How do Mutations of Mycobacterium Genes Cause Drug Resistance in Tuberculosis?


Cite item

Full Text

Abstract

A steady increase in the prevalence of drug-resistant tuberculosis (DR-TB) has already been reported in Pakistan. In addition, DR-TB is gradually changing from one-drug resistance to multi-drug resistance, which is a serious challenge for tuberculosis treatment. This review provides an overview of the anti-tuberculosis drugs and focuses on the molecular mechanisms of drug resistance in Mycobacterium tuberculosis, with the hope that it will contribute to the study of drug resistance in response to the emergence of multidrug-resistant tuberculosis.

About the authors

Kaiying Hou

School of Life Sciences, Henan University

Email: info@benthamscience.net

Riffat Jabeen

Shool of Life Sciences, Henan University

Email: info@benthamscience.net

Lin Sun

College of Chemistry and Chemical Engineering, Henan University

Email: info@benthamscience.net

Jianshe Wei

School of Life Sciences, Henan University

Author for correspondence.
Email: info@benthamscience.net

References

  1. World Health Organization. Global tuberculosis report., 2022. Available From: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022
  2. World Health Organization. Global tuberculosis report., 2021. Available From: https://www.who.int/publications-detail-redirect/9789240037021
  3. Gopalaswamy, R.; Shanmugam, S.; Mondal, R.; Subbian, S. Of tuberculosis and non-tuberculous mycobacterial infections – a comparative analysis of epidemiology, diagnosis and treatment. J. Biomed. Sci., 2020, 27(1), 74. doi: 10.1186/s12929-020-00667-6 PMID: 32552732
  4. Centers for Disease Control and Prevention (CDC). Updated guidelines for the use of nucleic acid amplification tests in the diagnosis of tuberculosis. MMWR Morb. Mortal. Wkly. Rep., 2009, 58(1), 7-10. PMID: 19145221
  5. Wu, M.L.; Aziz, D.B.; Dartois, V.; Dick, T. NTM drug discovery: Status, gaps and the way forward. Drug Discov. Today, 2018, 23(8), 1502-1519. doi: 10.1016/j.drudis.2018.04.001 PMID: 29635026
  6. Lewinsohn, D.M.; Leonard, M.K.; LoBue, P.A.; Cohn, D.L.; Daley, C.L.; Desmond, E.; Keane, J.; Lewinsohn, D.A.; Loeffler, A.M.; Mazurek, G.H.; O’Brien, R.J.; Pai, M.; Richeldi, L.; Salfinger, M.; Shinnick, T.M.; Sterling, T.R.; Warshauer, D.M.; Woods, G.L. Official american thoracic society/infectious diseases society of america/centers for disease control and prevention clinical practice guidelines: Diagnosis of tuberculosis in adults and children. Clin. Infect. Dis., 2017, 64(2), 111-115. doi: 10.1093/cid/ciw778 PMID: 28052967
  7. Floyd, K.; Glaziou, P.; Zumla, A.; Raviglione, M. The global tuberculosis epidemic and progress in care, prevention, and research: An overview in year 3 of the End TB era. Lancet Respir. Med., 2018, 6(4), 299-314. doi: 10.1016/S2213-2600(18)30057-2 PMID: 29595511
  8. Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol., 2010, 8(6), 423-435. doi: 10.1038/nrmicro2333 PMID: 20440275
  9. Cynamon, M.H.; Sklaney, M. Gatifloxacin and ethionamide as the foundation for therapy of tuberculosis. Antimicrob. Agents Chemother., 2003, 47(8), 2442-2444. doi: 10.1128/AAC.47.8.2442-2444.2003 PMID: 12878502
  10. Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry, 2014, 53(10), 1565-1574. doi: 10.1021/bi5000564 PMID: 24576155
  11. Hooper, D.C. Mechanisms of action of antimicrobials: Focus on fluoroquinolones. Clin. Infect. Dis., 2001, 32(Suppl. 1), S9-S15. doi: 10.1086/319370 PMID: 11249823
  12. Zhang, Y.; Yew, W.W. Mechanisms of drug resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis., 2009, 13(11), 1320-1330. PMID: 19861002
  13. Abbadi, S.; Rashed, H.G.; Morlock, G.P.; Woodley, C.L.; El Shanawy, O.; Cooksey, R.C. Characterization of IS6110 restriction fragment length polymorphism patterns and mechanisms of antimicrobial resistance for multidrug-resistant isolates of Mycobacterium tuberculosis from a major reference hospital in Assiut, Egypt. J. Clin. Microbiol., 2001, 39(6), 2330-2334. doi: 10.1128/JCM.39.6.2330-2334.2001 PMID: 11376084
  14. Arbex, M.A.; Varella, M.C.; Siqueira, H.R.; Mello, F.A. Antituberculosis drugs: Drug interactions, adverse effects, and use in special situations. Part 1: First-line drugs. J. Bras. Pneumol., 2010, 36(5), 626-640. doi: 10.1590/S1806-37132010000500016 PMID: 21085830
  15. Schito, M.; Migliori, G.B.; Fletcher, H.A.; McNerney, R.; Centis, R.; D’Ambrosio, L.; Bates, M.; Kibiki, G.; Kapata, N.; Corrah, T.; Bomanji, J.; Vilaplana, C.; Johnson, D.; Mwaba, P.; Maeurer, M.; Zumla, A. Perspectives on advances in tuberculosis diagnostics, drugs, and vaccines. Clin. Infect. Dis., 2015, 61(61)(Suppl. 3), S102-S118. doi: 10.1093/cid/civ609 PMID: 26409271
  16. Zimhony, O.; Vilchèze, C.; Jacobs, W.R., Jr Characterization of Mycobacterium smegmatis expressing the Mycobacterium tuberculosis fatty acid synthase I (fas1) gene. J. Bacteriol., 2004, 186(13), 4051-4055. doi: 10.1128/JB.186.13.4051-4055.2004 PMID: 15205406
  17. Parvez, M.M.; Jung, J.A.; Shin, H.J.; Kim, D.H.; Shin, J.G. Characterization of 22 antituberculosis drugs for inhibitory interaction potential on organic anionic transporter polypeptide (OATP)-mediated uptake. Antimicrob. Agents Chemother., 2016, 60(5), 3096-3105. doi: 10.1128/AAC.02765-15 PMID: 26976869
  18. Slayden, R.A.; Barry, C.E., III The genetics and biochemistry of isoniazid resistance in Mycobacterium tuberculosis. Microbes Infect., 2000, 2(6), 659-669. doi: 10.1016/S1286-4579(00)00359-2 PMID: 10884617
  19. Pimentel, A.L.; de Lima Scodro, R.B.; Caleffi-Ferracioli, K.R.; Siqueira, V.L.D.; Campanerut-Sá, P.A.Z.; Lopes, L.D.G.; de Almeida, A.L.; Cardoso, R.F.; Seixas, F.A.V. Mutations in catalase-peroxidase KatG from isoniazid resistant Mycobacterium tuberculosis clinical isolates: Insights from molecular dynamics simulations. J. Mol. Model., 2017, 23(4), 121. doi: 10.1007/s00894-017-3290-3 PMID: 28303436
  20. Tseng, S.T.; Tai, C.H.; Li, C.R.; Lin, C.F.; Shi, Z.Y. The mutations of katG and inhA genes of isoniazid-resistant Mycobacterium tuberculosis isolates in Taiwan. J. Microbiol. Immunol. Infect., 2015, 48(3), 249-255. doi: 10.1016/j.jmii.2013.08.018 PMID: 24184004
  21. Takayama, K.; Kilburn, J.O. Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob. Agents Chemother., 1989, 33(9), 1493-1499. doi: 10.1128/AAC.33.9.1493 PMID: 2817850
  22. Halouska, S.; Fenton, R.J.; Zinniel, D.K.; Marshall, D.D.; Barletta, R.G.; Powers, R. Metabolomics analysis identifies d-Alanine-d-Alanine ligase as the primary lethal target of d-Cycloserine in mycobacteria. J. Proteome Res., 2014, 13(2), 1065-1076. doi: 10.1021/pr4010579 PMID: 24303782
  23. Akbergenov, R.; Shcherbakov, D.; Matt, T.; Duscha, S.; Meyer, M.; Wilson, D.N.; Böttger, E.C. Molecular basis for the selectivity of antituberculosis compounds capreomycin and viomycin. Antimicrob. Agents Chemother., 2011, 55(10), 4712-4717. doi: 10.1128/AAC.00628-11 PMID: 21768509
  24. Feng, Z.; Barletta, R.G. Roles of Mycobacterium smegmatis D-alanine:D-alanine ligase and D-alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor D-cycloserine. Antimicrob. Agents Chemother., 2003, 47(1), 283-291. doi: 10.1128/AAC.47.1.283-291.2003 PMID: 12499203
  25. Hwang, T.J.; Wares, D.F.; Jafarov, A.; Jakubowiak, W.; Nunn, P.; Keshavjee, S. Safety of cycloserine and terizidone for the treatment of drug-resistant tuberculosis: A meta-analysis Review article. Int. J. Tuberc. Lung Dis., 2013, 17(10), 1257-1266. doi: 10.5588/ijtld.12.0863 PMID: 23735593
  26. DeBarber, A.E.; Mdluli, K.; Bosman, M.; Bekker, L.G.; Barry, C.E. III Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2000, 97(17), 9677-9682. doi: 10.1073/pnas.97.17.9677 PMID: 10944230
  27. Morlock, G.P.; Metchock, B.; Sikes, D.; Crawford, J.T.; Cooksey, R.C. ethA, inhA, and katG Loci of Ethionamide-Resistant Clinical Mycobacterium tuberculosis Isolates. Antimicrob. Agents Chemother., 2003, 47(12), 3799-3805. doi: 10.1128/AAC.47.12.3799-3805.2003 PMID: 14638486
  28. Johnson, R.; Streicher, E.M.; Louw, G.E.; Warren, R.M.; van Helden, P.D.; Victor, T.C. Drug resistance in Mycobacterium tuberculosis. Curr. Issues Mol. Biol., 2006, 8(2), 97-111. PMID: 16878362
  29. Chien, J.Y.; Chiu, W.Y.; Chien, S.T.; Chiang, C.J.; Yu, C.J.; Hsueh, P.R. Mutations in gyrA and gyrB among Fluoroquinolone and Multidrug-Resistant Mycobacterium tuberculosis Isolates. Antimicrob. Agents Chemother., 2016, 60(4), 2090-2096. doi: 10.1128/AAC.01049-15 PMID: 26787695
  30. Chen, J.; Chen, Z.; Li, Y.; Xia, W.; Chen, X.; Chen, T.; Zhou, L.; Xu, B.; Xu, S. Characterization of gyrA and gyrB mutations and fluoroquinolone resistance in Mycobacterium tuberculosis clinical isolates from Hubei Province, China. Braz. J. Infect. Dis., 2012, 16(2), 136-141. doi: 10.1590/S1413-86702012000200005 PMID: 22552454
  31. Chang, K.C.; Yew, W.W.; Chan, R.C.Y. Rapid assays for fluoroquinolone resistance in Mycobacterium tuberculosis: A systematic review and meta-analysis. J. Antimicrob. Chemother., 2010, 65(8), 1551-1561. doi: 10.1093/jac/dkq202 PMID: 20542907
  32. Ginsburg, A.S.; Grosset, J.H.; Bishai, W.R. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect. Dis., 2003, 3(7), 432-442. doi: 10.1016/S1473-3099(03)00671-6 PMID: 12837348
  33. Matrat, S.; Veziris, N.; Mayer, C.; Jarlier, V.; Truffot-Pernot, C.; Camuset, J.; Bouvet, E.; Cambau, E.; Aubry, A. Functional analysis of DNA gyrase mutant enzymes carrying mutations at position 88 in the A subunit found in clinical strains of Mycobacterium tuberculosis resistant to fluoroquinolones. Antimicrob. Agents Chemother., 2006, 50(12), 4170-4173. doi: 10.1128/AAC.00944-06 PMID: 17015625
  34. Cheng, A.F.B.; Yew, W.W.; Chan, E.W.C.; Chin, M.L.; Hui, M.M.M.; Chan, R.C.Y. Multiplex PCR amplimer conformation analysis for rapid detection of gyrA mutations in fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob. Agents Chemother., 2004, 48(2), 596-601. doi: 10.1128/AAC.48.2.596-601.2004 PMID: 14742214
  35. Lau, R.W.T.; Ho, P.L.; Kao, R.Y.T.; Yew, W.W.; Lau, T.C.K.; Cheng, V.C.C.; Yuen, K.Y.; Tsui, S.K.W.; Chen, X.; Yam, W.C. Molecular characterization of fluoroquinolone resistance in Mycobacterium tuberculosis: Functional analysis of gyrA mutation at position 74. Antimicrob. Agents Chemother., 2011, 55(2), 608-614. doi: 10.1128/AAC.00920-10 PMID: 20956608
  36. Li, Q.; Jiao, W.; Yin, Q.; Xu, F.; Li, J.; Sun, L.; Xiao, J.; Li, Y.; Mokrousov, I.; Huang, H.; Shen, A. Compensatory mutations of rifampin resistance are associated with transmission of multidrug-resistant Mycobacterium tuberculosis beijing genotype strains in China. Antimicrob. Agents Chemother., 2016, 60(5), 2807-2812. doi: 10.1128/AAC.02358-15 PMID: 26902762
  37. de Vos, M.; Müller, B.; Borrell, S.; Black, P.A.; van Helden, P.D.; Warren, R.M.; Gagneux, S.; Victor, T.C. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob. Agents Chemother., 2013, 57(2), 827-832. doi: 10.1128/AAC.01541-12 PMID: 23208709
  38. Swain, S.S.; Sharma, D.; Hussain, T.; Pati, S. Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerg. Microbes Infect., 2020, 9(1), 1651-1663. doi: 10.1080/22221751.2020.1785334 PMID: 32573374
  39. Ramaswamy, S.V.; Reich, R.; Dou, S.J.; Jasperse, L.; Pan, X.; Wanger, A.; Quitugua, T.; Graviss, E.A. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2003, 47(4), 1241-1250. doi: 10.1128/AAC.47.4.1241-1250.2003 PMID: 12654653
  40. Carter, A.P.; Clemons, W.M.; Brodersen, D.E.; Morgan-Warren, R.J.; Wimberly, B.T.; Ramakrishnan, V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature, 2000, 407(6802), 340-348. doi: 10.1038/35030019 PMID: 11014183
  41. Banerjee, R.; Schecter, G.F.; Flood, J.; Porco, T.C. Extensively drug-resistant tuberculosis: New strains, new challenges. Expert Rev. Anti Infect. Ther., 2008, 6(5), 713-724. doi: 10.1586/14787210.6.5.713 PMID: 18847407
  42. Okamoto, S.; Tamaru, A.; Nakajima, C.; Nishimura, K.; Tanaka, Y.; Tokuyama, S.; Suzuki, Y.; Ochi, K. Loss of a conserved 7‐methylguanosine modification in 16S rRNA confers low‐level streptomycin resistance in bacteria. Mol. Microbiol., 2007, 63(4), 1096-1106. doi: 10.1111/j.1365-2958.2006.05585.x PMID: 17238915
  43. Spies, F.S.; Almeida da Silva, P.E.; Ribeiro, M.O.; Rossetti, M.L.; Zaha, A. Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism. Antimicrob. Agents Chemother., 2008, 52(8), 2947-2949. doi: 10.1128/AAC.01570-07 PMID: 18541729
  44. Kambli, P.; Ajbani, K.; Nikam, C.; Sadani, M.; Shetty, A.; Udwadia, Z.; Georghiou, S.B.; Rodwell, T.C.; Catanzaro, A.; Rodrigues, C. Correlating rrs and eis promoter mutations in clinical isolates of Mycobacterium tuberculosis with phenotypic susceptibility levels to the second-line injectables. Int. J. Mycobacteriol., 2016, 5(1), 1-6. doi: 10.1016/j.ijmyco.2015.09.001 PMID: 26927983
  45. Reeves, A.Z.; Campbell, P.J.; Willby, M.J.; Posey, J.E. Disparities in capreomycin resistance levels associated with the rrs A1401G mutation in clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2015, 59(1), 444-449. doi: 10.1128/AAC.04438-14 PMID: 25385119
  46. Jugheli, L.; Bzekalava, N.; de Rijk, P.; Fissette, K.; Portaels, F.; Rigouts, L. High level of cross-resistance between kanamycin, amikacin, and capreomycin among Mycobacterium tuberculosis isolates from Georgia and a close relation with mutations in the rrs gene. Antimicrob. Agents Chemother., 2009, 53(12), 5064-5068. doi: 10.1128/AAC.00851-09 PMID: 19752274
  47. Maus, C.E.; Plikaytis, B.B.; Shinnick, T.M. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2005, 49(8), 3192-3197. doi: 10.1128/AAC.49.8.3192-3197.2005 PMID: 16048924
  48. Zaunbrecher, M.A.; Sikes, R.D., Jr; Metchock, B.; Shinnick, T.M.; Posey, J.E. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2009, 106(47), 20004-20009. doi: 10.1073/pnas.0907925106 PMID: 19906990
  49. Johansen, S.K.; Maus, C.E.; Plikaytis, B.B.; Douthwaite, S. Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol. Cell, 2006, 23(2), 173-182. doi: 10.1016/j.molcel.2006.05.044 PMID: 16857584
  50. Stanley, R.E.; Blaha, G.; Grodzicki, R.L.; Strickler, M.D.; Steitz, T.A. The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat. Struct. Mol. Biol., 2010, 17(3), 289-293. doi: 10.1038/nsmb.1755 PMID: 20154709
  51. Migliori, G.B.; Lange, C.; Centis, R.; Sotgiu, G.; Mütterlein, R.; Hoffmann, H.; Kliiman, K.; De Iaco, G.; Lauria, F.N.; Richardson, M.D.; Spanevello, A.; Cirillo, D.M. Resistance to second-line injectables and treatment outcomes in multidrug-resistant and extensively drug-resistant tuberculosis cases. Eur. Respir. J., 2008, 31(6), 1155-1159. doi: 10.1183/09031936.00028708 PMID: 18515555
  52. Via, L.E.; Cho, S.N.; Hwang, S.; Bang, H.; Park, S.K.; Kang, H.S.; Jeon, D.; Min, S.Y.; Oh, T.; Kim, Y.; Kim, Y.M.; Rajan, V.; Wong, S.Y.; Shamputa, I.C.; Carroll, M.; Goldfeder, L.; Lee, S.A.; Holland, S.M.; Eum, S.; Lee, H.; Barry, C.E., III Polymorphisms associated with resistance and cross-resistance to aminoglycosides and capreomycin in Mycobacterium tuberculosis isolates from South Korean Patients with drug-resistant tuberculosis. J. Clin. Microbiol., 2010, 48(2), 402-411. doi: 10.1128/JCM.01476-09 PMID: 20032248
  53. Malinga, L.; Brand, J.; Olorunju, S.; Stoltz, A.; van der Walt, M. Molecular analysis of genetic mutations among cross-resistant second-line injectable drugs reveals a new resistant mutation in Mycobacterium tuberculosis. Diagn. Microbiol. Infect. Dis., 2016, 85(4), 433-437. doi: 10.1016/j.diagmicrobio.2016.05.010 PMID: 27298046
  54. Wilson, D.N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol., 2014, 12(1), 35-48. doi: 10.1038/nrmicro3155 PMID: 24336183
  55. Jnawali, H.N.; Yoo, H.; Ryoo, S.; Lee, K.J.; Kim, B.J.; Koh, W.J.; Kim, C.K.; Kim, H.J.; Park, Y.K. Molecular genetics of Mycobacterium tuberculosis resistant to aminoglycosides and cyclic peptide capreomycin antibiotics in Korea. World J. Microbiol. Biotechnol., 2013, 29(6), 975-982. doi: 10.1007/s11274-013-1256-x PMID: 23329063
  56. Njire, M.; Tan, Y.; Mugweru, J.; Wang, C.; Guo, J.; Yew, W.; Tan, S.; Zhang, T. Pyrazinamide resistance in Mycobacterium tuberculosis: Review and update. Adv. Med. Sci., 2016, 61(1), 63-71. doi: 10.1016/j.advms.2015.09.007 PMID: 26521205
  57. Zhang, Y.; Mitchison, D. The curious characteristics of pyrazinamide: A review. Int. J. Tuberc. Lung Dis., 2003, 7(1), 6-21. PMID: 12701830
  58. Scorpio, A.; Lindholm-Levy, P.; Heifets, L.; Gilman, R.; Siddiqi, S.; Cynamon, M.; Zhang, Y. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1997, 41(3), 540-543. doi: 10.1128/AAC.41.3.540 PMID: 9055989
  59. Louw, G.E.; Warren, R.M.; Donald, P.R.; Murray, M.B.; Bosman, M.; Van Helden, P.D.; Young, D.B.; Victor, T.C. Frequency and implications of pyrazinamide resistance in managing previously treated tuberculosis patients. Int. J. Tuberc. Lung Dis., 2006, 10(7), 802-807. PMID: 16848344
  60. Cheng, S.J.; Thibert, L.; Sanchez, T.; Heifets, L.; Zhang, Y. pncA mutations as a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis: Spread of a monoresistant strain in Quebec, Canada. Antimicrob. Agents Chemother., 2000, 44(3), 528-532. doi: 10.1128/AAC.44.3.528-532.2000 PMID: 10681313
  61. Fivian-Hughes, AS; Houghton, J; Davis, EO Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid. Microbiol-Sgm, 2012, 158, 1388. doi: 10.1099/mic.0.X00002-0
  62. Rengarajan, J.; Sassetti, C.M.; Naroditskaya, V.; Sloutsky, A.; Bloom, B.R.; Rubin, E.J. The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol. Microbiol., 2004, 53(1), 275-282. doi: 10.1111/j.1365-2958.2004.04120.x PMID: 15225321
  63. Leung, K.L.; Yip, C.W.; Yeung, Y.L.; Wong, K.L.; Chan, W.Y.; Chan, M.Y.; Kam, K.M. Usefulness of resistant gene markers for predicting treatment outcome on second-line anti-tuberculosis drugs. J. Appl. Microbiol., 2010, 109(6), 2087-2094. doi: 10.1111/j.1365-2672.2010.04840.x PMID: 20854453
  64. Pym, A.S.; Saint-Joanis, B.; Cole, S.T. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect. Immun., 2002, 70(9), 4955-4960. doi: 10.1128/IAI.70.9.4955-4960.2002 PMID: 12183541
  65. Lee, A.S.G.; Teo, A.S.M.; Wong, S.Y. Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother., 2001, 45(7), 2157-2159. doi: 10.1128/AAC.45.7.2157-2159.2001 PMID: 11408244
  66. Alland, D.; Steyn, A.J.; Weisbrod, T.; Aldrich, K.; Jacobs, W.R., Jr Characterization of the Mycobacterium tuberculosis iniBAC promoter, a promoter that responds to cell wall biosynthesis inhibition. J. Bacteriol., 2000, 182(7), 1802-1811. doi: 10.1128/JB.182.7.1802-1811.2000 PMID: 10714983
  67. Unissa, A.N.; Subbian, S.; Hanna, L.E.; Selvakumar, N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect. Genet. Evol., 2016, 45, 474-492. doi: 10.1016/j.meegid.2016.09.004 PMID: 27612406
  68. Starks, A.M.; Gumusboga, A.; Plikaytis, B.B.; Shinnick, T.M.; Posey, J.E. Mutations at embB codon 306 are an important molecular indicator of ethambutol resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2009, 53(3), 1061-1066. doi: 10.1128/AAC.01357-08 PMID: 19104018
  69. Sreevatsan, S.; Stockbauer, K.E.; Pan, X.; Kreiswirth, B.N.; Moghazeh, S.L.; Jacobs, W.R., Jr; Telenti, A.; Musser, J.M. Ethambutol resistance in Mycobacterium tuberculosis: Critical role of embB mutations. Antimicrob. Agents Chemother., 1997, 41(8), 1677-1681. doi: 10.1128/AAC.41.8.1677 PMID: 9257740
  70. Mokrousov, I.; Narvskaya, O.; Limeschenko, E.; Otten, T.; Vyshnevskiy, B. Detection of ethambutol-resistant Mycobacterium tuberculosis strains by multiplex allele-specific PCR assay targeting embB306 mutations. J. Clin. Microbiol., 2002, 40(5), 1617-1620. doi: 10.1128/JCM.40.5.1617-1620.2002 PMID: 11980930
  71. Lee, H.Y.; Myoung, H.J.; Bang, H.E.; Bai, G.H.; Kim, S.J.; Kim, J.D.; Cho, S.N. Mutations in the embB locus among Korean clinical isolates of Mycobacterium tuberculosis resistant to ethambutol. Yonsei Med. J., 2002, 43(1), 59-64. doi: 10.3349/ymj.2002.43.1.59 PMID: 11854934
  72. Falzon, D.; Jaramillo, E.; Schünemann, H.J.; Arentz, M.; Bauer, M.; Bayona, J.; Blanc, L.; Caminero, J.A.; Daley, C.L.; Duncombe, C.; Fitzpatrick, C.; Gebhard, A.; Getahun, H.; Henkens, M.; Holtz, T.H.; Keravec, J.; Keshavjee, S.; Khan, A.J.; Kulier, R.; Leimane, V.; Lienhardt, C.; Lu, C.; Mariandyshev, A.; Migliori, G.B.; Mirzayev, F.; Mitnick, C.D.; Nunn, P.; Nwagboniwe, G.; Oxlade, O.; Palmero, D.; Pavlinac, P.; Quelapio, M.I.; Raviglione, M.C.; Rich, M.L.; Royce, S.; Rüsch-Gerdes, S.; Salakaia, A.; Sarin, R.; Sculier, D.; Varaine, F.; Vitoria, M.; Walson, J.L.; Wares, F.; Weyer, K.; White, R.A.; Zignol, M. WHO guidelines for the programmatic management of drug-resistant tuberculosis: 2011 update. Eur. Respir. J., 2011, 38(3), 516-528. doi: 10.1183/09031936.00073611 PMID: 21828024
  73. Caminero, J.A. Treatment of multidrug-resistant tuberculosis: Evidence and controversies. Int. J. Tuberc. Lung Dis., 2006, 10(8), 829-837. PMID: 16898365
  74. Nakatani, Y; Opel-Reading, HK; Merker, M Role of alanine racemase mutations in Mycobacterium tuberculosis d-cycloserine resistance. Antimicrob Agents Chemother., 2017, 61(12), e01575-e01517. doi: 10.1128/AAC.01575-17
  75. Chen, JM; Uplekar, S; Gordon, SV A point mutation in cycA partially contributes to the D-cycloserine resistance trait of mycobacterium bovis BCG vaccine strains. Plos One, 2012, 7(8), e43467. doi: 10.1371/journal.pone.0043467
  76. Chen, J.; Zhang, S.; Cui, P.; Shi, W.; Zhang, W.; Zhang, Y. Identification of novel mutations associated with cycloserine resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2017, 72(12), 3272-3276. doi: 10.1093/jac/dkx316 PMID: 28961957
  77. Vadwai, V.; Ajbani, K.; Jose, M.; Vineeth, V.P.; Nikam, C.; Deshmukh, M.; Shetty, A.; Soman, R.; Rodrigues, C. Can inhA mutation predict ethionamide resistance? Int. J. Tuberc. Lung Dis., 2013, 17(1), 129-130. doi: 10.5588/ijtld.12.0511 PMID: 23146620
  78. Brossier, F.; Veziris, N.; Truffot-Pernot, C.; Jarlier, V.; Sougakoff, W. Molecular investigation of resistance to the antituberculous drug ethionamide in multidrug-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2011, 55(1), 355-360. doi: 10.1128/AAC.01030-10 PMID: 20974869
  79. Lakshmi, R.; Kumar, V.; Baskaran, M.; Sundar, S.; Rahman, F.; Selvakumar, N.; Ramachandran, R. Pattern of ethionamide susceptibility and its association with isoniazid resistance among previously treated tuberculosis patients from India. Braz. J. Infect. Dis., 2011, 15(6), 619-620. doi: 10.1016/S1413-8670(11)70264-1 PMID: 22218528
  80. Boonaiam, S.; Chaiprasert, A.; Prammananan, T.; Leechawengwongs, M. Genotypic analysis of genes associated with isoniazid and ethionamide resistance in MDR-TB isolates from Thailand. Clin. Microbiol. Infect., 2010, 16(4), 396-399. doi: 10.1111/j.1469-0691.2009.02838.x PMID: 19486070
  81. Abe, C.; Kobayashi, I.; Mitarai, S.; Wada, M.; Kawabe, Y.; Takashima, T.; Suzuki, K.; Sng, L.H.; Wang, S.; Htay, H.H.; Ogata, H. Biological and molecular characteristics of Mycobacterium tuberculosis clinical isolates with low-level resistance to isoniazid in Japan. J. Clin. Microbiol., 2008, 46(7), 2263-2268. doi: 10.1128/JCM.00561-08 PMID: 18508939
  82. Guo, H.; Seet, Q.; Denkin, S.; Parsons, L.; Zhang, Y. Molecular characterization of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from the USA. J. Med. Microbiol., 2006, 55(11), 1527-1531. doi: 10.1099/jmm.0.46718-0 PMID: 17030912
  83. Vilchèze, C.; Av-Gay, Y.; Attarian, R.; Liu, Z.; Hazbón, M.H.; Colangeli, R.; Chen, B.; Liu, W.; Alland, D.; Sacchettini, J.C.; Jacobs, W.R., Jr Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol. Microbiol., 2008, 69(5), 1316-1329. doi: 10.1111/j.1365-2958.2008.06365.x PMID: 18651841
  84. Kadura, S.; King, N.; Nakhoul, M.; Zhu, H.; Theron, G.; Köser, C.U.; Farhat, M. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J. Antimicrob. Chemother., 2020, 75(8), 2031-2043. doi: 10.1093/jac/dkaa136 PMID: 32361756

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers