Nanostructured Lipid Carriers Mediated Drug Delivery to Posterior Segment of Eye and their In-vivo Successes


Cite item

Full Text

Abstract

Background:The disease of the posterior segment of the eye is a major concern worldwide, and it affects more than 300 million people and leads to serious visual deterioration. The current treatment available is invasive and leads to serious eye complications. These shortcomings and patient discomfort lead to poor patient compliance. In the last decade, Nanostructured lipid carriers (NLC) have established a remarkable milestone in the delivery of drug substances to the posterior segment of the eye. Additionally, NLC can reduce the clearance due to adhesive properties which are imparted due to nano-metric size. This attribute might reduce the adverse effects associated with intravitreal therapy and thus enhance therapeutic efficacy, eventually raising patient adherence to therapy. The current review provides an inclusive account of NLC as a carrier to target diseases of the posterior segment of the eye.

Objective:The review focuses on the various barrier encountered in the delivery of drugs to the posterior segment of the eye and the detail about the physicochemical property of drug substances that are considered to be suitable candidates for encapsulation to lipid carriers. Therefore, a plethora of literature has been included in this review. The review is an attempt to describe methods adopted for assessing the in-vivo behavior that strengthens the potential of NLC to treat the disease of the posterior segment of the eye.

Conclusion:These NLC-based systems have proven to be a promising alternative in place of invasive intravitreal injections with improved patient compliance.

About the authors

Amit Singh

Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Manish Kumar

School of Pharmaceutical Sciences,, CT University

Email: info@benthamscience.net

Prabhat Upadhyay

Institute of Pharmaceutical Research,, GLA University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Lynch, C.; Kondiah, P.P.D.; Choonara, Y.E.; du Toit, L.C.; Ally, N.; Pillay, V. Advances in biodegradable nano-sized polymer-based ocular drug delivery. Polymers., 2019, 11(8), 1371. doi: 10.3390/polym11081371 PMID: 31434273
  2. Thrimawithana, T.R.; Young, S.; Bunt, C.R.; Green, C.; Alany, R.G. Drug delivery to the posterior segment of the eye. Drug Discov. Today, 2011, 16(5-6), 270-277. doi: 10.1016/j.drudis.2010.12.004 PMID: 21167306
  3. Seah, I.; Zhao, X.; Lin, Q.; Liu, Z.; Su, S.Z.Z.; Yuen, Y.S.; Hunziker, W.; Lingam, G.; Loh, X.J.; Su, X. Use of biomaterials for sustained delivery of anti-VEGF to treat retinal diseases. Eye, 2020, 34(8), 1341-1356. doi: 10.1038/s41433-020-0770-y PMID: 32001821
  4. Platania, C.B.M.; Dei Cas, M.; Cianciolo, S.; Fidilio, A.; Lazzara, F.; Paroni, R.; Pignatello, R.; Strettoi, E.; Ghidoni, R.; Drago, F.; Bucolo, C. Novel ophthalmic formulation of myriocin: Implications in retinitis pigmentosa. Drug Deliv., 2019, 26(1), 237-243. doi: 10.1080/10717544.2019.1574936 PMID: 30883241
  5. Araújo, J.; Nikolic, S.; Egea, M.A.; Souto, E.B.; Garcia, M.L. Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids Surf. B Biointerfaces, 2011, 88(1), 150-157. doi: 10.1016/j.colsurfb.2011.06.025 PMID: 21764568
  6. Balguri, S.P.; Adelli, G.R.; Majumdar, S. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur. J. Pharm. Biopharm., 2016, 109, 224-235. doi: 10.1016/j.ejpb.2016.10.015 PMID: 27793755
  7. Sharif Makhmal Zadeh, B.; Niro, H.; Rahim, F.; Esfahani, G. Ocular delivery system for propranolol hydrochloride based on nanostructured lipid carrier. Sci. Pharm., 2018, 86(2), 16. doi: 10.3390/scipharm86020016 PMID: 29677103
  8. Makoni, P.A.; Khamanga, S.M.; Walker, R.B. Muco-adhesive clarithromycin-loaded nanostructured lipid carriers for ocular delivery: Formulation, characterization, cytotoxicity and stability. J. Drug Deliv. Sci. Technol., 2021, 61, 102171. doi: 10.1016/j.jddst.2020.102171
  9. Nirbhavane, P.; Sharma, G.; Singh, B.; Begum, G.; Jones, M.C.; Rauz, S.; Vincent, R.; Denniston, A.K.; Hill, L.J.; Katare, O.P. Triamcinolone acetonide loaded-cationic nano-lipoidal formulation for uveitis: Evidences of improved biopharmaceutical performance and anti-inflammatory activity. Colloids Surf. B Biointerfaces, 2020, 190(February), 110902. doi: 10.1016/j.colsurfb.2020.110902 PMID: 32143010
  10. Silva, A.C.; González-Mira, E.; García, M.L.; Egea, M.A.; Fonseca, J.; Silva, R.; Santos, D.; Souto, E.B.; Ferreira, D. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound. Colloids Surf. B Biointerfaces, 2011, 86(1), 158-165. doi: 10.1016/j.colsurfb.2011.03.035 PMID: 21530187
  11. zur Mühlen, A.; Schwarz, C.; Mehnert, W. Solid lipid nanoparticles (SLN) for controlled drug delivery – Drug release and release mechanism. Eur. J. Pharm. Biopharm., 1998, 45(2), 149-155. doi: 10.1016/S0939-6411(97)00150-1 PMID: 9704911
  12. Bachu, R.; Chowdhury, P.; Al-Saedi, Z.; Karla, P.; Boddu, S. Ocular drug delivery barriers—role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics, 2018, 10(1), 28. doi: 10.3390/pharmaceutics10010028 PMID: 29495528
  13. Kong, X.; Zhao, Y.; Quan, P.; Fang, L. Development of a topical ointment of betamethasone dipropionate loaded nanostructured lipid carrier. asian. J. Pharm. Sci., 2016, 11(2), 248-254.
  14. Rizwanullah, M.; Ahmad, M.Z.; Garg, A.; Ahmad, J. Advancement in design of nanostructured lipid carriers for cancer targeting and theranostic application. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(9), 129936. doi: 10.1016/j.bbagen.2021.129936 PMID: 34058266
  15. Harwansh, R.K.; Bahadur, S.; Deshmukh, R.; Rahman, M.A. Exciting potential of nanoparticlized lipidic system for effective treatment of breast cancer and clinical updates: A translational prospective. Curr. Pharm. Des., 2020, 26(11), 1191-1205. doi: 10.2174/1381612826666200131101156 PMID: 32003686
  16. Mohammadi-Samani, S.; Ghasemiyeh, P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303. doi: 10.4103/1735-5362.235156 PMID: 30065762
  17. Gelfuso, G.M.; Cunha-Filho, M.S.S.; Gratieri, T. Nanostructured lipid carriers for targeting drug delivery to the epidermal layer. Vol. 7, Therapeutic delivery. Future Science, 2016, (Nov), 735-737.
  18. How, C.W.; Abdullah, R.; Abbasalipourkabir, R. Physicochemical properties of nanostructured lipid carriers as colloidal carrier system stabilized with polysorbate 20 and polysorbate 80. Afr. J. Biotechnol., 2011, 10(9), 1684-1689.
  19. Barone, A.; Mendes, M.; Cabral, C.; Mare, R.; Paolino, D.; Vitorino, C. Hybrid nanostructured films for topical administration of simvastatin as coadjuvant treatment of melanoma. J. Pharm. Sci., 2019, 108(10), 3396-3407. doi: 10.1016/j.xphs.2019.06.002 PMID: 31201905
  20. Varela-Fernández, R.; Díaz-Tomé, V.; Luaces-Rodríguez, A.; Conde-Penedo, A.; García-Otero, X.; Luzardo-Álvarez, A.; Fernández-Ferreiro, A.; Otero-Espinar, F. Drug delivery to the posterior segment of the eye: Biopharmaceutic and pharmacokinetic considerations. Pharmaceutics, 2020, 12(3), 269. doi: 10.3390/pharmaceutics12030269 PMID: 32188045
  21. Prabhu, R.H.; Patravale, V.B.; Joshi, M.D. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int. J. Nanomedicine, 2015, 10, 1001-1018. PMID: 25678788
  22. Lucks, S.; Muller, R. Medication vehicles made of solid lipid particles (solid lipid nanospheres-SLN). EP Patent 0605497B1, 1996.
  23. Cholkar, K.; Patel, A.; Vadlapudi, A.D.; Mitra, A.K. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat. Nanomed., 2012, 2(2), 82-95. doi: 10.2174/1877912311202020082 PMID: 25400717
  24. Gote, V.; Ansong, M.; Pal, D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin. Drug Metab. Toxicol., 2020, 16(10), 885-906. doi: 10.1080/17425255.2020.1803278 PMID: 32729364
  25. Lai, S.; Wei, Y.; Wu, Q.; Zhou, K.; Liu, T.; Zhang, Y.; Jiang, N.; Xiao, W.; Chen, J.; Liu, Q.; Yu, Y. Liposomes for effective drug delivery to the ocular posterior chamber. J. Nanobiotechnology., 2019, 17(1), 64. doi: 10.1186/s12951-019-0498-7 PMID: 31084611
  26. Diebold, Y.; Jarrín, M.; Sáez, V.; Carvalho, E.L.S.; Orea, M.; Calonge, M.; Seijo, B.; Alonso, M.J. Ocular drug delivery by liposome–chitosan nanoparticle complexes (LCS-NP). Biomaterials, 2007, 28(8), 1553-1564. doi: 10.1016/j.biomaterials.2006.11.028 PMID: 17169422
  27. Bochot, A.; Fattal, E.; Boutet, V.; Deverre, J.R.; Jeanny, J.C.; Chacun, H.; Couvreur, P. Intravitreal delivery of oligonucleotides by sterically stabilized liposomes. Invest. Ophthalmol. Vis. Sci., 2002, 43(1), 253-259. PMID: 11773039
  28. Mehnert, W.; Mäder, K. Solid lipid nanoparticles Production, characterization and applications. Adv. Drug Deliv. Rev., 2001, 47(2-3), 165-196. doi: 10.1016/S0169-409X(01)00105-3 PMID: 11311991
  29. Chen, H.; Jin, Y.; Sun, L.; Li, X.; Nan, K.; Liu, H.; Zheng, Q.; Wang, B. Recent developments in ophthalmic drug delivery systems for therapy of both anterior and posterior segment diseases. Colloid Interface Sci. Commun., 2018, 24(March), 54-61. doi: 10.1016/j.colcom.2018.03.008
  30. Sutradhar, KB; Khatun, S; Luna, IP Increasing possibilities of nanosuspension. J Nanotechnol., 2013, 2013
  31. de Oliveira, I.F.; Barbosa, E.J.; Peters, M.C.C.; Henostroza, M.A.B.; Yukuyama, M.N.; dos Santos, N.E.; Löbenberg, R.; Bou-Chacra, N. Cutting-edge advances in therapy for the posterior segment of the eye: Solid lipid nanoparticles and nanostructured lipid carriers. Int. J. Pharm., 2020, 589, 119831. doi: 10.1016/j.ijpharm.2020.119831 PMID: 32877729
  32. Pascolini, D.; Mariotti, S.P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol., 2012, 96(5), 614-618. doi: 10.1136/bjophthalmol-2011-300539 PMID: 22133988
  33. Bonilla, L.; Espina, M.; Severino, P.; Cano, A.; Ettcheto, M.; Camins, A.; García, M.L.; Souto, E.B.; Sánchez-López, E. Lipid nanoparticles for the posterior eye segment. Pharmaceutics., 2021, 14(1), 90. doi: 10.3390/pharmaceutics14010090 PMID: 35056986
  34. Nayak, K.; Misra, M. A review on recent drug delivery systems for posterior segment of eye. Biomed. Pharmacother., 2018, 107(February), 1564-1582. doi: 10.1016/j.biopha.2018.08.138 PMID: 30257375
  35. Xu, Q.; Boylan, N.J.; Suk, J.S.; Wang, Y.Y.; Nance, E.A.; Yang, J.C.; McDonnell, P.J.; Cone, R.A.; Duh, E.J.; Hanes, J. Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo. J. Control. Release, 2013, 167(1), 76-84. doi: 10.1016/j.jconrel.2013.01.018 PMID: 23369761
  36. Pai, R.V.; Vavia, P.R. Chitosan oligosaccharide enhances binding of nanostructured lipid carriers to ocular mucins: Effect on ocular disposition. Int. J. Pharm., 2020, 577, 119095. doi: 10.1016/j.ijpharm.2020.119095 PMID: 32004680
  37. Jounaki, K.; Makhmalzadeh, B.S.; Feghhi, M.; Heidarian, A. Topical ocular delivery of vancomycin loaded cationic lipid nanocarriers as a promising and non-invasive alternative approach to intravitreal injection for enhanced bacterial endophthalmitis management. Eur. J. Pharm. Sci., 2021, 167, 105991. doi: 10.1016/j.ejps.2021.105991 PMID: 34517103
  38. Fangueiro, J.F.; Andreani, T.; Egea, M.A.; Garcia, M.L.; Souto, S.B.; Silva, A.M.; Souto, E.B. Design of cationic lipid nanoparticles for ocular delivery: Development, characterization and cytotoxicity. Int. J. Pharm., 2014, 461(1-2), 64-73. doi: 10.1016/j.ijpharm.2013.11.025 PMID: 24275449
  39. Jung, J.H.; Ji, Y.W.; Hwang, H.S.; Oh, J.W.; Kim, H.C.; Lee, H.K.; Kim, K.P. Proteomic analysis of human lacrimal and tear fluid in dry eye disease. Sci. Rep., 2017, 7(1), 13363. doi: 10.1038/s41598-017-13817-y PMID: 29042648
  40. Garaszczuk, I.K.; Mousavi, M.; Cervino Exposito, A.; Bartuzel, M.M.; Montes-Micó, R.; Iskander, D.R. Evaluating tear clearance rate with optical coherence tomography. Cont. Lens Anterior Eye, 2018, 41(1), 54-59. doi: 10.1016/j.clae.2017.08.004 PMID: 28847465
  41. Dargó, G.; Vincze, A.; Müller, J.; Kiss, H.J.; Nagy, Z.Z.; Balogh, G.T. Corneal-PAMPA: A novel, non-cell-based assay for prediction of corneal drug permeability. Eur. J. Pharm. Sci., 2019, 128, 232-239. doi: 10.1016/j.ejps.2018.12.012 PMID: 30553815
  42. Kakizaki, H.; Ali, M.J. Anatomy, physiology, and immunology of the lacrimal system. In: Principles and practice of lacrimal surgery; Springer, 2018; pp. 19-39. doi: 10.1007/978-981-10-5442-6_3
  43. Janagam, D.R.; Wu, L.; Lowe, T.L. Nanoparticles for drug delivery to the anterior segment of the eye. Adv. Drug Deliv. Rev., 2017, 122, 31-64. doi: 10.1016/j.addr.2017.04.001 PMID: 28392306
  44. Thassu, D; Chader, GJ Ocular drug delivery systems: barriers and application of nanoparticulate systems, 1st ed.; CRC Press, 2012.
  45. Sánchez-López, E.; Espina, M.; Doktorovova, S.; Souto, E.B.; García, M.L. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye – Part I – Barriers and determining factors in ocular delivery. Eur. J. Pharm. Biopharm., 2017, 110, 70-75. doi: 10.1016/j.ejpb.2016.10.009 PMID: 27789358
  46. Rimpelä, A.K.; Reinisalo, M.; Hellinen, L.; Grazhdankin, E.; Kidron, H.; Urtti, A.; del Amo, E.M. Implications of melanin binding in ocular drug delivery. Adv. Drug Deliv. Rev., 2018, 126, 23-43. doi: 10.1016/j.addr.2017.12.008 PMID: 29247767
  47. See, G.L.; Sagesaka, A.; Sugasawa, S.; Todo, H.; Sugibayashi, K. Eyelid skin as a potential site for drug delivery to conjunctiva and ocular tissues. Int. J. Pharm., 2017, 533(1), 198-205. doi: 10.1016/j.ijpharm.2017.09.070 PMID: 28965801
  48. Mousavikhamene, Z.; Abdekhodaie, M.J.; Ahmadieh, H. Facilitation of transscleral drug delivery by drug loaded magnetic polymeric particles. Mater. Sci. Eng. C, 2017, 79, 812-820. doi: 10.1016/j.msec.2017.05.015 PMID: 28629084
  49. Mains, J.; Wilson, C.G. The vitreous humor as a barrier to nanoparticle distribution. J. Ocul. Pharmacol. Ther., 2013, 29(2), 143-150. doi: 10.1089/jop.2012.0138 PMID: 23113646
  50. del Amo, E.M.; Rimpelä, A.K.; Heikkinen, E.; Kari, O.K.; Ramsay, E.; Lajunen, T.; Schmitt, M.; Pelkonen, L.; Bhattacharya, M.; Richardson, D.; Subrizi, A.; Turunen, T.; Reinisalo, M.; Itkonen, J.; Toropainen, E.; Casteleijn, M.; Kidron, H.; Antopolsky, M.; Vellonen, K.S.; Ruponen, M.; Urtti, A. Pharmacokinetic aspects of retinal drug delivery. Prog. Retin. Eye Res., 2017, 57, 134-185. doi: 10.1016/j.preteyeres.2016.12.001 PMID: 28028001
  51. O’Leary, F.; Campbell, M. The blood–retina barrier in health and disease. FEBS J., 2021, 290(4), 878-891. PMID: 34923749
  52. Kubo, Y.; Akanuma, S.; Hosoya, K. Influx transport of cationic drug at the blood–retinal barrier: Impact on the retinal delivery of neuroprotectants. Biol. Pharm. Bull., 2017, 40(8), 1139-1145. doi: 10.1248/bpb.b17-00090 PMID: 28768994
  53. Wang, Y.; Xu, X.; Gu, Y.; Cheng, Y.; Cao, F. Recent advance of nanoparticle-based topical drug delivery to the posterior segment of the eye. Expert Opin. Drug Deliv., 2018, 15(7), 687-701. doi: 10.1080/17425247.2018.1496080 PMID: 29985660
  54. Chapy, H.; Saubaméa, B.; Tournier, N.; Bourasset, F.; Behar-Cohen, F.; Declèves, X.; Scherrmann, J.M.; Cisternino, S. Blood-brain and retinal barriers show dissimilar ABC transporter impacts and concealed effect of P-glycoprotein on a novel verapamil influx carrier. Br. J. Pharmacol., 2016, 173(3), 497-510. doi: 10.1111/bph.13376 PMID: 26507673
  55. Peters, M.C.C.; Santos Neto, E.; Monteiro, L.M.; Yukuyama, M.N.; Machado, M.G.M.; de Oliveira, I.F.; Zanin, M.H.A.; Löbenberg, R.; Bou-Chacra, N. Advances in ophthalmic preparation: The role of drug nanocrystals and lipid-based nanosystems. J. Drug Target., 2020, 28(3), 259-270. doi: 10.1080/1061186X.2019.1663858 PMID: 31491352
  56. Khosa, A.; Reddi, S.; Saha, R.N. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother., 2018, 103, 598-613. doi: 10.1016/j.biopha.2018.04.055 PMID: 29677547
  57. Salvi, VR Pawar, P Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol., 2019, 51, 255-267.
  58. Alskär, L.C.; Porter, C.J.H.; Bergström, C.A.S. Tools for early prediction of drug loading in lipid-based formulations. Mol. Pharm., 2016, 13(1), 251-261. doi: 10.1021/acs.molpharmaceut.5b00704 PMID: 26568134
  59. Göke, K.; Bunjes, H. Drug solubility in lipid nanocarriers: Influence of lipid matrix and available interfacial area. Int. J. Pharm., 2017, 529(1-2), 617-628. doi: 10.1016/j.ijpharm.2017.07.025 PMID: 28705617
  60. Hansch, C.; Hoekman, D.; Leo, A.; Zhang, L.; Li, P. The expanding role of quantitative structure-activity relationships (QSAR) in toxicology. Toxicol. Lett., 1995, 79(1-3), 45-53. doi: 10.1016/0378-4274(95)03356-P PMID: 7570673
  61. Selvaraj, K.; Kuppusamy, G.; Krishnamurthy, J.; Mahalingam, R.; Singh, S.K.; Gulati, M. Repositioning of itraconazole for the management of ocular neovascularization through surface-modified nanostructured lipid carriers. Assay Drug Dev. Technol., 2019, 17(4), 178-190. doi: 10.1089/adt.2018.898 PMID: 30835139
  62. Lakhani, P.; Patil, A.; Wu, K.W.; Sweeney, C.; Tripathi, S.; Avula, B.; Taskar, P.; Khan, S.; Majumdar, S. Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery. Int. J. Pharm., 2019, 572(Dec), 118771. doi: 10.1016/j.ijpharm.2019.118771 PMID: 31669555
  63. Guadagni, V.; Novelli, E.; Piano, I.; Gargini, C.; Strettoi, E. Pharmacological approaches to retinitis pigmentosa: A laboratory perspective. Prog. Retin. Eye Res., 2015, 48, 62-81. doi: 10.1016/j.preteyeres.2015.06.005 PMID: 26113212
  64. Zarbin, M.A.; Montemagno, C.; Leary, J.F.; Ritch, R. Nanotechnology in ophthalmology. Can. J. Ophthalmol., 2010, 45(5), 457-476. doi: 10.3129/i10-090 PMID: 20871642
  65. Diebold, Y.; Calonge, M. Applications of nanoparticles in ophthalmology. Prog. Retin. Eye Res., 2010, 29(6), 596-609. doi: 10.1016/j.preteyeres.2010.08.002 PMID: 20826225
  66. Nayak, K.; Misra, M. Triamcinolone acetonide-loaded PEGylated microemulsion for the posterior segment of eye. ACS Omega, 2020, 5(14), 7928-7939. doi: 10.1021/acsomega.9b04244 PMID: 32309702
  67. L Kiss, E.; Berkó, S.; Gácsi, A.; Kovács, A.; Katona, G.; Soós, J.; Csányi, E.; Gróf, I.; Harazin, A.; Deli, M.A.; Budai-Szűcs, M. Design and optimization of nanostructured lipid carrier containing dexamethasone for ophthalmic use. Pharmaceutics, 2019, 11(12), 679. doi: 10.3390/pharmaceutics11120679 PMID: 31847336
  68. Allam, A; El-mokhtar, MA; Elsabahy, M Vancomycin-loaded niosomes integrated within pH-sensitive in-situ forming gel for treatment of ocular infections while minimizing drug irritation. J Pharm Pharmacol., 2019, 71, 1209-1221.
  69. Araújo, J.; Garcia, M.L.; Mallandrich, M.; Souto, E.B.; Calpena, A.C. Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): in vitro and ex vivo studies. Nanomedicine, 2012, 8(6), 1034-1041. doi: 10.1016/j.nano.2011.10.015 PMID: 22115598
  70. Ban, J.; Zhang, Y.; Huang, X.; Deng, G.; Hou, D.; Chen, Y.; Lu, Z. Corneal permeation properties of a charged lipid nanoparticle carrier containing dexamethasone. Int. J. Nanomedicine, 2017, 12, 1329-1339. doi: 10.2147/IJN.S126199 PMID: 28243093

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers