Cubic phase nanoparticles (Cubosome): principles for controlling size, structure, and stability. Langmuir, 2005, 21(6), 2569-2577. doi: 10.1021/la047590p PMID: 15752054
  19. Caboi, F.; Amico, G.S.; Pitzalis, P.; Monduzzi, M.; Nylander, T.; Larsson, K. Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system. I. Phase behavior. Chem. Phys. Lipids, 2001, 109(1), 47-62. doi: 10.1016/S0009-3084(00)00200-0 PMID: 11163344
  20. Garg, G.; Saraf, S.; Saraf, S. Cubosomes: An overview. Biol. Pharm. Bull., 2007, 30(2), 350-353. doi: 10.1248/bpb.30.350 PMID: 17268078
  21. Esposito, E.; Cortesi, R.; Drechsler, M.; Paccamiccio, L.; Mariani, P.; Contado, C.; Stellin, E.; Menegatti, E.; Bonina, F.; Puglia, C. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm. Res., 2005, 22(12), 2163-2173. doi: 10.1007/s11095-005-8176-x PMID: 16267633
  22. Yang, C.; Merlin, D. Lipid-based drug delivery nanoplatforms for colorectal cancer therapy. Nanomaterials, 2020, 10(7), 1424. doi: 10.3390/nano10071424 PMID: 32708193
  23. Higuchi, W.I. Diffusional models useful in biopharmaceutics: Drug release rate processes. J. Pharm. Sci., 1967, 56(3), 315-324. doi: 10.1002/jps.2600560302
  24. Allen, T.M.; Mehra, T.; Hansen, C.; Chin, Y.C. Stealth liposomes: An improved sustained release system for 1-β-D-arabinofuranosylcytosine. Cancer Res., 1992, 52(9), 2431-2439. PMID: 1568213
  25. Andersson, S.; Jacob, M.; Ladin, S.; Larsson, K. Structure of the cubosome-a closed lipid bilayer aggregate. Z. Kristallogr. Cryst. Mater., 1995, 210(5), 315-318. doi: 10.1524/zkri.1995.210.5.315
  26. Esposito, E.; Eblovi, N.; Rasi, S.; Drechsler, M.; Di Gregorio, G.M.; Menegatti, E.; Cortesi, R. Lipid-based supramolecular systems for topical application: A preformulatory study. AAPS PharmSci, 2003, 5(4), 62-76. doi: 10.1208/ps050430 PMID: 15198518
  27. Karami, Z.; Hamidi, M. Cubosomes: Remarkable drug delivery potential. Drug Discov. Today, 2016, 21(5), 789-801. doi: 10.1016/j.drudis.2016.01.004 PMID: 26780385
  28. Spicer, P.T.; Hayden, K.L.; Lynch, M.L.; Ofori-Boateng, A.; Burns, J.L. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir, 2001, 17(19), 5748-5756. doi: 10.1021/la010161w
  29. Um, J.Y.; Chung, H.; Kim, K.S.; Kwon, I.C.; Jeong, S.Y. In vitro cellular interaction and absorption of dispersed cubic particles. Int. J. Pharm., 2003, 253(1-2), 71-80. doi: 10.1016/S0378-5173(02)00673-7 PMID: 12593938
  30. Mezzenga, R.; Meyer, C.; Servais, C.; Romoscanu, A.I.; Sagalowicz, L.; Hayward, R.C. Shear rheology of lyotropic liquid crystals: a case study. Langmuir, 2005, 21(8), 3322-3333. doi: 10.1021/la046964b PMID: 15807570
  31. Maheshwari, R.K.; Chaturvedi, S.C.; Jain, N.K. Novel application of hydrotropic solubilization in the analysis of some NSAIDs and their solid dosage forms. Indian J. Pharm. Sci., 2007, 69(1), 101. doi: 10.4103/0250-474X.32117
  32. Dandekar, D.V.; Gaikar, V.G. Hydrotropic extraction of curcuminoids from turmeric. Sep. Sci. Technol., 2003, 38(5), 1185-1215. doi: 10.1081/SS-120018130
  33. Bessone, C.D.V.; Akhlaghi, S.P.; Tártara, L.I.; Quinteros, D.A.; Loh, W.; Allemandi, D.A. Latanoprost-loaded phytantriol cubosomes for the treatment of glaucoma. Eur. J. Pharm. Sci., 2021, 160, 105748. doi: 10.1016/j.ejps.2021.105748 PMID: 33567324
  34. Boge, L.; Hallstensson, K.; Ringstad, L.; Johansson, J.; Andersson, T.; Davoudi, M.; Larsson, P.T.; Mahlapuu, M.; Håkansson, J.; Andersson, M. Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur. J. Pharm. Biopharm., 2019, 134, 60-67. doi: 10.1016/j.ejpb.2018.11.009 PMID: 30445164
  35. Al-mahallawi, A.M.; Abdelbary, A.A.; El-Zahaby, S.A. Norfloxacin loaded nano-cubosomes for enhanced management of otitis externa: in vitro and in vivo evaluation. Int. J. Pharm., 2021, 600, 120490. doi: 10.1016/j.ijpharm.2021.120490 PMID: 33744451
  36. Elsenosy, F.M.; Abdelbary, G.A.; Elshafeey, A.H.; Elsayed, I.; Fares, A.R. Brain targeting of duloxetine HCL via intranasal delivery of loaded cubosomal gel: in vitro Characterization, ex vivo permeation, and in vivo biodistribution studies. Int. J. Nanomedicine, 2020, 15, 9517-9537. doi: 10.2147/IJN.S277352 PMID: 33324051
  37. Qiu, T.; Gu, P.; Wusiman, A.; Ni, H.; Xu, S.; Zhang, Y.; Zhu, T.; He, J.; Liu, Z.; Hu, Y.; Liu, J.; Wang, D. Immunoenhancement effects of chitosan-modified ginseng stem-leaf saponins-encapsulated cubosomes as an ajuvant. Colloids Surf. B Biointerfaces, 2021, 204, 111799. doi: 10.1016/j.colsurfb.2021.111799 PMID: 33971614
  38. Rapalli, V.K.; Banerjee, S.; Khan, S.; Jha, P.N.; Gupta, G.; Dua, K.; Hasnain, M.S.; Nayak, A.K.; Dubey, S.K.; Singhvi, G. QbD-driven formulation development and evaluation of topical hydrogel containing ketoconazole loaded cubosomes. Mater. Sci. Eng. C, 2021, 119, 111548. doi: 10.1016/j.msec.2020.111548 PMID: 33321612
  39. Patil, S.M.; Sawant, S.S.; Kunda, N.K. Inhalable bedaquiline-loaded cubosomes for the treatment of non-small cell lung cancer (NSCLC). Int. J. Pharm., 2021, 607, 121046. doi: 10.1016/j.ijpharm.2021.121046 PMID: 34450225
  40. Sanjana, A.; Ahmed, M.G.; Gowda BH, J. Development and evaluation of dexamethasone loaded cubosomes for the treatment of vitiligo. Mater. Today Proc., 2022, 50, 197-205. doi: 10.1016/j.matpr.2021.04.120
  41. Fan, C.; Gao, W.; Chen, Z.; Fan, H.; Li, M.; Deng, F.; Chen, Z. Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles. Int. J. Pharm., 2011, 404(1-2), 180-190. doi: 10.1016/j.ijpharm.2010.10.038 PMID: 21087660
  42. Veiseh, O.; Gunn, J.W.; Zhang, M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev., 2010, 62(3), 284-304. doi: 10.1016/j.addr.2009.11.002 PMID: 19909778
  43. Miller, M.J.; Foy, K.C.; Kaumaya, P.T. Cancer immunotherapy: Present status, future perspective, and a new paradigm of peptide immunotherapeutics. Discov. Med., 2013, 15(82), 166-176. PMID: 23545045
  44. Zhai, J.; Tan, F.H.; Luwor, R.B.; Srinivasa Reddy, T.; Ahmed, N.; Drummond, C.J.; Tran, N. In vitro and in vivo toxicity and biodistribution of paclitaxel-loaded cubosomes as a drug delivery nanocarrier: A case study using an A431 skin cancer xenograft model. ACS Appl. Bio Mater., 2020, 3(7), 4198-4207. doi: 10.1021/acsabm.0c00269 PMID: 35025421
  45. Aleandri, S.; Bandera, D.; Mezzenga, R.; Landau, E.M. Biotinylated cubosomes: A versatile tool for active targeting and codelivery of paclitaxel and a fluorescein-based lipid dye. Langmuir, 2015, 31(46), 12770-12776. doi: 10.1021/acs.langmuir.5b03469 PMID: 26513646
  46. Flak, D.K.; Adamski, V.; Nowaczyk, G.; Szutkowski, K.; Synowitz, M.; Jurga, S.; Held-Feindt, J. AT101-loaded cubosomes as an alternative for improved glioblastoma therapy. Int. J. Nanomedicine, 2020, 15, 7415-7431. doi: 10.2147/IJN.S265061 PMID: 33116479
  47. Rao, S.V.; Sravya, B.N.; Padmalatha, K. A review on cubosome: The novel drug delivery system. GSC Biol. Pharm. Sci., 2018, 5, 076-081.
  48. Saber, M.M.; Al-Mahallawi, A.M.; Nassar, N.N.; Stork, N.N.; Shouman, S.A. Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes. BMC Cancer, 2018, 18, 822.
  49. Nasr, M.; Ghorab, M.K.; Abdelazem, A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm. Sin. B, 2015, 5(1), 79-88. doi: 10.1016/j.apsb.2014.12.001 PMID: 26579429
  50. Fahmy, U.A.; Fahmy, O.; Alhakamy, N.A. Optimized icariin cubosomes exhibit augmented cytotoxicity against SKOV-3 ovarian cancer cells. Pharmaceutics, 2020, 13(1), 20. doi: 10.3390/pharmaceutics13010020 PMID: 33374293
  51. Gajda, E.; Godlewska, M.; Mariak, Z.; Nazaruk, E.; Gawel, D. Combinatory treatment with miR-7-5p and drug-loaded cubosomes effectively impairs cancer cells. Int. J. Mol. Sci., 2020, 21(14), 5039. doi: 10.3390/ijms21145039 PMID: 32708846
  52. Saber, S.; Nasr, M.; Saad, A.S.; Mourad, A.A.E.; Gobba, N.A.; Shata, A.; Hafez, A.M.; Elsergany, R.N.; Elagamy, H.I.; El-Ahwany, E.; Amin, N.A.; Girgis, S.; Elewa, Y.H.A.; Mahmoud, M.H.; Batiha, G.E.S.; El-Rous, M.A.; Kamal, I.; Kaddah, M.M.Y.; Khodir, A.E. Albendazole-loaded cubosomes interrupt the ERK1/2-HIF-1α-p300/CREB axis in mice intoxicated with diethylnitrosamine: A new paradigm in drug repurposing for the inhibition of hepatocellular carcinoma progression. Biomed. Pharmacother., 2021, 142, 112029. doi: 10.1016/j.biopha.2021.112029 PMID: 34416629
  53. Nazaruk, E.; Majkowska-Pilip, A.; Bilewicz, R. Lipidic cubic-phase nanoparticles—cubosomes for efficient drug delivery to cancer cells. ChemPlusChem, 2017, 82(4), 570-575. doi: 10.1002/cplu.201600534 PMID: 31961592
  54. Tian, Y.; Li, J.; Zhu, J.; Zhu, N.; Zhang, H.; Liang, L.; Sun, L. Folic acid-targeted etoposide cubosomes for theranostic application of cancer cell imaging and therapy. Med. Sci. Monit., 2017, 23, 2426-2435. doi: 10.12659/MSM.904683 PMID: 28529305
  55. Yaghmur, A.; Mu, H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm. Sin. B, 2021, 11(4), 871-885. doi: 10.1016/j.apsb.2021.02.013 PMID: 33996404
  56. Huang, C.Y.; Ju, D.T.; Chang, C.F.; Muralidhar Reddy, P.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine, 2017, 7(4), 23. doi: 10.1051/bmdcn/2017070423 PMID: 29130448
  57. Chang, A.Y.; Kim, K.; Glick, J.; Anderson, T.; Karp, D.; Johnson, D. Phase II study of taxol, merbarone, and piroxantrone in stage IV non-small-cell lung cancer: The Eastern Cooperative Oncology Group Results. J. Natl. Cancer Inst., 1993, 85(5), 388-394. doi: 10.1093/jnci/85.5.388 PMID: 8094467
  58. Murphy, W.K.; Fossella, F.V.; Winn, R.J.; Shin, D.M.; Hynes, H.E.; Gross, H.M.; Davilla, E.; Leimert, J.; Dhingra, H.; Raber, M.N.; Krakoff, I.H.; Hong, W.K. Phase II study of taxol in patients with untreated advanced non-small-cell lung cancer. J. Natl. Cancer Inst., 1993, 85(5), 384-388. doi: 10.1093/jnci/85.5.384 PMID: 8094466
  59. Zhang, L.; Li, J.; Tian, D.; Sun, L.; Wang, X.; Tian, M. Theranostic combinatorial drug-loaded coated cubosomes for enhanced targeting and efficacy against cancer cells. Cell Death Dis., 2020, 11(1), 1. doi: 10.1038/s41419-019-2182-0 PMID: 31911576
  60. Cytryniak, A.; Nazaruk, E.; Bilewicz, R.; Górzyńska, E.; Żelechowska-Matysiak, K.; Walczak, R.; Mames, A.; Bilewicz, A.; Majkowska-Pilip, A. Lipidic cubic-phase nanoparticles (cubosomes) loaded with doxorubicin and labeled with 177Lu as a potential tool for combined chemo and internal radiotherapy for cancers. Nanomaterials, 2020, 10(11), 2272. doi: 10.3390/nano10112272 PMID: 33207760
  61. Ali, M.A.; Noguchi, S.; Iwao, Y.; Oka, T.; Itai, S. Preparation and characterization of SN-38-encapsulated phytantriol cubosomes containing α-monoglyceride additives. Chem. Pharm. Bull., 2016, 64(6), 577-584. doi: 10.1248/cpb.c15-00984 PMID: 27250792
  62. Archana, A.; Vijayasri, K.; Madhurim, M.; Kumar, C. Curcumin loaded nano cubosomal hydrogel: preparation, in vitro characterization and antibacterial activity. Chem. Sci. Trans., 2015, 4, 75-80.
  63. Tu, Y.S.; Fu, J.W.; Sun, D.M.; Zhang, J.J.; Yao, N.; Huang, D.E.; Shi, Z.Q. Preparation, characterisation and evaluation of curcumin with piperine-loaded cubosome nanoparticles. J. Microencapsul., 2014, 31(6), 551-559. doi: 10.3109/02652048.2014.885607 PMID: 24641575
  64. Chang, C.; Meikle, T.G.; Drummond, C.J.; Yang, Y.; Conn, C.E. Comparison of cubosomes and liposomes for the encapsulation and delivery of curcumin. Soft Matter, 2021, 17(12), 3306-3313. doi: 10.1039/D0SM01655A PMID: 33623948
  65. Manivannan, S.; Nagaraj, S.; Narayan, S. A reflection on the mechanism of the role of nanoparticles in increasing the efficacy of anti-tumour properties of docetaxel. Curr. Pathobiol. Rep., 2021, 9(3), 79-91. doi: 10.1007/s40139-021-00223-3
  66. Rarokar, N.R.; Saoji, S.D.; Raut, N.A.; Taksande, J.B.; Khedekar, P.B.; Dave, V.S. Nanostructured cubosomes in a thermoresponsive depot system: an alternative approach for the controlled delivery of docetaxel. AAPS PharmSciTech, 2016, 17(2), 436-445. doi: 10.1208/s12249-015-0369-y PMID: 26208439
  67. Janakiraman, K.; Krishnaswami, V.; Sethuraman, V.; Rajendran, V.; Kandasamy, R. Development of methotrexate-loaded cubosomes with improved skin permeation for the topical treatment of rheumatoid arthritis. Appl. Nanosci., 2019, 9(8), 1781-1796. doi: 10.1007/s13204-019-00976-9
  68. Parvathaneni, V.; Elbatanony, R.S.; Goyal, M.; Chavan, T.; Vega, N.; Kolluru, S.; Muth, A.; Gupta, V.; Kunda, N.K. Repurposing bedaquiline for effective non-small cell lung cancer (NSCLC) therapy as inhalable cyclodextrin-based molecular inclusion complexes. Int. J. Mol. Sci., 2021, 22(9), 4783. doi: 10.3390/ijms22094783 PMID: 33946414
  69. Chen, X.; Wong, S.T.C. Cancer theranostics; Cancer Theranos, 2014, pp. 3-8. doi: 10.1016/B978-0-12-407722-5.00001-3
  70. Meli, V.; Caltagirone, C.; Sinico, C.; Lai, F.; Falchi, A.M.; Monduzzi, M.; Obiols-Rabasa, M.; Picci, G.; Rosa, A.; Schmidt, J.; Talmon, Y.; Murgia, S. Theranostic hexosomes for cancer treatments: An in vitro study. New J. Chem., 2017, 41(4), 1558-1565. doi: 10.1039/C6NJ03232J
  71. Meli, V.; Caltagirone, C.; Falchi, A.M.; Hyde, S.T.; Lippolis, V.; Monduzzi, M.; Obiols-Rabasa, M.; Rosa, A.; Schmidt, J.; Talmon, Y.; Murgia, S. Docetaxel-loaded fluorescent liquid-crystalline nanoparticles for cancer theranostics. Langmuir, 2015, 31(35), 9566-9575. doi: 10.1021/acs.langmuir.5b02101 PMID: 26293620
  72. Anbarasan, B.; Grace, X.F.; Shanmuganathan, S. An overview of cubosomes-Smart drug delivery system. Sri. Ramachandra J. Med., 2015, 8, 1-4.
  73. Gan, L.; Han, S.; Shen, J.; Zhu, J.; Zhu, C.; Zhang, X.; Gan, Y. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: Improving preocular retention and ocular bioavailability. Int. J. Pharm., 2010, 396(1-2), 179-187. doi: 10.1016/j.ijpharm.2010.06.015 PMID: 20558263
  74. Rattanapak, T.; Birchall, J.; Young, K.; Ishii, M.; Meglinski, I.; Rades, T.; Hook, S. Transcutaneous immunization using microneedles and cubosomes: Mechanistic investigations using Optical Coherence Tomography and Two-Photon Microscopy. J. Control. Release, 2013, 172(3), 894-903. doi: 10.1016/j.jconrel.2013.08.018 PMID: 23978683
  75. Thadanki, M.; Kumari, P.S.; Prabha, K.S. Overview of cubosomes: A nano particle. Int. J. Res. Pharm. Chem., 2011, 1, 535-541.
  76. Chung, H.; Kim, J.; Um, J.Y.; Kwon, I.C.; Jeong, S.Y. Self-assembled "nanocubicle" as a carrier for peroral insulin delivery. Diabetologia, 2002, 45(3), 448-451. doi: 10.1007/s00125-001-0751-z PMID: 11914752
  77. Ali, Z.; Sharma, P.; Warsi, M. Fabrication and evaluation of ketorolac loaded cubosome for ocular drug delivery. J. Appl. Pharm. Sci., 2016, 6, 204-208. doi: 10.7324/JAPS.2016.60930
  78. Morsi, N.M.; Abdelbary, G.A.; Ahmed, M.A. Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: Development and in vitro/in vivo characterization. Eur. J. Pharm. Biopharm., 2014, 86(2), 178-189. doi: 10.1016/j.ejpb.2013.04.018 PMID: 23688805
  79. Boyd, B.; Khoo, S.; Whittaker, D.; Davey, G.; Porter, C. A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats. Int. J. Pharm., 2007, 340(1-2), 52-60. doi: 10.1016/j.ijpharm.2007.03.020 PMID: 17467935
  80. Elnaggar, Y.; Etman, S.; Abdelmonsif, D.; Abdallah, O. Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: pharmaceutical, biological, and toxicological studies. Int. J. Nanomedicine, 2015, 10, 5459-5473. doi: 10.2147/IJN.S87336 PMID: 26346130
  81. Cheng, M.R.; Li, Q.; Wan, T.; He, B.; Han, J.; Chen, H-X.; Yang, F-X.; Wang, W.; Xu, H-Z.; Ye, T.; Zha, B.B. Galactosylated chitosan/5-fluorouracil nanoparticles inhibit mouse hepatic cancer growth and its side effects. World J. Gastroenterol., 2012, 18(42), 6076-6087. doi: 10.3748/wjg.v18.i42.6076 PMID: 23155336
  82. Alavi, M.; Webster, T.J. Nano liposomal and cubosomal formulations with platinum-based anticancer agents: therapeutic advances and challenges. Nanomedicine, 2020, 15(24), 2399-2410. doi: 10.2217/nnm-2020-0199 PMID: 32945246
  83. Angelova, A.; Angelov, B.; Drechsler, M.; Garamus, V.M.; Lesieur, S. Protein entrapment in PEGylated lipid nanoparticles. Int. J. Pharm., 2013, 454(2), 625-632. doi: 10.1016/j.ijpharm.2013.06.006 PMID: 23791734
  84. Wibroe, P.P.; Mat Azmi, I.D.; Nilsson, C.; Yaghmur, A.; Moghimi, S.M. Citrem modulates internal nanostructure of glyceryl monooleate dispersions and bypasses complement activation: Towards development of safe tunable intravenous lipid nanocarriers. Nanomedicine, 2015, 11(8), 1909-1914. doi: 10.1016/j.nano.2015.08.003 PMID: 26348655
  85. Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999. doi: 10.2147/IJN.S68861 PMID: 25678787
  86. Murgia, S.; Biffi, S.; Mezzenga, R. Recent advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. Curr. Opin. Colloid Interface Sci., 2020, 48, 28-39. doi: 10.1016/j.cocis.2020.03.006

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers