Effect of Host Cell Protein on Chinese Hamster Ovary Recombinant Protein Production and its Removal Strategies: A Mini Review


Cite item

Full Text

Abstract

Chinese hamster ovary cells are the main expression system for recombinant therapeutic proteins. During the production of these proteins, certain host cell proteins are secreted, broken down, and released by host cells in the culture along with the proteins of interest. These host cell proteins are often difficult to remove during the downstream purification process, and thus affect the quality, safety, and effectiveness of recombinant protein biopharmaceutical products and increase the production cost of recombinant therapeutic proteins. Therefore, host cell protein production must be reduced as much as possible during the production process and eliminated during purification. This article reviews the harm caused by host cell proteins in the production of recombinant protein drugs using Chinese hamster ovary cell, factors affecting host cell proteins, the monitoring and identification of these proteins, and methods to reduce their type and quantity in the final product.

About the authors

Yaru Zhao

Institutes of Health Central Plains, Xinxiang Medical University

Email: info@benthamscience.net

He Li

Institutes of Health Central Plains, Xinxiang Medical University

Email: info@benthamscience.net

Zhenlin Fan

Institutes of Health Central Plains, Xinxiang Medical University

Author for correspondence.
Email: info@benthamscience.net

Tianyun Wang

Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Li, Z.M.; Fan, Z.L.; Wang, X.Y.; Wang, T.Y. Factors affecting the expression of recombinant protein and improvement strategies in chinese hamster ovary cells. Front. Bioeng. Biotechnol., 2022, 10, 880155. doi: 10.3389/fbioe.2022.880155 PMID: 35860329
  2. Yang, Y.X.; Li, Q.; Li, W.D.; Wang, T.Y.; Feng, H.G. Factors and mechanisms affecting the secretion of recombinant protein in CHO cells. Curr. Pharm. Biotechnol., 2022, 24(3), 391-400. PMID: 35658884
  3. Knight, T.J.; Turner, S.; Jaques, C.M.; Smales, C.M. Selection of CHO host and recombinant cell pools by inhibition of the proteasome results in enhanced product yields and cell specific productivity. J. Biotechnol., 2021, 337, 35-45. doi: 10.1016/j.jbiotec.2021.06.019 PMID: 34171439
  4. Aboulaich, N.; Chung, W.K.; Thompson, J.H.; Larkin, C.; Robbins, D.; Zhu, M. A novel approach to monitor clearance of host cell proteins associated with monoclonal antibodies. Biotechnol. Prog., 2014, 30(5), 1114-1124. doi: 10.1002/btpr.1948 PMID: 25044920
  5. Park, J.H.; Jin, J.H.; Ji, I.J.; An, H.J.; Kim, J.W.; Lee, G.M. Proteomic analysis of host cell protein dynamics in the supernatant of Fc-fusion protein-producing CHO DG44 and DUKX-B11 cell lines in batch and fed-batch cultures. Biotechnol. Bioeng., 2017, 114(10), 2267-2278. doi: 10.1002/bit.26360 PMID: 28627725
  6. Liu, X.; Chen, Y.; Zhao, Y.; Liu-Compton, V.; Chen, W.; Payne, G.; Lazar, A.C. Identification and characterization of co-purifying CHO host cell proteins in monoclonal antibody purification process. J. Pharm. Biomed. Anal., 2019, 174, 500-508. doi: 10.1016/j.jpba.2019.06.021 PMID: 31234041
  7. Tuameh, A.; Harding, S.E.; Darton, N.J. Methods for addressing host cell protein impurities in biopharmaceutical product development. Biotechnol. J., 2023, 18(3), 2200115. doi: 10.1002/biot.202200115 PMID: 36427352
  8. Fischer, S.K.; Cheu, M.; Peng, K.; Lowe, J.; Araujo, J.; Murray, E.; McClintock, D.; Matthews, J.; Siguenza, P.; Song, A. Specific immune response to phospholipase B-like 2 protein, a host cell impurity in lebrikizumab clinical material. AAPS J., 2017, 19(1), 254-263. doi: 10.1208/s12248-016-9998-7 PMID: 27739010
  9. Vanderlaan, M.; Zhu-Shimoni, J.; Lin, S.; Gunawan, F.; Waerner, T.; Van Cott, K.E. Experience with host cell protein impurities in biopharmaceuticals. Biotechnol. Prog., 2018, 34(4), 828-837. doi: 10.1002/btpr.2640 PMID: 29693803
  10. Li, X.; An, Y.; Liao, J.; Xiao, L.; Swanson, M.; Martinez-Fonts, K.; Pavon, J.A.; Sherer, E.C.; Jawa, V.; Wang, F.; Gao, X.; Letarte, S.; Richardson, D.D. Identification and characterization of a residual host cell protein hexosaminidase B associated with N -glycan degradation during the stability study of a therapeutic recombinant monoclonal antibody product. Biotechnol. Prog., 2021, 37(3), e3128. doi: 10.1002/btpr.3128 PMID: 33476097
  11. Chiverton, L.M.; Evans, C.; Pandhal, J.; Landels, A.R.; Rees, B.J.; Levison, P.R.; Wright, P.C.; Smales, C.M. Quantitative definition and monitoring of the host cell protein proteome using iTRAQ - a study of an industrial mAb producing CHO-S cell line. Biotechnol. J., 2016, 11(8), 1014-1024. doi: 10.1002/biot.201500550 PMID: 27214759
  12. Betts, Z.; Dickson, A.J. Improved CHO cell line stability and recombinant protein expression during long-term culture. Methods Mol. Biol., 2017, 1603, 119-141. doi: 10.1007/978-1-4939-6972-2_8 PMID: 28493127
  13. Li, Y. Effective strategies for host cell protein clearance in downstream processing of monoclonal antibodies and Fc-fusion proteins. Protein Expr. Purif., 2017, 134, 96-103. doi: 10.1016/j.pep.2017.04.006 PMID: 28414067
  14. Alhuthali, S.; Kontoravdi, C. Population balance modelling captures host cell protein dynamics in CHO cell cultures. PLoS One, 2022, 17(3), e0265886. doi: 10.1371/journal.pone.0265886 PMID: 35320326
  15. Ben Yahia, B.; Malphettes, L.; Heinzle, E. Predictive macroscopic modeling of cell growth, metabolism and monoclonal antibody production: Case study of a CHO fed-batch production. Metab. Eng., 2021, 66, 204-216. doi: 10.1016/j.ymben.2021.04.004 PMID: 33887460
  16. Goey, C.H.; Tsang, J.M.H.; Bell, D.; Kontoravdi, C. Cascading effect in bioprocessing-The impact of mild hypothermia on CHO cell behavior and host cell protein composition. Biotechnol. Bioeng., 2017, 114(12), 2771-2781. doi: 10.1002/bit.26437 PMID: 28843000
  17. Fukuda, N.; Senga, Y.; Honda, S. Anxa2 - and Ctsd -knockout CHO cell lines to diminish the risk of contamination with host cell proteins. Biotechnol. Prog., 2019, 35(4), e2820. doi: 10.1002/btpr.2820 PMID: 30972970
  18. Obrstar, D.; Kröner, F.; Japelj, B.; Bojic, L.; Anderka, O. Host cell protein profiling in biopharmaceutical harvests. Anal. Chem., 2018, 90(19), 11240-11247. doi: 10.1021/acs.analchem.8b01236 PMID: 30048127
  19. Migani, D.; Smales, C.M.; Bracewell, D.G. Effects of lysosomal biotherapeutic recombinant protein expression on cell stress and protease and general host cell protein release in Chinese hamster ovary cells. Biotechnol. Prog., 2017, 33(3), 666-676. doi: 10.1002/btpr.2455 PMID: 28249362
  20. Falkenberg, H.; Waldera-Lupa, D.M.; Vanderlaan, M.; Schwab, T.; Krapfenbauer, K.; Studts, J.M.; Flad, T.; Waerner, T. Mass spectrometric evaluation of upstream and downstream process influences on host cell protein patterns in biopharmaceutical products. Biotechnol. Prog., 2019, 35(3), e2788. doi: 10.1002/btpr.2788 PMID: 30767403
  21. Yuk, I.H.; Nishihara, J.; Walker, D., Jr; Huang, E.; Gunawan, F.; Subramanian, J.; Pynn, A.F.J.; Yu, X.C.; Zhu-Shimoni, J.; Vanderlaan, M.; Krawitz, D.C. More similar than different: Host cell protein production using three null CHO cell lines. Biotechnol. Bioeng., 2015, 112(10), 2068-2083. doi: 10.1002/bit.25615 PMID: 25894672
  22. Jin, M.; Szapiel, N.; Zhang, J.; Hickey, J.; Ghose, S. Profiling of host cell proteins by two-dimensional difference gel electrophoresis (2D-DIGE): Implications for downstream process development. Biotechnol. Bioeng., 2010, 105(2), 306-316. doi: 10.1002/bit.22532 PMID: 19739084
  23. Wilson, L.J.; Lewis, W.; Kucia-Tran, R.; Bracewell, D.G. Identification and classification of host cell proteins during biopharmaceutical process development. Biotechnol. Prog., 2022, 38(1), e3224. doi: 10.1002/btpr.3224 PMID: 34751518
  24. Hamaker, N.K.; Min, L.; Lee, K.H. Comprehensive assessment of host cell protein expression after extended culture and bioreactor production of CHO cell lines. Biotechnol. Bioeng., 2022, 119(8), 2221-2238. doi: 10.1002/bit.28128 PMID: 35508759
  25. Wingfield, P.T. Overview of the purification of recombinant proteins. Curr. Protoc. Protein Sci., 2015, 80, 611-6135. doi: 10.1002/0471140864.ps0601s80
  26. Reese, H.R.; Xiao, X.; Shanahan, C.C.; Chu, W.; Van Den Driessche, G.A.; Fourches, D.; Carbonell, R.G.; Hall, C.K.; Menegatti, S. Novel peptide ligands for antibody purification provide superior clearance of host cell protein impurities. J. Chromatogr. A, 2020, 1625, 461237. doi: 10.1016/j.chroma.2020.461237 PMID: 32709313
  27. Van Manen-Brush, K.; Zeitler, J.; White, J.R.; Younge, P.; Willis, S.; Jones, M. Improving Chinese hamster ovary host cell protein ELISA using Ella ®: An automated microfluidic platform. Biotechniques, 2020, 69(3), 186-192. doi: 10.2144/btn-2020-0074 PMID: 32615786
  28. Singh, S.K.; Mishra, A.; Yadav, D.; Budholiya, N.; Rathore, A.S. Understanding the mechanism of copurification of "difficult to remove" host cell proteins in rituximab biosimilar products. Biotechnol. Prog., 2020, 36(2), e2936. doi: 10.1002/btpr.2936 PMID: 31661608
  29. Bee, J.S.; Tie, L.; Johnson, D.; Dimitrova, M.N.; Jusino, K.C.; Afdahl, C.D. Trace levels of the CHO host cell protease cathepsin D caused particle formation in a monoclonal antibody product. Biotechnol. Prog., 2015, 31(5), 1360-1369. doi: 10.1002/btpr.2150 PMID: 26259961
  30. Bee, J.S.; Machiesky, L.M.; Peng, L.; Jusino, K.C.; Dickson, M.; Gill, J.; Johnson, D.; Lin, H.Y.; Miller, K.; Heidbrink Thompson, J.; Remmele, R.L., Jr Identification of an IgG CDR sequence contributing to co-purification of the host cell protease cathepsin D. Biotechnol. Prog., 2017, 33(1), 140-145. doi: 10.1002/btpr.2397 PMID: 27798957
  31. Park, J.H.; Jin, J.H.; Lim, M.S.; An, H.J.; Kim, J.W.; Lee, G.M. Proteomic analysis of host cell protein dynamics in the culture supernatants of antibody-producing CHO cells. Sci. Rep., 2017, 7(1), 44246. doi: 10.1038/srep44246 PMID: 28281648
  32. Doshi, N.; Martin, J.; Tomlinson, A. Improving prediction of free fatty acid particle formation in biopharmaceutical drug products: Incorporating ester distribution during polysorbate 20 degradation. Mol. Pharm., 2020, 17(11), 4354-4363. doi: 10.1021/acs.molpharmaceut.0c00794 PMID: 32941040
  33. Graf, T.; Abstiens, K.; Wedekind, F.; Elger, C.; Haindl, M.; Wurth, C.; Leiss, M. Controlled polysorbate 20 hydrolysis – A new approach to assess the impact of polysorbate 20 degradation on biopharmaceutical product quality in shortened time. Eur. J. Pharm. Biopharm., 2020, 152, 318-326. doi: 10.1016/j.ejpb.2020.05.017 PMID: 32445968
  34. Luo, H.; Tie, L.; Cao, M.; Hunter, A.K.; Pabst, T.M.; Du, J.; Field, R.; Li, Y.; Wang, W.K.; Cathepsin, L. Cathepsin L causes proteolytic cleavage of chinese-hamster-ovary cell expressed proteins during processing and storage: Identification, characterization, and mitigation. Biotechnol. Prog., 2019, 35(1), e2732. doi: 10.1002/btpr.2732 PMID: 30320962
  35. Tran, B.; Grosskopf, V.; Wang, X.; Yang, J.; Walker, D., Jr; Yu, C.; McDonald, P. Investigating interactions between phospholipase B-Like 2 and antibodies during Protein A chromatography. J. Chromatogr. A, 2016, 1438, 31-38. doi: 10.1016/j.chroma.2016.01.047 PMID: 26896920
  36. Hall, T.; Sandefur, S.L.; Frye, C.C.; Tuley, T.L.; Huang, L. Polysorbates 20 and 80 degradation by group xv lysosomal phospholipase A 2 isomer x1 in monoclonal antibody formulations. J. Pharm. Sci., 2016, 105(5), 1633-1642. doi: 10.1016/j.xphs.2016.02.022 PMID: 27056628
  37. Li, X.; Chandra, D.; Letarte, S.; Adam, G.C.; Welch, J.; Yang, R.S.; Rivera, S.; Bodea, S.; Dow, A.; Chi, A.; Strulson, C.A.; Richardson, D.D. Profiling active enzymes for polysorbate degradation in biotherapeutics by activity-based protein profiling. Anal. Chem., 2021, 93(23), 8161-8169. doi: 10.1021/acs.analchem.1c00042 PMID: 34032423
  38. Zhang, S.; Riccardi, C.; Kamen, D.; Reilly, J.; Mattila, J.; Bak, H.; Xiao, H.; Li, N. Identification of the specific causes of polysorbate 20 degradation in monoclonal antibody formulations containing multiple lipases. Pharm. Res., 2022, 39(1), 75-87. doi: 10.1007/s11095-021-03160-3 PMID: 34981317
  39. Molden, R.; Hu, M.; Yen E, S.; Saggese, D.; Reilly, J.; Mattila, J.; Qiu, H.; Chen, G.; Bak, H.; Li, N. Host cell protein profiling of commercial therapeutic protein drugs as a benchmark for monoclonal antibody-based therapeutic protein development. MAbs., 2021, 13(1), 1955811. doi: 10.1080/19420862.2021.1955811 PMID: 34365906
  40. Tscheliessnig, A.L.; Konrath, J.; Bates, R.; Jungbauer, A. Host cell protein analysis in therapeutic protein bioprocessing - methods and applications. Biotechnol. J., 2013, 8(6), 655-670. doi: 10.1002/biot.201200018 PMID: 23436780
  41. Hogwood, C.E.M.; Chiverton, L.M.; Mark Smales, C. Characterization of host cell proteins (HCPs) in CHO cell bioprocesses. Methods Mol. Biol., 2017, 1603, 243-250. doi: 10.1007/978-1-4939-6972-2_16 PMID: 28493135
  42. Meleady, P. Two-dimensional gel electrophoresis and 2D-DIGE. Methods Mol. Biol., 2018, 1664, 3-14. doi: 10.1007/978-1-4939-7268-5_1 PMID: 29019120
  43. Ciereszko, A.; Dietrich, M.A.; Słowińska, M.; Nynca, J.; Ciborowski, M.; Kisluk, J.; Michalska-Falkowska, A.; Reszec, J.; Sierko, E.; Nikliński, J. Identification of protein changes in the blood plasma of lung cancer patients subjected to chemotherapy using a 2D-DIGE approach. PLoS. One., 2019, 14(10), e0223840. doi: 10.1371/journal.pone.0223840 PMID: 31622403
  44. Geisler, C.; Gaisa, N.T.; Pfister, D.; Fuessel, S.; Kristiansen, G.; Braunschweig, T.; Gostek, S.; Beine, B.; Diehl, H.C.; Jackson, A.M.; Borchers, C.H.; Heidenreich, A.; Meyer, H.E.; Knüchel, R.; Henkel, C. Identification and validation of potential new biomarkers for prostate cancer diagnosis and prognosis using 2D-DIGE and MS. BioMed Res. Int., 2015, 2015, 1-23. doi: 10.1155/2015/454256 PMID: 25667921
  45. Arentz, G.; Weiland, F.; Oehler, M.K.; Hoffmann, P. State of the art of 2D DIGE. Proteomics Clin. Appl., 2015, 9(3-4), 277-288. doi: 10.1002/prca.201400119 PMID: 25400138
  46. Chen, I.H.; Xiao, H.; Li, N. Improved host cell protein analysis in monoclonal antibody products through ProteoMiner. Anal. Biochem., 2020, 610, 113972. doi: 10.1016/j.ab.2020.113972 PMID: 32979367
  47. Farrell, A.; Mittermayr, S.; Morrissey, B.; Mc Loughlin, N.; Navas Iglesias, N.; Marison, I.W.; Bones, J. Quantitative host cell protein analysis using two dimensional data independent LC-MS(E). Anal. Chem., 2015, 87(18), 9186-9193. doi: 10.1021/acs.analchem.5b01377 PMID: 26280711
  48. Huang, L.; Wang, N.; Mitchell, C.E.; Brownlee, T.; Maple, S.R.; De Felippis, M.R. A novel sample preparation for shotgun proteomics characterization of HCPs in antibodies. Anal. Chem., 2017, 89(10), 5436-5444. doi: 10.1021/acs.analchem.7b00304 PMID: 28414239
  49. Levy, N.E.; Valente, K.N.; Lee, K.H.; Lenhoff, A.M. Host cell protein impurities in chromatographic polishing steps for monoclonal antibody purification. Biotechnol. Bioeng., 2016, 113(6), 1260-1272. doi: 10.1002/bit.25882 PMID: 26550778
  50. Chen, Y.; Xu, C.F.; Stanley, B.; Evangelist, G.; Brinkmann, A.; Liu, S.; McCarthy, S.; Xiong, L.; Jones, E.; Sosic, Z.; Yeung, B. A highly sensitive LC-MS/MS method for targeted quantitation of lipase host cell proteins in biotherapeutics. J. Pharm. Sci., 2021, 110(12), 3811-3818. doi: 10.1016/j.xphs.2021.08.024 PMID: 34461112
  51. Johnson, R.O.B.; Greer, T.; Cejkov, M.; Zheng, X.; Li, N. Combination of FAIMS, protein A depletion, and native digest conditions enables deep proteomic profiling of host cell proteins in monoclonal antibodies. Anal. Chem., 2020, 92(15), 10478-10484. doi: 10.1021/acs.analchem.0c01175 PMID: 32628830
  52. Mörtstedt, H.; Makower, Å.; Edlund, P.O.; Sjöberg, K.; Tjernberg, A. Improved identification of host cell proteins in a protein biopharmaceutical by LC–MS/MS using the ProteoMiner™ Enrichment Kit. J. Pharm. Biomed. Anal., 2020, 185, 113256. doi: 10.1016/j.jpba.2020.113256 PMID: 32229402
  53. Gao, X.; Rawal, B.; Wang, Y.; Li, X.; Wylie, D.; Liu, Y.H.; Breunig, L.; Driscoll, D.; Wang, F.; Richardson, D.D. Targeted host cell protein quantification by LC–MRM enables biologics processing and product characterization. Anal. Chem., 2020, 92(1), 1007-1015. doi: 10.1021/acs.analchem.9b03952 PMID: 31860266
  54. Clavier, S.; Fougeron, D.; Petrovic, S.; Elmaleh, H.; Fourneaux, C.; Bugnazet, D.; Duffieux, F.; Masiero, A.; Mitra-Kaushik, S.; Genet, B.; Fromentin, Y.; Kreiss, P.; Laborderie, B.; Brault, D.; Menet, J.M. Improving the analytical toolbox to investigate copurifying host cell proteins presence: N -(4)-(β-acetylglucosaminyl)-L-asparaginase case study. Biotechnol. Bioeng., 2020, 117(11), 3368-3378. doi: 10.1002/bit.27514 PMID: 32706388
  55. Seisenberger, C.; Graf, T.; Haindl, M.; Wegele, H.; Wiedmann, M.; Wohlrab, S. Questioning coverage values determined by 2D western blots: A critical study on the characterization of anti-HCP ELISA reagents. Biotechnol. Bioeng., 2021, 118(3), 1116-1126. doi: 10.1002/bit.27635 PMID: 33241851
  56. Seisenberger, C.; Graf, T.; Haindl, M.; Wegele, H.; Wiedmann, M.; Wohlrab, S. Toward optimal clearance: A universal affinity-based mass spectrometry approach for comprehensive ELISA reagent coverage evaluation and HCP hitchhiker analysis. Biotechnol. Prog., 2022, 38(3), e3244. doi: 10.1002/btpr.3244 PMID: 35150475
  57. Waldera-Lupa, D.M.; Jasper, Y.; Köhne, P.; Schwichtenhövel, R.; Falkenberg, H.; Flad, T.; Happersberger, P.; Reisinger, B.; Dehghani, A.; Moussa, R.; Waerner, T. Host cell protein detection gap risk mitigation: Quantitative IAC-MS for ELISA antibody reagent coverage determination. MAbs, 2021, 13(1), 1955432. doi: 10.1080/19420862.2021.1955432 PMID: 34347561
  58. Huang, Y.; Molden, R.; Hu, M.; Qiu, H.; Li, N. Toward unbiased identification and comparative quantification of host cell protein impurities by automated iterative LC–MS/MS (HCP-AIMS) for therapeutic protein development. J. Pharm. Biomed. Anal., 2021, 200, 114069. doi: 10.1016/j.jpba.2021.114069 PMID: 33901758
  59. Chen, I.H.; Xiao, H.; Daly, T.; Li, N. Improved host cell protein analysis in monoclonal antibody products through molecular weight cutoff enrichment. Anal. Chem., 2020, 92(5), 3751-3757. doi: 10.1021/acs.analchem.9b05081 PMID: 31999105
  60. Graf, T.; Tomlinson, A.; Yuk, I.H.; Kufer, R.; Spensberger, B.; Falkenstein, R.; Shen, A.; Li, H.; Duan, D.; Liu, W.; Wohlrab, S.; Edelmann, F.; Leiss, M. Identification and characterization of polysorbate-degrading enzymes in a monoclonal antibody formulation. J. Pharm. Sci., 2021, 110(11), 3558-3567. doi: 10.1016/j.xphs.2021.06.033 PMID: 34224732
  61. Bailey-Kellogg, C.; Gutiérrez, A.H.; Moise, L.; Terry, F.; Martin, W.D.; De Groot, A.S. CHOPPI: A web tool for the analysis of immunogenicity risk from host cell proteins in CHO-based protein production. Biotechnol. Bioeng., 2014, 111(11), 2170-2182. doi: 10.1002/bit.25286 PMID: 24888712
  62. Pythoud, N.; Bons, J.; Mijola, G.; Beck, A.; Cianférani, S.; Carapito, C. Optimized sample preparation and data processing of data-independent acquisition methods for the robust quantification of trace-level host cell protein impurities in antibody drug products. J. Proteome Res., 2021, 20(1), 923-931. doi: 10.1021/acs.jproteome.0c00664 PMID: 33016074
  63. Jones, M.; Palackal, N.; Wang, F.; Gaza-Bulseco, G.; Hurkmans, K.; Zhao, Y.; Chitikila, C.; Clavier, S.; Liu, S.; Menesale, E.; Schonenbach, N.S.; Sharma, S.; Valax, P.; Waerner, T.; Zhang, L.; Connolly, T. "High-risk" host cell proteins (HCPs): A multi-company collaborative view. Biotechnol. Bioeng., 2021, 118(8), 2870-2885. doi: 10.1002/bit.27808 PMID: 33930190
  64. Goey, C.H.; Alhuthali, S.; Kontoravdi, C. Host cell protein removal from biopharmaceutical preparations: Towards the implementation of quality by design. Biotechnol. Adv., 2018, 36(4), 1223-1237. doi: 10.1016/j.biotechadv.2018.03.021 PMID: 29654903
  65. Dovgan, T.; Golghalyani, V.; Zurlo, F.; Hatton, D.; Lindo, V.; Turner, R.; Harris, C.; Cui, T. Targeted CHO cell engineering approaches can reduce HCP-related enzymatic degradation and improve mAb product quality. Biotechnol. Bioeng., 2021, 118(10), 3821-3831. doi: 10.1002/bit.27857 PMID: 34125434
  66. Laux, H.; Romand, S.; Nuciforo, S.; Farady, C.J.; Tapparel, J.; Buechmann-Moeller, S.; Sommer, B.; Oakeley, E.J.; Bodendorf, U. Degradation of recombinant proteins by Chinese hamster ovary host cell proteases is prevented by matriptase-1 knockout. Biotechnol. Bioeng., 2018, 115(10), 2530-2540. doi: 10.1002/bit.26731 PMID: 29777593
  67. Chiu, J.; Valente, K.N.; Levy, N.E.; Min, L.; Lenhoff, A.M.; Lee, K.H. Knockout of a difficult-to-remove CHO host cell protein, lipoprotein lipase, for improved polysorbate stability in monoclonal antibody formulations. Biotechnol. Bioeng., 2017, 114(5), 1006-1015. doi: 10.1002/bit.26237 PMID: 27943242
  68. Kol, S.; Ley, D.; Wulff, T.; Decker, M.; Arnsdorf, J.; Schoffelen, S.; Hansen, A.H.; Jensen, T.L.; Gutierrez, J.M.; Chiang, A.W.T.; Masson, H.O.; Palsson, B.O.; Voldborg, B.G.; Pedersen, L.E.; Kildegaard, H.F.; Lee, G.M.; Lewis, N.E. Multiplex secretome engineering enhances recombinant protein production and purity. Nat. Commun., 2020, 11(1), 1908. doi: 10.1038/s41467-020-15866-w PMID: 32313013
  69. Van de Velde, J.; Saller, M.J.; Eyer, K.; Voloshin, A. Chromatographic clarification overcomes chromatin-mediated hitch-hiking interactions on Protein A capture column. Biotechnol. Bioeng., 2020, 117(11), 3413-3421. doi: 10.1002/bit.27513 PMID: 32706389
  70. Han, J.; Yang, J.; Wang, Y.; Li, Y. The adequate amount of sodium chloride in protein a wash buffer for effective host cell protein clearance. Protein Expr. Purif., 2019, 158, 59-64. doi: 10.1016/j.pep.2019.02.016 PMID: 30825515
  71. Wan, Y.; Zhang, T.; Chen, T.; Wang, Y.; Li, Y. Sodium caprylate induced precipitation post protein a chromatography as an effective means for host cell protein clearance. Protein Expr. Purif., 2019, 164, 105460. doi: 10.1016/j.pep.2019.105460 PMID: 31351123
  72. Luo, H.; Du, Q.; Qian, C.; Mlynarczyk, M.; Pabst, T.M.; Damschroder, M.; Hunter, A.K.; Wang, W.K. Formation of transient highly-charged mAb clusters strengthens interactions with host cell proteins and results in poor clearance of host cell proteins by protein A chromatography. J. Chromatogr. A, 2022, 1679, 463385. doi: 10.1016/j.chroma.2022.463385 PMID: 35933770
  73. Cui, T.; Chi, B.; Heidbrink Thompson, J.; Kasali, T.; Sellick, C.; Turner, R.; Cathepsin, D. Cathepsin D: Removal strategy on protein A chromatography, near real time monitoring and characterisation during monoclonal antibody production. J. Biotechnol., 2019, 305, 51-60. doi: 10.1016/j.jbiotec.2019.08.013 PMID: 31442501
  74. Zhang, Q.; Goetze, A.M.; Cui, H.; Wylie, J.; Tillotson, B.; Hewig, A.; Hall, M.P.; Flynn, G.C. Characterization of the co-elution of host cell proteins with monoclonal antibodies during protein A purification. Biotechnol. Prog., 2016, 32(3), 708-717. doi: 10.1002/btpr.2272 PMID: 27073178
  75. Lavoie, R.A.; Fazio, A.; Williams, T.I.; Carbonell, R.; Menegatti, S. Targeted capture of Chinese hamster ovary host cell proteins: Peptide ligand binding by proteomic analysis. Biotechnol. Bioeng., 2020, 117(2), 438-452. doi: 10.1002/bit.27213 PMID: 31654407
  76. Gilgunn, S.; El-Sabbahy, H.; Albrecht, S.; Gaikwad, M.; Corrigan, K.; Deakin, L.; Jellum, G.; Bones, J. Identification and tracking of problematic host cell proteins removed by a synthetic, highly functionalized nonwoven media in downstream bioprocessing of monoclonal antibodies. J. Chromatogr. A, 2019, 1595, 28-38. doi: 10.1016/j.chroma.2019.02.056 PMID: 30898377
  77. Bojar, D.; Fuhrer, T.; Fussenegger, M. Purity by design: Reducing impurities in bioproduction by stimulus-controlled global translational downregulation of non-product proteins. Metab. Eng., 2019, 52, 110-123. doi: 10.1016/j.ymben.2018.11.007 PMID: 30468874

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers