Use of Albumin for Drug Delivery as a Diagnostic and Therapeutic Tool


Cite item

Full Text

Abstract

Drug delivery is an important topic that has attracted the attention of researchers in recent years. Albumin nanoparticles play a significant role in drug delivery as a carrier due to their unique characteristics. Albumin is non-toxic, biocompatible, and biodegradable. Its structure is such that it can interact with different drugs, which makes the treatment of the disease faster and also reduces the side effects of the drug. Albumin nanoparticles can be used in the diagnosis and treatment of many diseases, including cancer, diabetes, Alzheimer's, etc. These nanoparticles can connect to some compounds, such as metal nanoparticles, antibodies, folate, etc. and create a powerful nanostructure for drug delivery. In this paper, we aim to investigate albumin nanoparticles in carrier format for drug delivery application. In the beginning, different types of albumin and their preparation methods were discussed, and then albumin nanoparticles were discussed in detail in diagnosing and treating various diseases.

About the authors

Elmira Karami

Venom and Biotherapeutics Molecules Laboratory, Department of Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran

Email: info@benthamscience.net

Maryam Mesbahi Moghaddam

Department of Biology, Shahed University

Email: info@benthamscience.net

Fatemeh Kazemi-Lomedasht

Venom and Biotherapeutics Molecules Laboratory, Department of Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran

Author for correspondence.
Email: info@benthamscience.net

References

  1. Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124. doi: 10.1038/s41573-020-0090-8 PMID: 33277608
  2. Kazemi, F.; Zaraghami, N.; Monfaredan, A. β-Cyclodextrin-curcumin complex inhibit telomerase gene expression in T47-D breast cancer cell line. Afr. J. Biotechnol., 2011, 10(83), 19481-19488.
  3. Tong, X.; Pan, W.; Su, T.; Zhang, M.; Dong, W.; Qi, X. Recent advances in natural polymer-based drug delivery systems. React. Funct. Polym., 2020, 148, 104501. doi: 10.1016/j.reactfunctpolym.2020.104501
  4. Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release, 2012, 157(2), 168-182. doi: 10.1016/j.jconrel.2011.07.031 PMID: 21839127
  5. Shojai, S.; Haeri Rohani, S.A.; Moosavi-Movahedi, A.A.; Habibi-Rezaei, M. Human serum albumin in neurodegeneration. Rev. Neurosci., 2022, 33(7), 803-817. doi: 10.1515/revneuro-2021-0165 PMID: 35363449
  6. Toy, R.; Roy, K. Engineering nanoparticles to overcome barriers to immunotherapy. Bioeng. Transl. Med., 2016, 1(1), 47-62. doi: 10.1002/btm2.10005 PMID: 29313006
  7. Spada, A.; Emami, J.; Tuszynski, J.A.; Lavasanifar, A. The uniqueness of albumin as a carrier in nanodrug delivery. Mol. Pharm., 2021, 18(5), 1862-1894. doi: 10.1021/acs.molpharmaceut.1c00046 PMID: 33787270
  8. Karami, E.; Behdani, M.; Kazemi-Lomedasht, F. Albumin nanoparticles as nanocarriers for drug delivery: Focusing on antibody and nanobody delivery and albumin-based drugs. J. Drug Deliv. Sci. Technol., 2020, 55, 101471. doi: 10.1016/j.jddst.2019.101471
  9. Kratz, F. A clinical update of using albumin as a drug vehicle: A commentary. J. Control. Release, 2014, 190, 331-336. doi: 10.1016/j.jconrel.2014.03.013 PMID: 24637463
  10. Ferrer, R.; Mateu, X.; Maseda, E.; Yébenes, J.C.; Aldecoa, C.; De Haro, C.; Ruiz-Rodriguez, J.C.; Garnacho-Montero, J. Non-oncotic properties of albumin. A multidisciplinary vision about the implications for critically ill patients. Expert Rev. Clin. Pharmacol., 2018, 11(2), 125-137. doi: 10.1080/17512433.2018.1412827 PMID: 29219627
  11. Carvalho, J.R.; Machado, M.V. New insights about albumin and liver disease. Ann. Hepatol., 2018, 17(4), 547-560. doi: 10.5604/01.3001.0012.0916 PMID: 29893696
  12. Sleep, D. Albumin and its application in drug delivery. Expert Opin. Drug Deliv., 2015, 12(5), 793-812. doi: 10.1517/17425247.2015.993313 PMID: 25518870
  13. Peters, T., Jr All about albumin: biochemistry, genetics, and medical applications. Academic press, 1995.
  14. Peters, T., Jr Serum Albumin. Adv. Protein Chem., 1985, 37, 161-245. doi: 10.1016/S0065-3233(08)60065-0 PMID: 3904348
  15. Belinskaia, D.A.; Voronina, P.A.; Shmurak, V.I.; Jenkins, R.O.; Goncharov, N.V. Serum albumin in health and disease: Esterase, antioxidant, transporting and signaling properties. Int. J. Mol. Sci., 2021, 22(19), 10318. doi: 10.3390/ijms221910318 PMID: 34638659
  16. Lee, E.S.; Youn, Y.S. Albumin-based potential drugs: Focus on half-life extension and nanoparticle preparation. J. Pharm. Investig., 2016, 46(4), 305-315. doi: 10.1007/s40005-016-0250-3
  17. Swiercz, R.; Mo, M.; Khare, P.; Schneider, Z.; Ober, R.J.; Ward, E.S. Loss of expression of the recycling receptor, FcRn, promotes tumor cell growth by increasing albumin consumption. Oncotarget, 2017, 8(2), 3528-3541. doi: 10.18632/oncotarget.13869 PMID: 27974681
  18. Zwain, T. Albumin nanoparticles—A versatile and a safe platform for drug delivery applications.Nanoparticle Therapeutics; Elsevier, 2022, pp. 327-358. doi: 10.1016/B978-0-12-820757-4.00008-9
  19. Adamczyk, Z.; Pomorska, A.; Nattich-Rak, M.; Wytrwal-Sarna, M.; Bernasik, A. Protein adsorption mechanisms at rough surfaces: Serum albumin at a gold substrate. J. Colloid Interface Sci., 2018, 530, 631-641. doi: 10.1016/j.jcis.2018.06.063 PMID: 30005240
  20. Tarhini, M.; Benlyamani, I.; Hamdani, S.; Agusti, G.; Fessi, H.; Greige-Gerges, H.; Bentaher, A.; Elaissari, A. Protein-based nanoparticle preparation via nanoprecipitation method. Materials, 2018, 11(3), 394. doi: 10.3390/ma11030394 PMID: 29518919
  21. Thalhammer-Thurner, G.C.; Debbage, P. Albumin-based nanoparticles: Small, uniform and reproducible. Nanoscale Adv., 2023, 5(2), 503-512. doi: 10.1039/D2NA00413E PMID: 36756267
  22. Al-Harthi, S.; Lachowicz, J.I.; Nowakowski, M.E.; Jaremko, M.; Jaremko, Ł. Towards the functional high-resolution coordination chemistry of blood plasma human serum albumin. J. Inorg. Biochem., 2019, 198, 110716. doi: 10.1016/j.jinorgbio.2019.110716 PMID: 31153112
  23. Tayyab, S.; Feroz, S.R. Serum albumin: clinical significance of drug binding and development as drug delivery vehicle. Adv. Protein Chem. Struct. Biol., 2021, 123, 193-218. doi: 10.1016/bs.apcsb.2020.08.003 PMID: 33485484
  24. Adamczyk, Z.; Nattich-Rak, M.; Dąbkowska, M.; Kujda-Kruk, M. Albumin adsorption at solid substrates: A quest for a unified approach. J. Colloid Interface Sci., 2018, 514, 769-790. doi: 10.1016/j.jcis.2017.11.083 PMID: 29316533
  25. Abd Halim, A.A. Targeting the nalidixic acid binding site on human serum albumin through computational approach: A reinvestigation. Biointerface Res. Appl. Chem., 2022, 12, 1520-1525.
  26. Musa, K.A.; Ridzwan, N.F.W.; Mohamad, S.B.; Tayyab, S. Combination mode of antimalarial drug mefloquine and human serum albumin: Insights from spectroscopic and docking approaches. Biopolymers, 2020, 111(2), e23337. doi: 10.1002/bip.23337 PMID: 31691964
  27. Tao, H.; Wang, R.; Sheng, W.; Zhen, Y. The development of human serum albumin-based drugs and relevant fusion proteins for cancer therapy. Int. J. Biol. Macromol., 2021, 187, 24-34. doi: 10.1016/j.ijbiomac.2021.07.080 PMID: 34284054
  28. Sudlow, G.; Birkett, D.J.; Wade, D.N. Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol., 1976, 12(6), 1052-1061. PMID: 1004490
  29. Tugaeva, K.V.; Faletrov, Y.V.; Allakhverdiev, E.S.; Shkumatov, V.M.; Maksimov, E.G.; Sluchanko, N.N. Effect of the NBD-group position on interaction of fluorescently-labeled cholesterol analogues with human steroidogenic acute regulatory protein STARD1. Biochem. Biophys. Res. Commun., 2018, 497(1), 58-64. doi: 10.1016/j.bbrc.2018.02.014 PMID: 29408456
  30. Bolaños, K.; Kogan, M.J.; Araya, E. Capping gold nanoparticles with albumin to improve their biomedical properties. Int. J. Nanomedicine, 2019, 14, 6387-6406. doi: 10.2147/IJN.S210992 PMID: 31496693
  31. Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci., 2018, 19(7), 1979. doi: 10.3390/ijms19071979 PMID: 29986450
  32. Khan, A.K.; Rashid, R.; Murtaza, G.; Zahra, A. Gold nanoparticles: synthesis and applications in drug delivery. Trop. J. Pharm. Res., 2014, 13(7), 1169-1177. doi: 10.4314/tjpr.v13i7.23
  33. Daraee, H.; Eatemadi, A.; Abbasi, E.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A. Application of gold nanoparticles in biomedical and drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 410-422. doi: 10.3109/21691401.2014.955107 PMID: 25229833
  34. Siddique, S.; Chow, J.C.L. Gold nanoparticles for drug delivery and cancer therapy. Appl. Sci., 2020, 10(11), 3824. doi: 10.3390/app10113824
  35. Mohseni, N.; Sarvestani, F.S.; Ardestani, M.S.; Kazemi-Lomedasht, F.; Ghorbani, M. Inhibitory effect of gold nanoparticles conjugated with interferon gamma and methionine on breast cancer cell line. Asian Pac. J. Trop. Biomed., 2016, 6(2), 173-178. doi: 10.1016/j.apjtb.2015.10.014
  36. Alfranca, G.; Artiga, Á.; Stepien, G.; Moros, M.; Mitchell, S.G.; de la Fuente, J.M. Gold nanoprism–nanorod face off: Comparing the heating efficiency, cellular internalization and thermoablation capacity. Nanomedicine, 2016, 11(22), 2903-2916. doi: 10.2217/nnm-2016-0257 PMID: 27785974
  37. AL-Jawad, S.M.H.; Taha, A.A.; Al-Halbosiy, M.M.F.; AL-Barram, L.F.A. Synthesis and characterization of small-sized gold nanoparticles coated by bovine serum albumin (BSA) for cancer photothermal therapy. Photodiagn. Photodyn. Ther., 2018, 21, 201-210. doi: 10.1016/j.pdpdt.2017.12.004 PMID: 29223737
  38. Uppal, A.; Bose, B. Synthesis, stability, and in vitro oral cancer cell toxicity of human serum albumin stabilised gold nanoflowers. IET Nanobiotechnol., 2018, 12(3), 292-297. doi: 10.1049/iet-nbt.2017.0002
  39. Khodashenas, B.; Ardjmand, M.; Sharifzadeh Baei, M.; Shokuhi Rad, A.; Akbarzadeh Khiyavi, A. Bovine serum albumin/gold nanoparticles as a drug delivery system for Curcumin: experimental and computational studies. J. Biomol. Struct. Dyn., 2020, 38(15), 4644-4654. doi: 10.1080/07391102.2019.1683073 PMID: 31630635
  40. Mocan, L.; Matea, C.; Tabaran, F.A.; Mosteanu, O.; Pop, T.; Puia, C.; Agoston-Coldea, L.; Zaharie, G.; Mocan, T.; Buzoianu, A.D.; Iancu, C. Selective ex vivo photothermal nano-therapy of solid liver tumors mediated by albumin conjugated gold nanoparticles. Biomaterials, 2017, 119, 33-42. doi: 10.1016/j.biomaterials.2016.12.009 PMID: 27992805
  41. García-Álvarez, R.; Hadjidemetriou, M.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Kostarelos, K. In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale, 2018, 10(3), 1256-1264. doi: 10.1039/C7NR08322J PMID: 29292433
  42. Liu, J.; Abshire, C.; Carry, C.; Sholl, A.B.; Mandava, S.H.; Datta, A.; Ranjan, M.; Callaghan, C.; Peralta, D.V.; Williams, K.S.; Lai, W.R.; Abdel-Mageed, A.B.; Tarr, M.; Lee, B.R. Nanotechnology combined therapy: Tyrosine kinase-bound gold nanorod and laser thermal ablation produce a synergistic higher treatment response of renal cell carcinoma in a murine model. BJU Int., 2017, 119(2), 342-348. doi: 10.1111/bju.13590 PMID: 27431021
  43. Wang, Z.; Chen, L.; Chu, Z.; Huang, C.; Huang, Y.; Jia, N. Gemcitabine-loaded gold nanospheres mediated by albumin for enhanced anti-tumor activity combining with CT imaging. Mater. Sci. Eng. C, 2018, 89, 106-118. doi: 10.1016/j.msec.2018.03.025 PMID: 29752079
  44. Chiu, H.T.; Su, C.K.; Sun, Y.C.; Chiang, C.S.; Huang, Y.F. Albumin-gold nanorod nanoplatform for cell-mediated tumoritropic delivery with homogenous chemodrug distribution and enhanced retention ability. Theranostics, 2017, 7(12), 3034-3052. doi: 10.7150/thno.19279 PMID: 28839462
  45. Fu, C.; Ding, C.; Sun, X.; Fu, A. Curcumin nanocapsules stabilized by bovine serum albumin-capped gold nanoclusters (BSA-AuNCs) for drug delivery and theranosis. Mater. Sci. Eng. C, 2018, 87, 149-154. doi: 10.1016/j.msec.2017.12.028 PMID: 29549944
  46. Hu, C.; Liu, Y.; Qin, J.; Nie, G.; Lei, B.; Xiao, Y.; Zheng, M.; Rong, J. Fabrication of reduced graphene oxide and sliver nanoparticle hybrids for Raman detection of absorbed folic acid: A potential cancer diagnostic probe. ACS Appl. Mater. Interfaces, 2013, 5(11), 4760-4768. doi: 10.1021/am4000485 PMID: 23629451
  47. Zhang, K.; Li, D.; Zhou, B.; Liu, J.; Luo, X.; Wei, R.; Wang, L.; Hu, X.; Su, Z.; Lin, H.; Gao, J.; Shan, H. Arsenite-loaded albumin nanoparticles for targeted synergistic chemo-photothermal therapy of HCC. Biomater. Sci., 2021, 10(1), 243-257. doi: 10.1039/D1BM01374B PMID: 34846385
  48. Jaswal, T.; Gupta, J. A review on the toxicity of silver nanoparticles on human health. Mater. Today Proc., 2021.
  49. Zorraquín-Peña, I.; Cueva, C.; Bartolomé, B.; Moreno-Arribas, M.V. Silver nanoparticles against foodborne bacteria. Effects at intestinal level and health limitations. Microorganisms, 2020, 8(1), 132. doi: 10.3390/microorganisms8010132 PMID: 31963508
  50. Hadrup, N.; Lam, H.R. Oral toxicity of silver ions, silver nanoparticles and colloidal silver: A review. Regul. Toxicol. Pharmacol., 2014, 68(1), 1-7. doi: 10.1016/j.yrtph.2013.11.002 PMID: 24231525
  51. Ismail, R.A.; Almashhadani, N.J.; Sadik, R.H. Preparation and properties of polystyrene incorporated with gold and silver nanoparticles for optoelectronic applications. Appl. Nanosci., 2017, 7(3-4), 109-116. doi: 10.1007/s13204-017-0550-6
  52. Ortega-Mendoza, J.; Padilla-Vivanco, A.; Toxqui-Quitl, C.; Zaca-Morán, P.; Villegas-Hernández, D.; Chávez, F. Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end. Sensors, 2014, 14(10), 18701-18710. doi: 10.3390/s141018701 PMID: 25302813
  53. Hu, Y.; Chen, X.; Xu, Y.; Han, X.; Wang, M.; Gong, T.; Zhang, Z.R.; John Kao, W.; Fu, Y. Hierarchical assembly of hyaluronan coated albumin nanoparticles for pancreatic cancer chemoimmunotherapy. Nanoscale, 2019, 11(35), 16476-16487. doi: 10.1039/C9NR03684A PMID: 31453622
  54. Ma, B.B.Y.; Bristow, R.G.; Kim, J.; Siu, L.L. Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents. J. Clin. Oncol., 2003, 21(14), 2760-2776. doi: 10.1200/JCO.2003.10.044 PMID: 12860956
  55. Restrepo, C.V.; Villa, C.C. Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environ. Nanotechnol. Monit. Manag., 2021, 15, 100428. doi: 10.1016/j.enmm.2021.100428
  56. Majeed, S.; Aripin, F.H.B.; Shoeb, N.S.B.; Danish, M.; Ibrahim, M.N.M.; Hashim, R. Bioengineered silver nanoparticles capped with bovine serum albumin and its anticancer and apoptotic activity against breast, bone and intestinal colon cancer cell lines. Mater. Sci. Eng. C, 2019, 102, 254-263. doi: 10.1016/j.msec.2019.04.041 PMID: 31146998
  57. Stürzenbaum, S.R.; Höckner, M.; Panneerselvam, A.; Levitt, J.; Bouillard, J-S.; Taniguchi, S.; Dailey, L-A.; Khanbeigi, R.A.; Rosca, E.V.; Thanou, M.; Suhling, K.; Zayats, A.V.; Green, M. Biosynthesis of luminescent quantum dots in an earthworm. Nat. Nanotechnol., 2013, 8(1), 57-60. doi: 10.1038/nnano.2012.232 PMID: 23263722
  58. Zeng, X.; Sun, J.; Li, S.; Shi, J.; Gao, H.; Sun Leong, W.; Wu, Y.; Li, M.; Liu, C.; Li, P.; Kong, J.; Wu, Y.Z.; Nie, G.; Fu, Y.; Zhang, G. Blood-triggered generation of platinum nanoparticle functions as an anti-cancer agent. Nat. Commun., 2020, 11(1), 567. doi: 10.1038/s41467-019-14131-z PMID: 31992692
  59. Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov., 2005, 4(4), 307-320. doi: 10.1038/nrd1691 PMID: 15789122
  60. Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584. doi: 10.1038/nrc2167 PMID: 17625587
  61. Hasannejad-Asl, B. Nanoparticles as powerful tools for crossing the blood-brain barrier. CNS & Neurological Disorders-Drug Targets (Formerly. Current Drug Targets-CNS & Neurological Disorders, 2023, 22(1), 18-26.
  62. Chang, C.; Wang, C.; Zhang, C.; Li, L.; Zhang, Q.; Huang, Q. Albumin-encapsulated platinum nanoparticles for targeted photothermal treatment of glioma. J. Biomed. Nanotechnol., 2019, 15(8), 1744-1753. doi: 10.1166/jbn.2019.2803 PMID: 31219025
  63. Jovčevska, I.; Muyldermans, S. The therapeutic potential of nanobodies. BioDrugs, 2020, 34(1), 11-26. doi: 10.1007/s40259-019-00392-z PMID: 31686399
  64. Wartlick, H.; Michaelis, K.; Balthasar, S.; Strebhardt, K.; Kreuter, J.; Langer, K. Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells. J. Drug Target., 2004, 12(7), 461-471. doi: 10.1080/10611860400010697 PMID: 15621671
  65. Anhorn, M.G.; Wagner, S.; Kreuter, J.; Langer, K.; von Briesen, H. Specific targeting of HER2 overexpressing breast cancer cells with doxorubicin-loaded trastuzumab-modified human serum albumin nanoparticles. Bioconjug. Chem., 2008, 19(12), 2321-2331. doi: 10.1021/bc8002452 PMID: 18937508
  66. Steinhauser, I.; Spänkuch, B.; Strebhardt, K.; Langer, K. Trastuzumab-modified nanoparticles: Optimisation of preparation and uptake in cancer cells. Biomaterials, 2006, 27(28), 4975-4983. doi: 10.1016/j.biomaterials.2006.05.016 PMID: 16757022
  67. Löw, K.; Wacker, M.; Wagner, S.; Langer, K.; von Briesen, H. Targeted human serum albumin nanoparticles for specific uptake in EGFR-Expressing colon carcinoma cells. Nanomedicine, 2011, 7(4), 454-463. doi: 10.1016/j.nano.2010.12.003 PMID: 21215330
  68. Kazemi-Lomedasht, F.; Behdani, M.; Bagheri, K.P.; Habibi-Anbouhi, M.; Abolhassani, M.; Arezumand, R.; Shahbazzadeh, D.; Mirzahoseini, H. Inhibition of angiogenesis in human endothelial cell using VEGF specific nanobody. Mol. Immunol., 2015, 65(1), 58-67. doi: 10.1016/j.molimm.2015.01.010 PMID: 25645505
  69. Sadeghi, A.; Behdani, M.; Muyldermans, S.; Habibi-Anbouhi, M.; Kazemi-Lomedasht, F. Development of a mono‐specific anti‐VEGF bivalent nanobody with extended plasma half‐life for treatment of pathologic neovascularization. Drug Test. Anal., 2020, 12(1), 92-100. doi: 10.1002/dta.2693 PMID: 31476257
  70. Karami, E.; Sabatier, J.M.; Behdani, M.; Irani, S.; Kazemi-Lomedasht, F. A nanobody-derived mimotope against VEGF inhibits cancer angiogenesis. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1233-1239. doi: 10.1080/14756366.2020.1758690 PMID: 32441172
  71. Baharlou, R.; Tajik, N.; Behdani, M.; Shokrgozar, M.A.; Tavana, V.; Kazemi-Lomedasht, F.; Faraji, F.; Habibi-Anbouhi, M. An antibody fragment against human delta-like ligand-4 for inhibition of cell proliferation and neovascularization. Immunopharmacol. Immunotoxicol., 2018, 40(5), 368-374. doi: 10.1080/08923973.2018.1505907 PMID: 30183441
  72. Bagheri, M.; Babaei, E.; Shahbazzadeh, D.; Habibi-Anbouhi, M.; Alirahimi, E.; Kazemi-Lomedasht, F.; Behdani, M. Development of a recombinant camelid specific diabody against the heminecrolysin fraction of Hemiscorpius lepturus scorpion. Toxin Rev., 2017, 36(1), 7-11. doi: 10.1080/15569543.2016.1244552
  73. Roshan, R.; Naderi, S.; Behdani, M.; Cohan, R.A.; Ghaderi, H.; Shokrgozar, M.A.; Golkar, M.; Kazemi-Lomedasht, F. Isolation and characterization of nanobodies against epithelial cell adhesion molecule as novel theranostic agents for cancer therapy. Mol. Immunol., 2021, 129, 70-77. doi: 10.1016/j.molimm.2020.10.021 PMID: 33183767
  74. Naderi, S.; Roshan, R.; Ghaderi, H.; Behdani, M.; Mahmoudi, S.; Habibi-Anbouhi, M.; Shokrgozar, M.A.; Kazemi-Lomedasht, F. Selection and characterization of specific nanobody against neuropilin-1 for inhibition of angiogenesis. Mol. Immunol., 2020, 128, 56-63. doi: 10.1016/j.molimm.2020.10.004 PMID: 33070092
  75. Ahadi, M.; Ghasemian, H.; Behdani, M.; Kazemi-Lomedasht, F. Oligoclonal selection of nanobodies targeting vascular endothelial growth factor. J. Immunotoxicol., 2019, 16(1), 34-42. doi: 10.1080/1547691X.2018.1526234 PMID: 30409071
  76. Hoefman, S.; Ottevaere, I.; Baumeister, J.; Sargentini-Maier, M. Pre-clinical intravenous serum pharmacokinetics of albumin binding and non-half-life extended Nanobodies®. Antibodies, 2015, 4(3), 141-156. doi: 10.3390/antib4030141
  77. Roovers, R.C.; Vosjan, M.J.W.D.; Laeremans, T.; el Khoulati, R.; de Bruin, R.C.G.; Ferguson, K.M.; Verkleij, A.J.; van Dongen, G.A.M.S.; van Bergen en Henegouwen, P.M.P. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth. Int. J. Cancer, 2011, 129(8), 2013-2024. doi: 10.1002/ijc.26145 PMID: 21520037
  78. Paunovska, K.; Loughrey, D.; Dahlman, J.E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet., 2022, 23(5), 265-280. doi: 10.1038/s41576-021-00439-4 PMID: 34983972
  79. Son, S.; Song, S.; Lee, S.J.; Min, S.; Kim, S.A.; Yhee, J.Y.; Huh, M.S.; Chan Kwon, I.; Jeong, S.Y.; Byun, Y.; Kim, S.H.; Kim, K. Self-crosslinked human serum albumin nanocarriers for systemic delivery of polymerized siRNA to tumors. Biomaterials, 2013, 34(37), 9475-9485. doi: 10.1016/j.biomaterials.2013.08.085 PMID: 24050874
  80. Wen, H.; Yin, Y.; Huang, C.; Pan, W.; Liang, D. Encapsulation of RNA by negatively charged human serum albumin via physical interactions. Sci. China Chem., 2017, 60(1), 130-135. doi: 10.1007/s11426-016-0094-8
  81. Tagde, P.; Kulkarni, G.T.; Mishra, D.K.; Kesharwani, P. Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. J. Drug Deliv. Sci. Technol., 2020, 56, 101613. doi: 10.1016/j.jddst.2020.101613
  82. Lamichhane, S.; Lee, S. Albumin nanoscience: Homing nanotechnology enabling targeted drug delivery and therapy. Arch. Pharm. Res., 2020, 43(1), 118-133. doi: 10.1007/s12272-020-01204-7 PMID: 31916145
  83. Karimi, M.; Bahrami, S.; Ravari, S.B.; Zangabad, P.S.; Mirshekari, H.; Bozorgomid, M.; Shahreza, S.; Sori, M.; Hamblin, M.R. Albumin nanostructures as advanced drug delivery systems. Expert Opin. Drug Deliv., 2016, 13(11), 1609-1623. doi: 10.1080/17425247.2016.1193149 PMID: 27216915
  84. Wang, H.; Sun, S.; Zhang, Y.; Wang, J.; Zhang, S.; Yao, X.; Chen, L.; Gao, Z.; Xie, B. Improved drug targeting to liver tumor by sorafenib-loaded folate-decorated bovine serum albumin nanoparticles. Drug Deliv., 2019, 26(1), 89-97. doi: 10.1080/10717544.2018.1561766 PMID: 30744448
  85. Dong, Y.; Fu, R.; Yang, J.; Ma, P.; Liang, L.; Mi, Y.; Fan, D. Folic acid-modified ginsenoside Rg5-loaded bovine serum albumin nanoparticles for targeted cancer therapy in vitro and in vivo. Int. J. Nanomedicine, 2019, 14, 6971-6988. doi: 10.2147/IJN.S210882 PMID: 31507319
  86. Torres-Martinez, Z.; Pérez, D.; Torres, G.; Estrada, S.; Correa, C.; Mederos, N.; Velazquez, K.; Castillo, B.; Griebenow, K.; Delgado, Y. A Synergistic pH-Responsive serum albumin-based drug delivery system loaded with doxorubicin and pentacyclic triterpene betulinic acid for potential treatment of NSCLC. BioTech, 2023, 12(1), 13. doi: 10.3390/biotech12010013 PMID: 36810440
  87. Lei, C.; Liu, X.R.; Chen, Q.B.; Li, Y.; Zhou, J.L.; Zhou, L.Y.; Zou, T. Hyaluronic acid and albumin based nanoparticles for drug delivery. J. Control. Release, 2021, 331, 416-433. doi: 10.1016/j.jconrel.2021.01.033 PMID: 33503486
  88. Kim, J.; Moon, M.; Kim, D.; Heo, S.; Jeong, Y. Hyaluronic acid-based nanomaterials for cancer therapy. Polymers, 2018, 10(10), 1133. doi: 10.3390/polym10101133 PMID: 30961058
  89. Curcio, M.; Diaz-Gomez, L.; Cirillo, G.; Nicoletta, F.P.; Leggio, A.; Iemma, F. Dual-targeted hyaluronic acid/albumin micelle-like nanoparticles for the vectorization of doxorubicin. Pharmaceutics, 2021, 13(3), 304. doi: 10.3390/pharmaceutics13030304 PMID: 33652648
  90. Bukhari, S.N.A.; Roswandi, N.L.; Waqas, M.; Habib, H.; Hussain, F.; Khan, S.; Sohail, M.; Ramli, N.A.; Thu, H.E.; Hussain, Z. Hyaluronic acid, a promising skin rejuvenating biomedicine: A review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects. Int. J. Biol. Macromol., 2018, 120(Pt B), 1682-1695. doi: 10.1016/j.ijbiomac.2018.09.188 PMID: 30287361
  91. Zhang, Y.; Xia, Q.; Li, Y.; He, Z.; Li, Z.; Guo, T.; Wu, Z.; Feng, N. CD44 assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: A new strategy for clustering drug in inflammatory skin. Theranostics, 2019, 9(1), 48-64. doi: 10.7150/thno.29715 PMID: 30662553
  92. How, K.N.; Yap, W.H.; Lim, C.L.H.; Goh, B.H.; Lai, Z.W. Hyaluronic acid-mediated drug delivery system targeting for inflammatory skin diseases: A mini review. Front. Pharmacol., 2020, 11, 1105. doi: 10.3389/fphar.2020.01105 PMID: 32848737
  93. Zhang, X.; Zhao, M.; Cao, N.; Qin, W.; Zhao, M.; Wu, J.; Lin, D. Construction of a tumor microenvironment pH-responsive cleavable PEGylated hyaluronic acid nano-drug delivery system for colorectal cancer treatment. Biomater. Sci., 2020, 8(7), 1885-1896. doi: 10.1039/C9BM01927H PMID: 32022813
  94. Nigam, P.; Waghmode, S.; Louis, M.; Wangnoo, S.; Chavan, P.; Sarkar, D. Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(21), 3190-3195. doi: 10.1039/C4TB00015C PMID: 32261580
  95. Karaca, N.; Ünlüer, Ö.B. Albumin based nanoparticles for detection of pancreatic cancer cells. Protein Pept. Lett., 2019, 26(4), 271-280. doi: 10.2174/0929866526666190119121434 PMID: 30659529
  96. Stewart, B.; Wild, C.P. International agency for research on cancer. World cancer report, 2014.
  97. Falzone, L.; Salomone, S.; Libra, M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol., 2018, 9, 1300. doi: 10.3389/fphar.2018.01300 PMID: 30483135
  98. Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol., 2018, 54(2), 407-419. doi: 10.3892/ijo.2018.4661 PMID: 30570109
  99. Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348. doi: 10.15171/apb.2017.041 PMID: 29071215
  100. Meng, R. Preparation of drug-loaded albumin nanoparticles and its application in cancer therapy. Journal of Nanomaterials, 2022. doi: 10.1155/2022/3052175
  101. Verma, D. Protein based nanostructures for drug delivery. Journal of pharmaceutics, 2018. doi: 10.1155/2018/9285854
  102. Mao, S.J.; Hou, S.X.; He, R.; Zhang, L.K.; Wei, D.P.; Bi, Y.Q.; Jin, H. Uptake of albumin nanoparticle surface modified with glycyrrhizin by primary cultured rat hepatocytes. World J. Gastroenterol., 2005, 11(20), 3075-3079. doi: 10.3748/wjg.v11.i20.3075 PMID: 15918193
  103. Kremer, P.; Wunder, A.; Sinn, H.; Haase, T.; Rheinwald, M.; Zillmann, U.; Albert, F.K.; Kunze, S. Laser-induced fluorescence detection of malignant gliomas using fluorescein-labeled serum albumin: Experimental and preliminary clinical results. Neurol. Res., 2000, 22(5), 481-489. doi: 10.1080/01616412.2000.11740705 PMID: 10935221
  104. Parodi, A.; Miao, J.; Soond, S.; Rudzińska, M.; Zamyatnin, A., Jr Albumin nanovectors in cancer therapy and imaging. Biomolecules, 2019, 9(6), 218. doi: 10.3390/biom9060218 PMID: 31195727
  105. Elzoghby, A.O. Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research. J. Control. Release, 2013, 172(3), 1075-1091. doi: 10.1016/j.jconrel.2013.09.019 PMID: 24096021
  106. Otagiri, M.; Chuang, V.T.G. Albumin in medicine: Pathological and clinical applications. Springer, 2016. doi: 10.1007/978-981-10-2116-9
  107. Kimura, K.; Yamasaki, K.; Nishi, K.; Taguchi, K.; Otagiri, M. Investigation of anti-tumor effect of doxorubicin-loaded human serum albumin nanoparticles prepared by a desolvation technique. Cancer Chemother. Pharmacol., 2019, 83(6), 1113-1120. doi: 10.1007/s00280-019-03832-3 PMID: 30972458
  108. Gharbavi, M.; Manjili, H.K.; Amani, J.; Sharafi, A.; Danafar, H. In vivo and in vitro biocompatibility study of novel microemulsion hybridized with bovine serum albumin as nanocarrier for drug delivery. Heliyon, 2019, 5(6), e01858. doi: 10.1016/j.heliyon.2019.e01858 PMID: 31198875
  109. Qi, X.; Wei, W.; Li, J.; Liu, Y.; Hu, X.; Zhang, J.; Bi, L.; Dong, W. Fabrication and characterization of a novel anticancer drug delivery system: Salecan/poly (methacrylic acid) semi-interpenetrating polymer network hydrogel. ACS Biomater. Sci. Eng., 2015, 1(12), 1287-1299. doi: 10.1021/acsbiomaterials.5b00346 PMID: 33429676
  110. Wei, W.; Qi, X.; Li, J.; Zuo, G.; Sheng, W.; Zhang, J.; Dong, W. Smart macroporous salecan/poly (N, N-diethylacrylamide) semi-IPN hydrogel for anti-inflammatory drug delivery. ACS Biomater. Sci. Eng., 2016, 2(8), 1386-1394. doi: 10.1021/acsbiomaterials.6b00318 PMID: 33434992
  111. Bidram, E.; Esmaeili, Y.; Ranji-Burachaloo, H.; Al-Zaubai, N.; Zarrabi, A.; Stewart, A.; Dunstan, D.E. A concise review on cancer treatment methods and delivery systems. J. Drug Deliv. Sci. Technol., 2019, 54, 101350. doi: 10.1016/j.jddst.2019.101350
  112. Hassanin, I.; Elzoghby, A. Albumin-based nanoparticles: A promising strategy to overcome cancer drug resistance. Cancer Drug Resist., 2020, 3(4), 930-946. doi: 10.20517/cdr.2020.68 PMID: 35582218
  113. Prajapati, R.; Garcia-Garrido, E.; Somoza, Á. Albumin-based nanoparticles for the delivery of doxorubicin in breast cancer. Cancers, 2021, 13(12), 3011. doi: 10.3390/cancers13123011 PMID: 34208533
  114. Cruz-Nova, P.; Ancira-Cortez, A.; Ferro-Flores, G.; Ocampo-García, B.; Gibbens-Bandala, B. Controlled-release nanosystems with a dual function of targeted therapy and radiotherapy in colorectal cancer. Pharmaceutics, 2022, 14(5), 1095. doi: 10.3390/pharmaceutics14051095 PMID: 35631681
  115. AlQahtani, A.D.; O’Connor, D.; Domling, A.; Goda, S.K. Strategies for the production of long-acting therapeutics and efficient drug delivery for cancer treatment. Biomed. Pharmacother., 2019, 113, 108750. doi: 10.1016/j.biopha.2019.108750 PMID: 30849643
  116. Motevalli, S.M.; Eltahan, A.S.; Liu, L.; Magrini, A.; Rosato, N.; Guo, W.; Bottini, M.; Liang, X-J. Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells. Biophys. Rep., 2019, 5(1), 19-30. doi: 10.1007/s41048-018-0079-6
  117. Yu, L.; Hua, Z.; Luo, X.; Zhao, T.; Liu, Y. Systematic interaction of plasma albumin with the efficacy of chemotherapeutic drugs. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(1), 188655. doi: 10.1016/j.bbcan.2021.188655 PMID: 34780933
  118. Sharifi-Rad, J.; Bahukhandi, A.; Dhyani, P.; Sati, P.; Capanoglu, E.; Docea, A.O.; Al-Harrasi, A.; Dey, A.; Calina, D. Therapeutic potential of neoechinulins and their derivatives: an overview of the molecular mechanisms behind pharmacological activities. Front. Nutr., 2021, 8, 664197. doi: 10.3389/fnut.2021.664197 PMID: 34336908
  119. Sharifi-Rad, J. Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy. Oxidative Medicine and Cellular Longevity, 2021. doi: 10.1155/2021/3687700
  120. Khalifa, A.M.; Elsheikh, M.A.; Khalifa, A.M.; Elnaggar, Y.S.R. Current strategies for different paclitaxel-loaded Nano-delivery Systems towards therapeutic applications for ovarian carcinoma: A review article. J. Control. Release, 2019, 311-312, 125-137. doi: 10.1016/j.jconrel.2019.08.034 PMID: 31476342
  121. Gong, G.; Jiao, Y.; Pan, Q.; Tang, H.; An, Y.; Yuan, A.; Wang, K.; Huang, C.; Dai, W.; Lu, Y.; Wang, S.; Zhang, J.; Su, H. Antitumor effect and toxicity of an albumin-paclitaxel nanocarrier system constructed via controllable alkali-induced conformational changes. ACS Biomater. Sci. Eng., 2019, 5(4), 1895-1906. doi: 10.1021/acsbiomaterials.9b00312 PMID: 33405563
  122. Liu, R.; Hu, C.; Yang, Y.; Zhang, J.; Gao, H. Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm. Sin. B, 2019, 9(2), 410-420. doi: 10.1016/j.apsb.2018.09.001 PMID: 30976492
  123. Zhi, D.; Yang, T.; O’Hagan, J.; Zhang, S.; Donnelly, R.F. Photothermal therapy. J. Control. Release, 2020, 325, 52-71. doi: 10.1016/j.jconrel.2020.06.032 PMID: 32619742
  124. Liu, S.; Pan, X.; Liu, H. Two‐dimensional nanomaterials for photothermal therapy. Angew. Chem. Int. Ed., 2020, 59(15), 5890-5900. doi: 10.1002/anie.201911477 PMID: 32017308
  125. An, F.; Yang, Z.; Zheng, M.; Mei, T.; Deng, G.; Guo, P.; Li, Y.; Sheng, R. Rationally assembled albumin/indocyanine green nanocomplex for enhanced tumor imaging to guide photothermal therapy. J. Nanobiotechnology, 2020, 18(1), 49. doi: 10.1186/s12951-020-00603-8 PMID: 32183838
  126. Khafaji, M.; Zamani, M.; Golizadeh, M.; Bavi, O. Inorganic nanomaterials for chemo/photothermal therapy: A promising horizon on effective cancer treatment. Biophys. Rev., 2019, 11(3), 335-352. doi: 10.1007/s12551-019-00532-3 PMID: 31102198
  127. Patel, V.; Rajani, C.; Tambe, V.; Kalyane, D.; Anup, N.; Deb, P.K.; Kalia, K.; Tekade, R.K. Nanomaterials assisted chemo-photothermal therapy for combating cancer drug resistance. J. Drug Deliv. Sci. Technol., 2022, 70, 103164. doi: 10.1016/j.jddst.2022.103164
  128. Li, Z.; Chen, Y.; Yang, Y.; Yu, Y.; Zhang, Y.; Zhu, D.; Yu, X.; Ouyang, X.; Xie, Z.; Zhao, Y.; Li, L. Recent advances in nanomaterials-based chemo-photothermal combination therapy for improving cancer treatment. Front. Bioeng. Biotechnol., 2019, 7, 293. doi: 10.3389/fbioe.2019.00293 PMID: 31696114
  129. Rocco, D.; Della Gravara, L.; Battiloro, C.; Gridelli, C. The role of combination chemo-immunotherapy in advanced non-small cell lung cancer. Expert Rev. Anticancer Ther., 2019, 19(7), 561-568. doi: 10.1080/14737140.2019.1631800 PMID: 31188040
  130. Shafique, M.; Tanvetyanon, T. Immunotherapy alone or chemo-immunotherapy as front-line treatment for advanced non-small cell lung cancer. Expert Opin. Biol. Ther., 2019, 19(3), 225-232. doi: 10.1080/14712598.2019.1571036 PMID: 30657338
  131. Yu, M.; Cao, R.; Ma, Z.; Zhu, M. Development of "smart" drug delivery systems for chemo/PDT synergistic treatment. J. Mater. Chem. B Mater. Biol. Med., 2023, 11(7), 1416-1433. doi: 10.1039/D2TB02248F PMID: 36734612
  132. Kadkhoda, J.; Tarighatnia, A.; Barar, J.; Aghanejad, A.; Davaran, S. Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagn. Photodyn. Ther., 2022, 37, 102697. doi: 10.1016/j.pdpdt.2021.102697 PMID: 34936918
  133. Hak, A.; Ravasaheb Shinde, V.; Rengan, A.K. A review of advanced nanoformulations in phototherapy for cancer therapeutics. Photodiagn. Photodyn. Ther., 2021, 33, 102205. doi: 10.1016/j.pdpdt.2021.102205 PMID: 33561574
  134. Zhang, Y.; Ye, Z.; He, R.; Li, Y.; Xiong, B.; Yi, M.; Chen, Y.; Liu, J.; Lu, B. Bovine serum albumin-based and dual-responsive targeted hollow mesoporous silica nanoparticles for breast cancer therapy. Colloids Surf. B Biointerfaces, 2023, 224, 113201. doi: 10.1016/j.colsurfb.2023.113201 PMID: 36822117
  135. Dewangan, H.K. Albumin as natural versatile drug carrier for various diseases treatment. Sustain. Agric. Res., 2020, 43, 239-268.
  136. Loureiro, A.; Azoia, N.G.; Gomes, A.C.; Cavaco-Paulo, A. Albumin-based nanodevices as drug carriers. Curr. Pharm. Des., 2016, 22(10), 1371-1390. doi: 10.2174/1381612822666160125114900 PMID: 26806342
  137. Rosenstock, J.; Reusch, J.; Bush, M.; Yang, F.; Stewart, M. Potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: a randomized controlled trial exploring weekly, biweekly, and monthly dosing. Diabetes Care, 2009, 32(10), 1880-1886. doi: 10.2337/dc09-0366 PMID: 19592625
  138. Bahman, F.; Greish, K.; Taurin, S. Nanotechnology in insulin delivery for management of diabetes. Pharm. Nanotechnol., 2019, 7(2), 113-128. doi: 10.2174/2211738507666190321110721 PMID: 30907328
  139. Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90. doi: 10.2337/dc14-S081 PMID: 24357215
  140. He, Y.; Al-Mureish, A.; Wu, N. Nanotechnology in the treatment of diabetic complications: A comprehensive narrative review. 2021. doi: 10.1155/2021/6612063
  141. Pourkazemi, A.; Ghanbari, A.; Khojamli, M.; Balo, H.; Hemmati, H.; Jafaryparvar, Z.; Motamed, B. Diabetic foot care: Knowledge and practice. BMC Endocr. Disord., 2020, 20(1), 40. doi: 10.1186/s12902-020-0512-y PMID: 32192488
  142. Elsadek, B.; Kratz, F. Impact of albumin on drug delivery: New applications on the horizon. J. Control. Release, 2012, 157(1), 4-28. doi: 10.1016/j.jconrel.2011.09.069 PMID: 21959118
  143. Wang, W.; Ou, Y.; Shi, Y. AlbuBNP, a recombinant B-type natriuretic peptide and human serum albumin fusion hormone, as a long-term therapy of congestive heart failure. Pharm. Res., 2004, 21(11), 2105-2111. doi: 10.1023/B:PHAM.0000048203.30568.81 PMID: 15587934
  144. Moosavian, S.A. The emerging role of nanomedicine in the management of nonalcoholic fatty liver disease: A state-of-the-art review. Bioinorganic Chemistry and Applications, 2021. doi: 10.1155/2021/4041415
  145. Huang, Y.; Deng, S.; Luo, X.; Liu, Y.; Xu, W.; Pan, J.; Wang, M.; Xia, Z. Evaluation of intestinal absorption mechanism and pharmacokinetics of curcumin-loaded galactosylated albumin nanoparticles. Int. J. Nanomedicine, 2019, 14, 9721-9730. doi: 10.2147/IJN.S229992 PMID: 31849464
  146. Organization, W.H. Global hepatitis report 2017. World Health Organization, 2017.
  147. Rustgi, V.K. Albinterferon alfa-2b, a novel fusion protein of human albumin and human interferon alfa-2b, for chronic hepatitis C. Curr. Med. Res. Opin., 2009, 25(4), 991-1002. doi: 10.1185/03007990902779186 PMID: 19275518
  148. Rabiee, N.; Ahmadi, S.; Afshari, R.; Khalaji, S.; Rabiee, M.; Bagherzadeh, M.; Fatahi, Y.; Dinarvand, R.; Tahriri, M.; Tayebi, L.; Hamblin, M.R.; Webster, T.J. Polymeric nanoparticles for nasal drug delivery to the brain: Relevance to Alzheimer’s disease. Adv. Ther., 2021, 4(3), 2000076. doi: 10.1002/adtp.202000076
  149. Avramopoulos, D. Genetics of Alzheimer’s disease: recent advances. Genome Med., 2009, 1(3), 34. doi: 10.1186/gm34 PMID: 19341505
  150. Wilson, B.; Geetha, K.M. Neurotherapeutic applications of nanomedicine for treating Alzheimer’s disease. J. Control. Release, 2020, 325, 25-37. doi: 10.1016/j.jconrel.2020.05.044 PMID: 32473177
  151. Samanta, M.K.; Wilson, B.; Santhi, K.; Sampath Kumar, K.P.; Suresh, B. Alzheimer disease and its management: A review. Am. J. Ther., 2006, 13(6), 516-526. doi: 10.1097/01.mjt.0000208274.80496.f1 PMID: 17122533
  152. Gopalan, D.; Pandey, A.; Udupa, N.; Mutalik, S. Receptor specific, stimuli responsive and subcellular targeted approaches for effective therapy of Alzheimer: Role of surface engineered nanocarriers. J. Control. Release, 2020, 319, 183-200. doi: 10.1016/j.jconrel.2019.12.034 PMID: 31866505
  153. Wong, L.R.; Ho, P.C. Role of serum albumin as a nanoparticulate carrier for nose-to-brain delivery of R-flurbiprofen: Implications for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol., 2017, 70(1), 59-69. doi: 10.1111/jphp.12836 PMID: 29034965
  154. Nasr, S.H.; Kouyoumdjian, H.; Mallett, C.; Ramadan, S.; Zhu, D.C.; Shapiro, E.M.; Huang, X. Detection of β-amyloid by sialic acid coated bovine serum albumin magnetic nanoparticles in a mouse model of Alzheimer’s disease. Small, 2018, 14(3), 1701828. doi: 10.1002/smll.201701828 PMID: 29134771
  155. Firestein, G.S. Evolving concepts of rheumatoid arthritis. Nature, 2003, 423(6937), 356-361. doi: 10.1038/nature01661 PMID: 12748655
  156. Yan, F.; Li, H.; Zhong, Z.; Zhou, M.; Lin, Y.; Tang, C.; Li, C. Co-delivery of prednisolone and curcumin in human serum albumin nanoparticles for effective treatment of rheumatoid arthritis. Int. J. Nanomedicine, 2019, 14, 9113-9125. doi: 10.2147/IJN.S219413 PMID: 31819422
  157. Byeon, H.J.; Min, S.Y.; Kim, I.; Lee, E.S.; Oh, K.T.; Shin, B.S.; Lee, K.C.; Youn, Y.S. Human serum albumin-TRAIL conjugate for the treatment of rheumatoid arthritis. Bioconjug. Chem., 2014, 25(12), 2212-2221. doi: 10.1021/bc500427g PMID: 25387356
  158. Smolen, J.S.; Steiner, G. Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov., 2003, 2(6), 473-488. doi: 10.1038/nrd1109 PMID: 12776222
  159. Janakiraman, K.; Krishnaswami, V.; Rajendran, V.; Natesan, S.; Kandasamy, R. Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights. Mater. Today Commun., 2018, 17, 200-213. doi: 10.1016/j.mtcomm.2018.09.011 PMID: 32289062
  160. Wunder, A.; Müller-Ladner, U.; Stelzer, E.H.K.; Funk, J.; Neumann, E.; Stehle, G.; Pap, T.; Sinn, H.; Gay, S.; Fiehn, C. Albumin-based drug delivery as novel therapeutic approach for rheumatoid arthritis. J. Immunol., 2003, 170(9), 4793-4801. doi: 10.4049/jimmunol.170.9.4793 PMID: 12707361
  161. Gong, T.; Tan, T.; Zhang, P.; Li, H.; Deng, C.; Huang, Y.; Gong, T.; Zhang, Z. Palmitic acid-modified bovine serum albumin nanoparticles target scavenger receptor: A on activated macrophages to treat rheumatoid arthritis. Biomaterials, 2020, 258, 120296. doi: 10.1016/j.biomaterials.2020.120296 PMID: 32781326
  162. Thao, L.Q.; Byeon, H.J.; Lee, C.; Lee, S.; Lee, E.S.; Choi, H.G.; Park, E.S.; Youn, Y.S. Pharmaceutical potential of tacrolimus-loaded albumin nanoparticles having targetability to rheumatoid arthritis tissues. Int. J. Pharm., 2016, 497(1-2), 268-276. doi: 10.1016/j.ijpharm.2015.12.004 PMID: 26657273
  163. Anderson, S.D.; Gwenin, V.V.; Gwenin, C.D. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res. Lett., 2019, 14(1), 188. doi: 10.1186/s11671-019-3019-6 PMID: 31147786
  164. Lamichhane, N.; Sharma, S.; Parul; Verma, A.; Roy, I.; Sen, T. Iron oxide-based magneto-optical nanocomposites for in vivo biomedical applications. Biomedicines, 2021, 9(3), 288. doi: 10.3390/biomedicines9030288 PMID: 34156393
  165. Chubarov, A.S. Serum albumin for magnetic nanoparticles coating. Magnetochemistry, 2022, 8(2), 13. doi: 10.3390/magnetochemistry8020013
  166. Das, P.; Ganguly, S.; Banerjee, S.; Das, N.C. Graphene based emergent nanolights: A short review on the synthesis, properties and application. Res. Chem. Intermed., 2019, 45(7), 3823-3853. doi: 10.1007/s11164-019-03823-2
  167. Das, P.; Ganguly, S.; Agarwal, T.; Maity, P.; Ghosh, S.; Choudhary, S.; Gangopadhyay, S.; Maiti, T.K.; Dhara, S.; Banerjee, S.; Das, N.C. Heteroatom doped blue luminescent carbon dots as a nano-probe for targeted cell labeling and anticancer drug delivery vehicle. Mater. Chem. Phys., 2019, 237, 121860. doi: 10.1016/j.matchemphys.2019.121860
  168. Ganguly, S.; Neelam; Grinberg, I.; Margel, S. Layer by layer controlled synthesis at room temperature of tri-modal (MRI, fluorescence and CT) core/shell superparamagnetic IO/human serum albumin nanoparticles for diagnostic applications. Polym. Adv. Technol., 2021, 32(10), 3909-3921. doi: 10.1002/pat.5344
  169. Srivastava, A.; Prajapati, A. Albumin and functionalized albumin nanoparticles: production strategies, characterization, and target indications. Asian Biomed., 2020, 14(6), 217-242. doi: 10.1515/abm-2020-0032
  170. Tzameret, A.; Ketter-Katz, H.; Edelshtain, V.; Sher, I.; Corem-Salkmon, E.; Levy, I.; Last, D.; Guez, D.; Mardor, Y.; Margel, S.; Rotenstrich, Y. In vivo MRI assessment of bioactive magnetic iron oxide/human serum albumin nanoparticle delivery into the posterior segment of the eye in a rat model of retinal degeneration. J. Nanobiotechnology, 2019, 17(1), 3. doi: 10.1186/s12951-018-0438-y PMID: 30630490
  171. Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med., 2016, 1(1), 10-29. doi: 10.1002/btm2.10003 PMID: 29313004
  172. Kouchakzadeh, H.; Safavi, M.S.; Shojaosadati, S.A. Efficient delivery of therapeutic agents by using targeted albumin nanoparticles. Adv. Protein Chem. Struct. Biol., 2015, 98, 121-143. doi: 10.1016/bs.apcsb.2014.11.002 PMID: 25819278
  173. Caraceni, P.; Tufoni, M.; Bonavita, M.E. Clinical use of albumin. Blood Transfus., 2013, 11(Suppl 4)(Suppl. 4), s18-s25. PMID: 24333308
  174. Arroyo, V.; García-Martinez, R.; Salvatella, X. Human serum albumin, systemic inflammation, and cirrhosis. J. Hepatol., 2014, 61(2), 396-407. doi: 10.1016/j.jhep.2014.04.012 PMID: 24751830
  175. He, X.M.; Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature, 1992, 358(6383), 209-215. doi: 10.1038/358209a0 PMID: 1630489
  176. Phan, H.T.M.; Bartelt-Hunt, S.; Rodenhausen, K.B.; Schubert, M.; Bartz, J.C. Investigation of bovine serum albumin (BSA) attachment onto self-assembled monolayers (SAMs) using combinatorial quartz crystal microbalance with dissipation (QCM-D) and spectroscopic ellipsometry (SE). PLoS One, 2015, 10(10), e0141282. doi: 10.1371/journal.pone.0141282 PMID: 26505481
  177. Sun, C.; Yang, J.; Wu, X.; Huang, X.; Wang, F.; Liu, S. Unfolding and refolding of bovine serum albumin induced by cetylpyridinium bromide. Biophys. J., 2005, 88(5), 3518-3524. doi: 10.1529/biophysj.104.051516 PMID: 15731386
  178. Huntington, J.A.; Stein, P.E. Structure and properties of ovalbumin. J. Chromatogr., Biomed. Appl., 2001, 756(1-2), 189-198. doi: 10.1016/S0378-4347(01)00108-6 PMID: 11419711
  179. Savadkoohi, S.; Bannikova, A.; Mantri, N.; Kasapis, S. Structural properties of condensed ovalbumin systems following application of high pressure. Food Hydrocoll., 2016, 53, 104-114. doi: 10.1016/j.foodhyd.2014.09.021
  180. Zheng, N.; Zhu, S.; Liu, L.; Yu, X. Rat serum albumin is not equal to human serum albumin. Fertil. Steril., 2011, 95(8), e81. doi: 10.1016/j.fertnstert.2011.05.021 PMID: 21605861
  181. Stehle, G.; Wunder, A.; Schrenk, H.H.; Hartung, G.; Heene, D.L.; Sinn, H. Albumin-based drug carriers. Anticancer Drugs, 1999, 10(8), 785-790. doi: 10.1097/00001813-199909000-00012 PMID: 10573211
  182. Zheng, Y.R.; Suntharalingam, K.; Johnstone, T.C.; Yoo, H.; Lin, W.; Brooks, J.G.; Lippard, S.J. Pt(IV) prodrugs designed to bind non-covalently to human serum albumin for drug delivery. J. Am. Chem. Soc., 2014, 136(24), 8790-8798. doi: 10.1021/ja5038269 PMID: 24902769
  183. Huang, H.; Yang, D.P.; Liu, M.; Wang, X.; Zhang, Z.; Zhou, G.; Liu, W.; Cao, Y.; Zhang, W.J.; Wang, X. pH-sensitive Au–BSA–DOX–FA nanocomposites for combined CT imaging and targeted drug delivery. Int. J. Nanomedicine, 2017, 12, 2829-2843. doi: 10.2147/IJN.S128270 PMID: 28435261
  184. Leopold, L.F.; Tódor, I.S.; Diaconeasa, Z.; Rugină, D.; Ştefancu, A.; Leopold, N.; Coman, C. Assessment of PEG and BSA-PEG gold nanoparticles cellular interaction. Colloids Surf. A Physicochem. Eng. Asp., 2017, 532, 70-76. doi: 10.1016/j.colsurfa.2017.06.061
  185. Chen, J.; Sheng, Z.; Li, P.; Wu, M.; Zhang, N.; Yu, X.F.; Wang, Y.; Hu, D.; Zheng, H.; Wang, G.P. Indocyanine green-loaded gold nanostars for sensitive SERS imaging and subcellular monitoring of photothermal therapy. Nanoscale, 2017, 9(33), 11888-11901. doi: 10.1039/C7NR02798B PMID: 28561825
  186. Li, J.; Cai, R.; Kawazoe, N.; Chen, G. Facile preparation of albumin-stabilized gold nanostars for the targeted photothermal ablation of cancer cells. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(28), 5806-5814. doi: 10.1039/C5TB00633C PMID: 32262577
  187. Lian, H.; Wu, J.; Hu, Y.; Guo, H. Self-assembled albumin nanoparticles for combination therapy in prostate cancer. Int. J. Nanomedicine, 2017, 12, 7777-7787. doi: 10.2147/IJN.S144634 PMID: 29123392
  188. Kayani, Z.; Firuzi, O.; Bordbar, A.K. Doughnut-shaped bovine serum albumin nanoparticles loaded with doxorubicin for overcoming multidrug-resistant in cancer cells. Int. J. Biol. Macromol., 2018, 107(Pt B), 1835-1843. doi: 10.1016/j.ijbiomac.2017.10.041 PMID: 29030194
  189. Tang, B.; Qian, Y.; Gou, Y.; Cheng, G.; Fang, G. VE-albumin core-shell nanoparticles for paclitaxel delivery to treat MDR breast cancer. Molecules, 2018, 23(11), 2760. doi: 10.3390/molecules23112760 PMID: 30366367
  190. Onafuye, H.; Pieper, S.; Mulac, D.; Jr, J.C.; Wass, M.N.; Langer, K.; Michaelis, M. Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells. Beilstein J. Nanotechnol., 2019, 10(1), 1707-1715. doi: 10.3762/bjnano.10.166 PMID: 31501742
  191. Yu, X.; Zhu, W.; Di, Y.; Gu, J.; Guo, Z.; Li, H.; Fu, D.; Jin, C. Triple-functional albumin-based nanoparticles for combined chemotherapy and photodynamic therapy of pancreatic cancer with lymphatic metastases. Int. J. Nanomedicine, 2017, 12, 6771-6785. doi: 10.2147/IJN.S131295 PMID: 28979117
  192. Han, H.; Wang, J.; Chen, T.; Yin, L.; Jin, Q.; Ji, J. Enzyme-sensitive gemcitabine conjugated albumin nanoparticles as a versatile theranostic nanoplatform for pancreatic cancer treatment. J. Colloid Interface Sci., 2017, 507, 217-224. doi: 10.1016/j.jcis.2017.07.047 PMID: 28800445
  193. Shen, Y.; Li, W. HA/HSA co-modified erlotinib–albumin nanoparticles for lung cancer treatment. Drug Des. Devel. Ther., 2018, 12, 2285-2292. doi: 10.2147/DDDT.S169734 PMID: 30087553
  194. Phuong, P.T.T.; Lee, S.; Lee, C.; Seo, B.; Park, S.; Oh, K.T.; Lee, E.S.; Choi, H.G.; Shin, B.S.; Youn, Y.S. Beta-carotene-bound albumin nanoparticles modified with chlorin e6 for breast tumor ablation based on photodynamic therapy. Colloids Surf. B Biointerfaces, 2018, 171, 123-133. doi: 10.1016/j.colsurfb.2018.07.016 PMID: 30025374
  195. Luis de Redín, I.; Expósito, F.; Agüeros, M.; Collantes, M.; Peñuelas, I.; Allemandi, D.; Llabot, J.M.; Calvo, A.; Irache, J.M. In vivo efficacy of bevacizumab-loaded albumin nanoparticles in the treatment of colorectal cancer. Drug Deliv. Transl. Res., 2020, 10(3), 635-645. doi: 10.1007/s13346-020-00722-7 PMID: 32040774
  196. Long, Q.; Zhu, W.; Guo, L.; Pu, L. RGD-conjugated resveratrol HSA nanoparticles as a novel delivery system in ovarian cancer therapy. Drug Des. Devel. Ther., 2020, 14, 5747-5756. doi: 10.2147/DDDT.S248950 PMID: 33408463
  197. Lee, J.E.; Kim, M.G.; Jang, Y.L.; Lee, M.S.; Kim, N.W.; Yin, Y.; Lee, J.H.; Lim, S.Y.; Park, J.W.; Kim, J.; Lee, D.S.; Kim, S.H.; Jeong, J.H. Self-assembled PEGylated albumin nanoparticles (SPAN) as a platform for cancer chemotherapy and imaging. Drug Deliv., 2018, 25(1), 1570-1578. doi: 10.1080/10717544.2018.1489430 PMID: 30044159
  198. Yuan, H.; Guo, H.; Luan, X.; He, M.; Li, F.; Burnett, J.; Truchan, N.; Sun, D. Albumin nanoparticle of paclitaxel (Abraxane) decreases while taxol increases breast cancer stem cells in treatment of triple negative breast cancer. Mol. Pharm., 2020, 17(7), 2275-2286. doi: 10.1021/acs.molpharmaceut.9b01221 PMID: 32485107
  199. Liu, Y.; Dong, Y.; Zhu, H.; Jing, W.; Guo, H.; Yu, J. Nanoparticle albumin-bound paclitaxel in elder patients with advanced squamous non-small-cell lung cancer: A retrospective study. Cancer Med., 2020, 9(4), 1365-1373. doi: 10.1002/cam4.2791 PMID: 31876976
  200. Zhang, L.; Liu, Z.; Yang, K.; Kong, C.; Liu, C.; Chen, H.; Huang, J.; Qian, F. Tumor progression of non-small cell lung cancer controlled by albumin and micellar nanoparticles of itraconazole, a multitarget angiogenesis inhibitor. Mol. Pharm., 2017, 14(12), 4705-4713. doi: 10.1021/acs.molpharmaceut.7b00855 PMID: 29068216
  201. Ye, Z.; Zhang, Y.; Liu, Y.; Liu, Y.; Tu, J.; Shen, Y. EGFR targeted cetuximab-valine-citrulline (vc)-doxorubicin immunoconjugates-loaded bovine serum albumin (BSA) nanoparticles for colorectal tumor therapy. Int. J. Nanomedicine, 2021, 16, 2443-2459. doi: 10.2147/IJN.S289228 PMID: 33814909
  202. Sun, P.; Li, H.; Yang, M.; Qu, H.; Liu, A.; Liu, J. Efficacy and safety of nanoparticle albumin-bound paclitaxel as neoadjuvant chemotherapy in HER2-negative breast cancer. J. Cancer Res. Ther., 2019, 15(7), 1561-1566. doi: 10.4103/jcrt.JCRT_241_19 PMID: 31939438
  203. Iqbal, H.; Yang, T.; Li, T.; Zhang, M.; Ke, H.; Ding, D.; Deng, Y.; Chen, H. Serum protein-based nanoparticles for cancer diagnosis and treatment. J. Control. Release, 2021, 329, 997-1022. doi: 10.1016/j.jconrel.2020.10.030 PMID: 33091526
  204. Xu, S.; Wang, F.; Li, H.; Wang, Y.; Fang, D. Albumin-binding tag derived Exendin-4 analogue for treating hyperglycemia and diabetic complications. Bioengineered, 2022, 13(3), 4621-4633. doi: 10.1080/21655979.2021.1995993 PMID: 34696658
  205. Bilia, A.R.; Nardiello, P.; Piazzini, V.; Leri, M.; Bergonzi, M.C.; Bucciantini, M.; Casamenti, F. Successful brain delivery of andrographolide loaded in human albumin nanoparticles to TgCRND8 mice, an Alzheimer’s disease mouse model. Front. Pharmacol., 2019, 10, 910. doi: 10.3389/fphar.2019.00910 PMID: 31507412
  206. Luppi, B.; Bigucci, F.; Corace, G.; Delucca, A.; Cerchiara, T.; Sorrenti, M.; Catenacci, L.; Di Pietra, A.M.; Zecchi, V. Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. Eur. J. Pharm. Sci., 2011, 44(4), 559-565. doi: 10.1016/j.ejps.2011.10.002 PMID: 22009109
  207. Yang, R.; Zheng, Y.; Wang, Q.; Zhao, L. Curcumin-loaded chitosan–bovine serum albumin nanoparticles potentially enhanced Aβ 42 phagocytosis and modulated macrophage polarization in Alzheimer’s disease. Nanoscale Res. Lett., 2018, 13(1), 330. doi: 10.1186/s11671-018-2759-z PMID: 30350003
  208. Dou, Y.; Zhao, D.; Yang, F.; Tang, Y.; Chang, J. Natural phyto-antioxidant albumin nanoagents to treat advanced alzheimer’s disease. ACS Appl. Mater. Interfaces, 2021, 13(26), 30373-30382. doi: 10.1021/acsami.1c07281 PMID: 34180234
  209. Yang, H.; Mu, W.; Wei, D.; Zhang, Y.; Duan, Y.; Gao, J.; Gong, X.; Wang, H.; Wu, X.; Tao, H.; Chang, J. A novel targeted and high-efficiency nanosystem for combinational therapy for Alzheimer’s disease. Adv. Sci., 2020, 7(19), 1902906. doi: 10.1002/advs.201902906 PMID: 33042734
  210. Al-Rahim, A.M. Folate-methotrexate loaded bovine serum albumin nanoparticles preparation: An in vitro drug targeting cytokines overwhelming expressed immune cells from rheumatoid arthritis patients. Anim. Biotechnol., 2021, 1-17. PMID: 34319853
  211. Gong, T.; Zhang, P.; Deng, C.; Xiao, Y.; Gong, T.; Zhang, Z. An effective and safe treatment strategy for rheumatoid arthritis based on human serum albumin and Kolliphor ® HS 15. Nanomedicine, 2019, 14(16), 2169-2187. doi: 10.2217/nnm-2019-0110 PMID: 31397202
  212. Lyu, J.; Wang, L.; Bai, X.; Du, X.; Wei, J.; Wang, J.; Lin, Y.; Chen, Z.; Liu, Z.; Wu, J.; Zhong, Z. Treatment of rheumatoid arthritis by serum albumin nanoparticles coated with mannose to target neutrophils. ACS Appl. Mater. Interfaces, 2021, 13(1), 266-276. doi: 10.1021/acsami.0c19468 PMID: 33379867
  213. Liu, M.; Huang, Y.; Hu, L.; Liu, G.; Hu, X.; Liu, D.; Yang, X. Selective delivery of interleukine-1 receptor antagonist to inflamed joint by albumin fusion. BMC Biotechnol., 2012, 12(1), 68. doi: 10.1186/1472-6750-12-68 PMID: 23006786

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers