Nanostructured Lipid Carriers Mediated Drug Delivery to Posterior Segment of Eye and their In-vivo Successes
- Authors: Singh A.1, Kumar M.2, Upadhyay P.3
-
Affiliations:
- Institute of Pharmaceutical Research, GLA University
- School of Pharmaceutical Sciences,, CT University
- Institute of Pharmaceutical Research,, GLA University
- Issue: Vol 25, No 6 (2024)
- Pages: 713-723
- Section: Biotechnology
- URL: https://rjeid.com/1389-2010/article/view/644870
- DOI: https://doi.org/10.2174/1389201025666230907145019
- ID: 644870
Cite item
Full Text
Abstract
Background:The disease of the posterior segment of the eye is a major concern worldwide, and it affects more than 300 million people and leads to serious visual deterioration. The current treatment available is invasive and leads to serious eye complications. These shortcomings and patient discomfort lead to poor patient compliance. In the last decade, Nanostructured lipid carriers (NLC) have established a remarkable milestone in the delivery of drug substances to the posterior segment of the eye. Additionally, NLC can reduce the clearance due to adhesive properties which are imparted due to nano-metric size. This attribute might reduce the adverse effects associated with intravitreal therapy and thus enhance therapeutic efficacy, eventually raising patient adherence to therapy. The current review provides an inclusive account of NLC as a carrier to target diseases of the posterior segment of the eye.
Objective:The review focuses on the various barrier encountered in the delivery of drugs to the posterior segment of the eye and the detail about the physicochemical property of drug substances that are considered to be suitable candidates for encapsulation to lipid carriers. Therefore, a plethora of literature has been included in this review. The review is an attempt to describe methods adopted for assessing the in-vivo behavior that strengthens the potential of NLC to treat the disease of the posterior segment of the eye.
Conclusion:These NLC-based systems have proven to be a promising alternative in place of invasive intravitreal injections with improved patient compliance.
Keywords
About the authors
Amit Singh
Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
Manish Kumar
School of Pharmaceutical Sciences,, CT University
Email: info@benthamscience.net
Prabhat Upadhyay
Institute of Pharmaceutical Research,, GLA University
Author for correspondence.
Email: info@benthamscience.net
References
- Lynch, C.; Kondiah, P.P.D.; Choonara, Y.E.; du Toit, L.C.; Ally, N.; Pillay, V. Advances in biodegradable nano-sized polymer-based ocular drug delivery. Polymers., 2019, 11(8), 1371. doi: 10.3390/polym11081371 PMID: 31434273
- Thrimawithana, T.R.; Young, S.; Bunt, C.R.; Green, C.; Alany, R.G. Drug delivery to the posterior segment of the eye. Drug Discov. Today, 2011, 16(5-6), 270-277. doi: 10.1016/j.drudis.2010.12.004 PMID: 21167306
- Seah, I.; Zhao, X.; Lin, Q.; Liu, Z.; Su, S.Z.Z.; Yuen, Y.S.; Hunziker, W.; Lingam, G.; Loh, X.J.; Su, X. Use of biomaterials for sustained delivery of anti-VEGF to treat retinal diseases. Eye, 2020, 34(8), 1341-1356. doi: 10.1038/s41433-020-0770-y PMID: 32001821
- Platania, C.B.M.; Dei Cas, M.; Cianciolo, S.; Fidilio, A.; Lazzara, F.; Paroni, R.; Pignatello, R.; Strettoi, E.; Ghidoni, R.; Drago, F.; Bucolo, C. Novel ophthalmic formulation of myriocin: Implications in retinitis pigmentosa. Drug Deliv., 2019, 26(1), 237-243. doi: 10.1080/10717544.2019.1574936 PMID: 30883241
- Araújo, J.; Nikolic, S.; Egea, M.A.; Souto, E.B.; Garcia, M.L. Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids Surf. B Biointerfaces, 2011, 88(1), 150-157. doi: 10.1016/j.colsurfb.2011.06.025 PMID: 21764568
- Balguri, S.P.; Adelli, G.R.; Majumdar, S. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur. J. Pharm. Biopharm., 2016, 109, 224-235. doi: 10.1016/j.ejpb.2016.10.015 PMID: 27793755
- Sharif Makhmal Zadeh, B.; Niro, H.; Rahim, F.; Esfahani, G. Ocular delivery system for propranolol hydrochloride based on nanostructured lipid carrier. Sci. Pharm., 2018, 86(2), 16. doi: 10.3390/scipharm86020016 PMID: 29677103
- Makoni, P.A.; Khamanga, S.M.; Walker, R.B. Muco-adhesive clarithromycin-loaded nanostructured lipid carriers for ocular delivery: Formulation, characterization, cytotoxicity and stability. J. Drug Deliv. Sci. Technol., 2021, 61, 102171. doi: 10.1016/j.jddst.2020.102171
- Nirbhavane, P.; Sharma, G.; Singh, B.; Begum, G.; Jones, M.C.; Rauz, S.; Vincent, R.; Denniston, A.K.; Hill, L.J.; Katare, O.P. Triamcinolone acetonide loaded-cationic nano-lipoidal formulation for uveitis: Evidences of improved biopharmaceutical performance and anti-inflammatory activity. Colloids Surf. B Biointerfaces, 2020, 190(February), 110902. doi: 10.1016/j.colsurfb.2020.110902 PMID: 32143010
- Silva, A.C.; González-Mira, E.; García, M.L.; Egea, M.A.; Fonseca, J.; Silva, R.; Santos, D.; Souto, E.B.; Ferreira, D. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound. Colloids Surf. B Biointerfaces, 2011, 86(1), 158-165. doi: 10.1016/j.colsurfb.2011.03.035 PMID: 21530187
- zur Mühlen, A.; Schwarz, C.; Mehnert, W. Solid lipid nanoparticles (SLN) for controlled drug delivery Drug release and release mechanism. Eur. J. Pharm. Biopharm., 1998, 45(2), 149-155. doi: 10.1016/S0939-6411(97)00150-1 PMID: 9704911
- Bachu, R.; Chowdhury, P.; Al-Saedi, Z.; Karla, P.; Boddu, S. Ocular drug delivery barriersrole of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics, 2018, 10(1), 28. doi: 10.3390/pharmaceutics10010028 PMID: 29495528
- Kong, X.; Zhao, Y.; Quan, P.; Fang, L. Development of a topical ointment of betamethasone dipropionate loaded nanostructured lipid carrier. asian. J. Pharm. Sci., 2016, 11(2), 248-254.
- Rizwanullah, M.; Ahmad, M.Z.; Garg, A.; Ahmad, J. Advancement in design of nanostructured lipid carriers for cancer targeting and theranostic application. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(9), 129936. doi: 10.1016/j.bbagen.2021.129936 PMID: 34058266
- Harwansh, R.K.; Bahadur, S.; Deshmukh, R.; Rahman, M.A. Exciting potential of nanoparticlized lipidic system for effective treatment of breast cancer and clinical updates: A translational prospective. Curr. Pharm. Des., 2020, 26(11), 1191-1205. doi: 10.2174/1381612826666200131101156 PMID: 32003686
- Mohammadi-Samani, S.; Ghasemiyeh, P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303. doi: 10.4103/1735-5362.235156 PMID: 30065762
- Gelfuso, G.M.; Cunha-Filho, M.S.S.; Gratieri, T. Nanostructured lipid carriers for targeting drug delivery to the epidermal layer. Vol. 7, Therapeutic delivery. Future Science, 2016, (Nov), 735-737.
- How, C.W.; Abdullah, R.; Abbasalipourkabir, R. Physicochemical properties of nanostructured lipid carriers as colloidal carrier system stabilized with polysorbate 20 and polysorbate 80. Afr. J. Biotechnol., 2011, 10(9), 1684-1689.
- Barone, A.; Mendes, M.; Cabral, C.; Mare, R.; Paolino, D.; Vitorino, C. Hybrid nanostructured films for topical administration of simvastatin as coadjuvant treatment of melanoma. J. Pharm. Sci., 2019, 108(10), 3396-3407. doi: 10.1016/j.xphs.2019.06.002 PMID: 31201905
- Varela-Fernández, R.; Díaz-Tomé, V.; Luaces-Rodríguez, A.; Conde-Penedo, A.; García-Otero, X.; Luzardo-Álvarez, A.; Fernández-Ferreiro, A.; Otero-Espinar, F. Drug delivery to the posterior segment of the eye: Biopharmaceutic and pharmacokinetic considerations. Pharmaceutics, 2020, 12(3), 269. doi: 10.3390/pharmaceutics12030269 PMID: 32188045
- Prabhu, R.H.; Patravale, V.B.; Joshi, M.D. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int. J. Nanomedicine, 2015, 10, 1001-1018. PMID: 25678788
- Lucks, S.; Muller, R. Medication vehicles made of solid lipid particles (solid lipid nanospheres-SLN). EP Patent 0605497B1, 1996.
- Cholkar, K.; Patel, A.; Vadlapudi, A.D.; Mitra, A.K. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat. Nanomed., 2012, 2(2), 82-95. doi: 10.2174/1877912311202020082 PMID: 25400717
- Gote, V.; Ansong, M.; Pal, D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin. Drug Metab. Toxicol., 2020, 16(10), 885-906. doi: 10.1080/17425255.2020.1803278 PMID: 32729364
- Lai, S.; Wei, Y.; Wu, Q.; Zhou, K.; Liu, T.; Zhang, Y.; Jiang, N.; Xiao, W.; Chen, J.; Liu, Q.; Yu, Y. Liposomes for effective drug delivery to the ocular posterior chamber. J. Nanobiotechnology., 2019, 17(1), 64. doi: 10.1186/s12951-019-0498-7 PMID: 31084611
- Diebold, Y.; Jarrín, M.; Sáez, V.; Carvalho, E.L.S.; Orea, M.; Calonge, M.; Seijo, B.; Alonso, M.J. Ocular drug delivery by liposomechitosan nanoparticle complexes (LCS-NP). Biomaterials, 2007, 28(8), 1553-1564. doi: 10.1016/j.biomaterials.2006.11.028 PMID: 17169422
- Bochot, A.; Fattal, E.; Boutet, V.; Deverre, J.R.; Jeanny, J.C.; Chacun, H.; Couvreur, P. Intravitreal delivery of oligonucleotides by sterically stabilized liposomes. Invest. Ophthalmol. Vis. Sci., 2002, 43(1), 253-259. PMID: 11773039
- Mehnert, W.; Mäder, K. Solid lipid nanoparticles Production, characterization and applications. Adv. Drug Deliv. Rev., 2001, 47(2-3), 165-196. doi: 10.1016/S0169-409X(01)00105-3 PMID: 11311991
- Chen, H.; Jin, Y.; Sun, L.; Li, X.; Nan, K.; Liu, H.; Zheng, Q.; Wang, B. Recent developments in ophthalmic drug delivery systems for therapy of both anterior and posterior segment diseases. Colloid Interface Sci. Commun., 2018, 24(March), 54-61. doi: 10.1016/j.colcom.2018.03.008
- Sutradhar, KB; Khatun, S; Luna, IP Increasing possibilities of nanosuspension. J Nanotechnol., 2013, 2013
- de Oliveira, I.F.; Barbosa, E.J.; Peters, M.C.C.; Henostroza, M.A.B.; Yukuyama, M.N.; dos Santos, N.E.; Löbenberg, R.; Bou-Chacra, N. Cutting-edge advances in therapy for the posterior segment of the eye: Solid lipid nanoparticles and nanostructured lipid carriers. Int. J. Pharm., 2020, 589, 119831. doi: 10.1016/j.ijpharm.2020.119831 PMID: 32877729
- Pascolini, D.; Mariotti, S.P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol., 2012, 96(5), 614-618. doi: 10.1136/bjophthalmol-2011-300539 PMID: 22133988
- Bonilla, L.; Espina, M.; Severino, P.; Cano, A.; Ettcheto, M.; Camins, A.; García, M.L.; Souto, E.B.; Sánchez-López, E. Lipid nanoparticles for the posterior eye segment. Pharmaceutics., 2021, 14(1), 90. doi: 10.3390/pharmaceutics14010090 PMID: 35056986
- Nayak, K.; Misra, M. A review on recent drug delivery systems for posterior segment of eye. Biomed. Pharmacother., 2018, 107(February), 1564-1582. doi: 10.1016/j.biopha.2018.08.138 PMID: 30257375
- Xu, Q.; Boylan, N.J.; Suk, J.S.; Wang, Y.Y.; Nance, E.A.; Yang, J.C.; McDonnell, P.J.; Cone, R.A.; Duh, E.J.; Hanes, J. Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo. J. Control. Release, 2013, 167(1), 76-84. doi: 10.1016/j.jconrel.2013.01.018 PMID: 23369761
- Pai, R.V.; Vavia, P.R. Chitosan oligosaccharide enhances binding of nanostructured lipid carriers to ocular mucins: Effect on ocular disposition. Int. J. Pharm., 2020, 577, 119095. doi: 10.1016/j.ijpharm.2020.119095 PMID: 32004680
- Jounaki, K.; Makhmalzadeh, B.S.; Feghhi, M.; Heidarian, A. Topical ocular delivery of vancomycin loaded cationic lipid nanocarriers as a promising and non-invasive alternative approach to intravitreal injection for enhanced bacterial endophthalmitis management. Eur. J. Pharm. Sci., 2021, 167, 105991. doi: 10.1016/j.ejps.2021.105991 PMID: 34517103
- Fangueiro, J.F.; Andreani, T.; Egea, M.A.; Garcia, M.L.; Souto, S.B.; Silva, A.M.; Souto, E.B. Design of cationic lipid nanoparticles for ocular delivery: Development, characterization and cytotoxicity. Int. J. Pharm., 2014, 461(1-2), 64-73. doi: 10.1016/j.ijpharm.2013.11.025 PMID: 24275449
- Jung, J.H.; Ji, Y.W.; Hwang, H.S.; Oh, J.W.; Kim, H.C.; Lee, H.K.; Kim, K.P. Proteomic analysis of human lacrimal and tear fluid in dry eye disease. Sci. Rep., 2017, 7(1), 13363. doi: 10.1038/s41598-017-13817-y PMID: 29042648
- Garaszczuk, I.K.; Mousavi, M.; Cervino Exposito, A.; Bartuzel, M.M.; Montes-Micó, R.; Iskander, D.R. Evaluating tear clearance rate with optical coherence tomography. Cont. Lens Anterior Eye, 2018, 41(1), 54-59. doi: 10.1016/j.clae.2017.08.004 PMID: 28847465
- Dargó, G.; Vincze, A.; Müller, J.; Kiss, H.J.; Nagy, Z.Z.; Balogh, G.T. Corneal-PAMPA: A novel, non-cell-based assay for prediction of corneal drug permeability. Eur. J. Pharm. Sci., 2019, 128, 232-239. doi: 10.1016/j.ejps.2018.12.012 PMID: 30553815
- Kakizaki, H.; Ali, M.J. Anatomy, physiology, and immunology of the lacrimal system. In: Principles and practice of lacrimal surgery; Springer, 2018; pp. 19-39. doi: 10.1007/978-981-10-5442-6_3
- Janagam, D.R.; Wu, L.; Lowe, T.L. Nanoparticles for drug delivery to the anterior segment of the eye. Adv. Drug Deliv. Rev., 2017, 122, 31-64. doi: 10.1016/j.addr.2017.04.001 PMID: 28392306
- Thassu, D; Chader, GJ Ocular drug delivery systems: barriers and application of nanoparticulate systems, 1st ed.; CRC Press, 2012.
- Sánchez-López, E.; Espina, M.; Doktorovova, S.; Souto, E.B.; García, M.L. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye Part I Barriers and determining factors in ocular delivery. Eur. J. Pharm. Biopharm., 2017, 110, 70-75. doi: 10.1016/j.ejpb.2016.10.009 PMID: 27789358
- Rimpelä, A.K.; Reinisalo, M.; Hellinen, L.; Grazhdankin, E.; Kidron, H.; Urtti, A.; del Amo, E.M. Implications of melanin binding in ocular drug delivery. Adv. Drug Deliv. Rev., 2018, 126, 23-43. doi: 10.1016/j.addr.2017.12.008 PMID: 29247767
- See, G.L.; Sagesaka, A.; Sugasawa, S.; Todo, H.; Sugibayashi, K. Eyelid skin as a potential site for drug delivery to conjunctiva and ocular tissues. Int. J. Pharm., 2017, 533(1), 198-205. doi: 10.1016/j.ijpharm.2017.09.070 PMID: 28965801
- Mousavikhamene, Z.; Abdekhodaie, M.J.; Ahmadieh, H. Facilitation of transscleral drug delivery by drug loaded magnetic polymeric particles. Mater. Sci. Eng. C, 2017, 79, 812-820. doi: 10.1016/j.msec.2017.05.015 PMID: 28629084
- Mains, J.; Wilson, C.G. The vitreous humor as a barrier to nanoparticle distribution. J. Ocul. Pharmacol. Ther., 2013, 29(2), 143-150. doi: 10.1089/jop.2012.0138 PMID: 23113646
- del Amo, E.M.; Rimpelä, A.K.; Heikkinen, E.; Kari, O.K.; Ramsay, E.; Lajunen, T.; Schmitt, M.; Pelkonen, L.; Bhattacharya, M.; Richardson, D.; Subrizi, A.; Turunen, T.; Reinisalo, M.; Itkonen, J.; Toropainen, E.; Casteleijn, M.; Kidron, H.; Antopolsky, M.; Vellonen, K.S.; Ruponen, M.; Urtti, A. Pharmacokinetic aspects of retinal drug delivery. Prog. Retin. Eye Res., 2017, 57, 134-185. doi: 10.1016/j.preteyeres.2016.12.001 PMID: 28028001
- OLeary, F.; Campbell, M. The bloodretina barrier in health and disease. FEBS J., 2021, 290(4), 878-891. PMID: 34923749
- Kubo, Y.; Akanuma, S.; Hosoya, K. Influx transport of cationic drug at the bloodretinal barrier: Impact on the retinal delivery of neuroprotectants. Biol. Pharm. Bull., 2017, 40(8), 1139-1145. doi: 10.1248/bpb.b17-00090 PMID: 28768994
- Wang, Y.; Xu, X.; Gu, Y.; Cheng, Y.; Cao, F. Recent advance of nanoparticle-based topical drug delivery to the posterior segment of the eye. Expert Opin. Drug Deliv., 2018, 15(7), 687-701. doi: 10.1080/17425247.2018.1496080 PMID: 29985660
- Chapy, H.; Saubaméa, B.; Tournier, N.; Bourasset, F.; Behar-Cohen, F.; Declèves, X.; Scherrmann, J.M.; Cisternino, S. Blood-brain and retinal barriers show dissimilar ABC transporter impacts and concealed effect of P-glycoprotein on a novel verapamil influx carrier. Br. J. Pharmacol., 2016, 173(3), 497-510. doi: 10.1111/bph.13376 PMID: 26507673
- Peters, M.C.C.; Santos Neto, E.; Monteiro, L.M.; Yukuyama, M.N.; Machado, M.G.M.; de Oliveira, I.F.; Zanin, M.H.A.; Löbenberg, R.; Bou-Chacra, N. Advances in ophthalmic preparation: The role of drug nanocrystals and lipid-based nanosystems. J. Drug Target., 2020, 28(3), 259-270. doi: 10.1080/1061186X.2019.1663858 PMID: 31491352
- Khosa, A.; Reddi, S.; Saha, R.N. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother., 2018, 103, 598-613. doi: 10.1016/j.biopha.2018.04.055 PMID: 29677547
- Salvi, VR Pawar, P Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol., 2019, 51, 255-267.
- Alskär, L.C.; Porter, C.J.H.; Bergström, C.A.S. Tools for early prediction of drug loading in lipid-based formulations. Mol. Pharm., 2016, 13(1), 251-261. doi: 10.1021/acs.molpharmaceut.5b00704 PMID: 26568134
- Göke, K.; Bunjes, H. Drug solubility in lipid nanocarriers: Influence of lipid matrix and available interfacial area. Int. J. Pharm., 2017, 529(1-2), 617-628. doi: 10.1016/j.ijpharm.2017.07.025 PMID: 28705617
- Hansch, C.; Hoekman, D.; Leo, A.; Zhang, L.; Li, P. The expanding role of quantitative structure-activity relationships (QSAR) in toxicology. Toxicol. Lett., 1995, 79(1-3), 45-53. doi: 10.1016/0378-4274(95)03356-P PMID: 7570673
- Selvaraj, K.; Kuppusamy, G.; Krishnamurthy, J.; Mahalingam, R.; Singh, S.K.; Gulati, M. Repositioning of itraconazole for the management of ocular neovascularization through surface-modified nanostructured lipid carriers. Assay Drug Dev. Technol., 2019, 17(4), 178-190. doi: 10.1089/adt.2018.898 PMID: 30835139
- Lakhani, P.; Patil, A.; Wu, K.W.; Sweeney, C.; Tripathi, S.; Avula, B.; Taskar, P.; Khan, S.; Majumdar, S. Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery. Int. J. Pharm., 2019, 572(Dec), 118771. doi: 10.1016/j.ijpharm.2019.118771 PMID: 31669555
- Guadagni, V.; Novelli, E.; Piano, I.; Gargini, C.; Strettoi, E. Pharmacological approaches to retinitis pigmentosa: A laboratory perspective. Prog. Retin. Eye Res., 2015, 48, 62-81. doi: 10.1016/j.preteyeres.2015.06.005 PMID: 26113212
- Zarbin, M.A.; Montemagno, C.; Leary, J.F.; Ritch, R. Nanotechnology in ophthalmology. Can. J. Ophthalmol., 2010, 45(5), 457-476. doi: 10.3129/i10-090 PMID: 20871642
- Diebold, Y.; Calonge, M. Applications of nanoparticles in ophthalmology. Prog. Retin. Eye Res., 2010, 29(6), 596-609. doi: 10.1016/j.preteyeres.2010.08.002 PMID: 20826225
- Nayak, K.; Misra, M. Triamcinolone acetonide-loaded PEGylated microemulsion for the posterior segment of eye. ACS Omega, 2020, 5(14), 7928-7939. doi: 10.1021/acsomega.9b04244 PMID: 32309702
- L Kiss, E.; Berkó, S.; Gácsi, A.; Kovács, A.; Katona, G.; Soós, J.; Csányi, E.; Gróf, I.; Harazin, A.; Deli, M.A.; Budai-Szűcs, M. Design and optimization of nanostructured lipid carrier containing dexamethasone for ophthalmic use. Pharmaceutics, 2019, 11(12), 679. doi: 10.3390/pharmaceutics11120679 PMID: 31847336
- Allam, A; El-mokhtar, MA; Elsabahy, M Vancomycin-loaded niosomes integrated within pH-sensitive in-situ forming gel for treatment of ocular infections while minimizing drug irritation. J Pharm Pharmacol., 2019, 71, 1209-1221.
- Araújo, J.; Garcia, M.L.; Mallandrich, M.; Souto, E.B.; Calpena, A.C. Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): in vitro and ex vivo studies. Nanomedicine, 2012, 8(6), 1034-1041. doi: 10.1016/j.nano.2011.10.015 PMID: 22115598
- Ban, J.; Zhang, Y.; Huang, X.; Deng, G.; Hou, D.; Chen, Y.; Lu, Z. Corneal permeation properties of a charged lipid nanoparticle carrier containing dexamethasone. Int. J. Nanomedicine, 2017, 12, 1329-1339. doi: 10.2147/IJN.S126199 PMID: 28243093
Supplementary files
