Effect of Host Cell Protein on Chinese Hamster Ovary Recombinant Protein Production and its Removal Strategies: A Mini Review
- Authors: Zhao Y.1, Li H.1, Fan Z.1, Wang T.2
-
Affiliations:
- Institutes of Health Central Plains, Xinxiang Medical University
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University
- Issue: Vol 25, No 6 (2024)
- Pages: 665-675
- Section: Biotechnology
- URL: https://rjeid.com/1389-2010/article/view/644860
- DOI: https://doi.org/10.2174/1389201024666230818112633
- ID: 644860
Cite item
Full Text
Abstract
Chinese hamster ovary cells are the main expression system for recombinant therapeutic proteins. During the production of these proteins, certain host cell proteins are secreted, broken down, and released by host cells in the culture along with the proteins of interest. These host cell proteins are often difficult to remove during the downstream purification process, and thus affect the quality, safety, and effectiveness of recombinant protein biopharmaceutical products and increase the production cost of recombinant therapeutic proteins. Therefore, host cell protein production must be reduced as much as possible during the production process and eliminated during purification. This article reviews the harm caused by host cell proteins in the production of recombinant protein drugs using Chinese hamster ovary cell, factors affecting host cell proteins, the monitoring and identification of these proteins, and methods to reduce their type and quantity in the final product.
About the authors
Yaru Zhao
Institutes of Health Central Plains, Xinxiang Medical University
Email: info@benthamscience.net
He Li
Institutes of Health Central Plains, Xinxiang Medical University
Email: info@benthamscience.net
Zhenlin Fan
Institutes of Health Central Plains, Xinxiang Medical University
Author for correspondence.
Email: info@benthamscience.net
Tianyun Wang
Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Li, Z.M.; Fan, Z.L.; Wang, X.Y.; Wang, T.Y. Factors affecting the expression of recombinant protein and improvement strategies in chinese hamster ovary cells. Front. Bioeng. Biotechnol., 2022, 10, 880155. doi: 10.3389/fbioe.2022.880155 PMID: 35860329
- Yang, Y.X.; Li, Q.; Li, W.D.; Wang, T.Y.; Feng, H.G. Factors and mechanisms affecting the secretion of recombinant protein in CHO cells. Curr. Pharm. Biotechnol., 2022, 24(3), 391-400. PMID: 35658884
- Knight, T.J.; Turner, S.; Jaques, C.M.; Smales, C.M. Selection of CHO host and recombinant cell pools by inhibition of the proteasome results in enhanced product yields and cell specific productivity. J. Biotechnol., 2021, 337, 35-45. doi: 10.1016/j.jbiotec.2021.06.019 PMID: 34171439
- Aboulaich, N.; Chung, W.K.; Thompson, J.H.; Larkin, C.; Robbins, D.; Zhu, M. A novel approach to monitor clearance of host cell proteins associated with monoclonal antibodies. Biotechnol. Prog., 2014, 30(5), 1114-1124. doi: 10.1002/btpr.1948 PMID: 25044920
- Park, J.H.; Jin, J.H.; Ji, I.J.; An, H.J.; Kim, J.W.; Lee, G.M. Proteomic analysis of host cell protein dynamics in the supernatant of Fc-fusion protein-producing CHO DG44 and DUKX-B11 cell lines in batch and fed-batch cultures. Biotechnol. Bioeng., 2017, 114(10), 2267-2278. doi: 10.1002/bit.26360 PMID: 28627725
- Liu, X.; Chen, Y.; Zhao, Y.; Liu-Compton, V.; Chen, W.; Payne, G.; Lazar, A.C. Identification and characterization of co-purifying CHO host cell proteins in monoclonal antibody purification process. J. Pharm. Biomed. Anal., 2019, 174, 500-508. doi: 10.1016/j.jpba.2019.06.021 PMID: 31234041
- Tuameh, A.; Harding, S.E.; Darton, N.J. Methods for addressing host cell protein impurities in biopharmaceutical product development. Biotechnol. J., 2023, 18(3), 2200115. doi: 10.1002/biot.202200115 PMID: 36427352
- Fischer, S.K.; Cheu, M.; Peng, K.; Lowe, J.; Araujo, J.; Murray, E.; McClintock, D.; Matthews, J.; Siguenza, P.; Song, A. Specific immune response to phospholipase B-like 2 protein, a host cell impurity in lebrikizumab clinical material. AAPS J., 2017, 19(1), 254-263. doi: 10.1208/s12248-016-9998-7 PMID: 27739010
- Vanderlaan, M.; Zhu-Shimoni, J.; Lin, S.; Gunawan, F.; Waerner, T.; Van Cott, K.E. Experience with host cell protein impurities in biopharmaceuticals. Biotechnol. Prog., 2018, 34(4), 828-837. doi: 10.1002/btpr.2640 PMID: 29693803
- Li, X.; An, Y.; Liao, J.; Xiao, L.; Swanson, M.; Martinez-Fonts, K.; Pavon, J.A.; Sherer, E.C.; Jawa, V.; Wang, F.; Gao, X.; Letarte, S.; Richardson, D.D. Identification and characterization of a residual host cell protein hexosaminidase B associated with N -glycan degradation during the stability study of a therapeutic recombinant monoclonal antibody product. Biotechnol. Prog., 2021, 37(3), e3128. doi: 10.1002/btpr.3128 PMID: 33476097
- Chiverton, L.M.; Evans, C.; Pandhal, J.; Landels, A.R.; Rees, B.J.; Levison, P.R.; Wright, P.C.; Smales, C.M. Quantitative definition and monitoring of the host cell protein proteome using iTRAQ - a study of an industrial mAb producing CHO-S cell line. Biotechnol. J., 2016, 11(8), 1014-1024. doi: 10.1002/biot.201500550 PMID: 27214759
- Betts, Z.; Dickson, A.J. Improved CHO cell line stability and recombinant protein expression during long-term culture. Methods Mol. Biol., 2017, 1603, 119-141. doi: 10.1007/978-1-4939-6972-2_8 PMID: 28493127
- Li, Y. Effective strategies for host cell protein clearance in downstream processing of monoclonal antibodies and Fc-fusion proteins. Protein Expr. Purif., 2017, 134, 96-103. doi: 10.1016/j.pep.2017.04.006 PMID: 28414067
- Alhuthali, S.; Kontoravdi, C. Population balance modelling captures host cell protein dynamics in CHO cell cultures. PLoS One, 2022, 17(3), e0265886. doi: 10.1371/journal.pone.0265886 PMID: 35320326
- Ben Yahia, B.; Malphettes, L.; Heinzle, E. Predictive macroscopic modeling of cell growth, metabolism and monoclonal antibody production: Case study of a CHO fed-batch production. Metab. Eng., 2021, 66, 204-216. doi: 10.1016/j.ymben.2021.04.004 PMID: 33887460
- Goey, C.H.; Tsang, J.M.H.; Bell, D.; Kontoravdi, C. Cascading effect in bioprocessing-The impact of mild hypothermia on CHO cell behavior and host cell protein composition. Biotechnol. Bioeng., 2017, 114(12), 2771-2781. doi: 10.1002/bit.26437 PMID: 28843000
- Fukuda, N.; Senga, Y.; Honda, S. Anxa2 - and Ctsd -knockout CHO cell lines to diminish the risk of contamination with host cell proteins. Biotechnol. Prog., 2019, 35(4), e2820. doi: 10.1002/btpr.2820 PMID: 30972970
- Obrstar, D.; Kröner, F.; Japelj, B.; Bojic, L.; Anderka, O. Host cell protein profiling in biopharmaceutical harvests. Anal. Chem., 2018, 90(19), 11240-11247. doi: 10.1021/acs.analchem.8b01236 PMID: 30048127
- Migani, D.; Smales, C.M.; Bracewell, D.G. Effects of lysosomal biotherapeutic recombinant protein expression on cell stress and protease and general host cell protein release in Chinese hamster ovary cells. Biotechnol. Prog., 2017, 33(3), 666-676. doi: 10.1002/btpr.2455 PMID: 28249362
- Falkenberg, H.; Waldera-Lupa, D.M.; Vanderlaan, M.; Schwab, T.; Krapfenbauer, K.; Studts, J.M.; Flad, T.; Waerner, T. Mass spectrometric evaluation of upstream and downstream process influences on host cell protein patterns in biopharmaceutical products. Biotechnol. Prog., 2019, 35(3), e2788. doi: 10.1002/btpr.2788 PMID: 30767403
- Yuk, I.H.; Nishihara, J.; Walker, D., Jr; Huang, E.; Gunawan, F.; Subramanian, J.; Pynn, A.F.J.; Yu, X.C.; Zhu-Shimoni, J.; Vanderlaan, M.; Krawitz, D.C. More similar than different: Host cell protein production using three null CHO cell lines. Biotechnol. Bioeng., 2015, 112(10), 2068-2083. doi: 10.1002/bit.25615 PMID: 25894672
- Jin, M.; Szapiel, N.; Zhang, J.; Hickey, J.; Ghose, S. Profiling of host cell proteins by two-dimensional difference gel electrophoresis (2D-DIGE): Implications for downstream process development. Biotechnol. Bioeng., 2010, 105(2), 306-316. doi: 10.1002/bit.22532 PMID: 19739084
- Wilson, L.J.; Lewis, W.; Kucia-Tran, R.; Bracewell, D.G. Identification and classification of host cell proteins during biopharmaceutical process development. Biotechnol. Prog., 2022, 38(1), e3224. doi: 10.1002/btpr.3224 PMID: 34751518
- Hamaker, N.K.; Min, L.; Lee, K.H. Comprehensive assessment of host cell protein expression after extended culture and bioreactor production of CHO cell lines. Biotechnol. Bioeng., 2022, 119(8), 2221-2238. doi: 10.1002/bit.28128 PMID: 35508759
- Wingfield, P.T. Overview of the purification of recombinant proteins. Curr. Protoc. Protein Sci., 2015, 80, 611-6135. doi: 10.1002/0471140864.ps0601s80
- Reese, H.R.; Xiao, X.; Shanahan, C.C.; Chu, W.; Van Den Driessche, G.A.; Fourches, D.; Carbonell, R.G.; Hall, C.K.; Menegatti, S. Novel peptide ligands for antibody purification provide superior clearance of host cell protein impurities. J. Chromatogr. A, 2020, 1625, 461237. doi: 10.1016/j.chroma.2020.461237 PMID: 32709313
- Van Manen-Brush, K.; Zeitler, J.; White, J.R.; Younge, P.; Willis, S.; Jones, M. Improving Chinese hamster ovary host cell protein ELISA using Ella ®: An automated microfluidic platform. Biotechniques, 2020, 69(3), 186-192. doi: 10.2144/btn-2020-0074 PMID: 32615786
- Singh, S.K.; Mishra, A.; Yadav, D.; Budholiya, N.; Rathore, A.S. Understanding the mechanism of copurification of "difficult to remove" host cell proteins in rituximab biosimilar products. Biotechnol. Prog., 2020, 36(2), e2936. doi: 10.1002/btpr.2936 PMID: 31661608
- Bee, J.S.; Tie, L.; Johnson, D.; Dimitrova, M.N.; Jusino, K.C.; Afdahl, C.D. Trace levels of the CHO host cell protease cathepsin D caused particle formation in a monoclonal antibody product. Biotechnol. Prog., 2015, 31(5), 1360-1369. doi: 10.1002/btpr.2150 PMID: 26259961
- Bee, J.S.; Machiesky, L.M.; Peng, L.; Jusino, K.C.; Dickson, M.; Gill, J.; Johnson, D.; Lin, H.Y.; Miller, K.; Heidbrink Thompson, J.; Remmele, R.L., Jr Identification of an IgG CDR sequence contributing to co-purification of the host cell protease cathepsin D. Biotechnol. Prog., 2017, 33(1), 140-145. doi: 10.1002/btpr.2397 PMID: 27798957
- Park, J.H.; Jin, J.H.; Lim, M.S.; An, H.J.; Kim, J.W.; Lee, G.M. Proteomic analysis of host cell protein dynamics in the culture supernatants of antibody-producing CHO cells. Sci. Rep., 2017, 7(1), 44246. doi: 10.1038/srep44246 PMID: 28281648
- Doshi, N.; Martin, J.; Tomlinson, A. Improving prediction of free fatty acid particle formation in biopharmaceutical drug products: Incorporating ester distribution during polysorbate 20 degradation. Mol. Pharm., 2020, 17(11), 4354-4363. doi: 10.1021/acs.molpharmaceut.0c00794 PMID: 32941040
- Graf, T.; Abstiens, K.; Wedekind, F.; Elger, C.; Haindl, M.; Wurth, C.; Leiss, M. Controlled polysorbate 20 hydrolysis A new approach to assess the impact of polysorbate 20 degradation on biopharmaceutical product quality in shortened time. Eur. J. Pharm. Biopharm., 2020, 152, 318-326. doi: 10.1016/j.ejpb.2020.05.017 PMID: 32445968
- Luo, H.; Tie, L.; Cao, M.; Hunter, A.K.; Pabst, T.M.; Du, J.; Field, R.; Li, Y.; Wang, W.K.; Cathepsin, L. Cathepsin L causes proteolytic cleavage of chinese-hamster-ovary cell expressed proteins during processing and storage: Identification, characterization, and mitigation. Biotechnol. Prog., 2019, 35(1), e2732. doi: 10.1002/btpr.2732 PMID: 30320962
- Tran, B.; Grosskopf, V.; Wang, X.; Yang, J.; Walker, D., Jr; Yu, C.; McDonald, P. Investigating interactions between phospholipase B-Like 2 and antibodies during Protein A chromatography. J. Chromatogr. A, 2016, 1438, 31-38. doi: 10.1016/j.chroma.2016.01.047 PMID: 26896920
- Hall, T.; Sandefur, S.L.; Frye, C.C.; Tuley, T.L.; Huang, L. Polysorbates 20 and 80 degradation by group xv lysosomal phospholipase A 2 isomer x1 in monoclonal antibody formulations. J. Pharm. Sci., 2016, 105(5), 1633-1642. doi: 10.1016/j.xphs.2016.02.022 PMID: 27056628
- Li, X.; Chandra, D.; Letarte, S.; Adam, G.C.; Welch, J.; Yang, R.S.; Rivera, S.; Bodea, S.; Dow, A.; Chi, A.; Strulson, C.A.; Richardson, D.D. Profiling active enzymes for polysorbate degradation in biotherapeutics by activity-based protein profiling. Anal. Chem., 2021, 93(23), 8161-8169. doi: 10.1021/acs.analchem.1c00042 PMID: 34032423
- Zhang, S.; Riccardi, C.; Kamen, D.; Reilly, J.; Mattila, J.; Bak, H.; Xiao, H.; Li, N. Identification of the specific causes of polysorbate 20 degradation in monoclonal antibody formulations containing multiple lipases. Pharm. Res., 2022, 39(1), 75-87. doi: 10.1007/s11095-021-03160-3 PMID: 34981317
- Molden, R.; Hu, M.; Yen E, S.; Saggese, D.; Reilly, J.; Mattila, J.; Qiu, H.; Chen, G.; Bak, H.; Li, N. Host cell protein profiling of commercial therapeutic protein drugs as a benchmark for monoclonal antibody-based therapeutic protein development. MAbs., 2021, 13(1), 1955811. doi: 10.1080/19420862.2021.1955811 PMID: 34365906
- Tscheliessnig, A.L.; Konrath, J.; Bates, R.; Jungbauer, A. Host cell protein analysis in therapeutic protein bioprocessing - methods and applications. Biotechnol. J., 2013, 8(6), 655-670. doi: 10.1002/biot.201200018 PMID: 23436780
- Hogwood, C.E.M.; Chiverton, L.M.; Mark Smales, C. Characterization of host cell proteins (HCPs) in CHO cell bioprocesses. Methods Mol. Biol., 2017, 1603, 243-250. doi: 10.1007/978-1-4939-6972-2_16 PMID: 28493135
- Meleady, P. Two-dimensional gel electrophoresis and 2D-DIGE. Methods Mol. Biol., 2018, 1664, 3-14. doi: 10.1007/978-1-4939-7268-5_1 PMID: 29019120
- Ciereszko, A.; Dietrich, M.A.; Słowińska, M.; Nynca, J.; Ciborowski, M.; Kisluk, J.; Michalska-Falkowska, A.; Reszec, J.; Sierko, E.; Nikliński, J. Identification of protein changes in the blood plasma of lung cancer patients subjected to chemotherapy using a 2D-DIGE approach. PLoS. One., 2019, 14(10), e0223840. doi: 10.1371/journal.pone.0223840 PMID: 31622403
- Geisler, C.; Gaisa, N.T.; Pfister, D.; Fuessel, S.; Kristiansen, G.; Braunschweig, T.; Gostek, S.; Beine, B.; Diehl, H.C.; Jackson, A.M.; Borchers, C.H.; Heidenreich, A.; Meyer, H.E.; Knüchel, R.; Henkel, C. Identification and validation of potential new biomarkers for prostate cancer diagnosis and prognosis using 2D-DIGE and MS. BioMed Res. Int., 2015, 2015, 1-23. doi: 10.1155/2015/454256 PMID: 25667921
- Arentz, G.; Weiland, F.; Oehler, M.K.; Hoffmann, P. State of the art of 2D DIGE. Proteomics Clin. Appl., 2015, 9(3-4), 277-288. doi: 10.1002/prca.201400119 PMID: 25400138
- Chen, I.H.; Xiao, H.; Li, N. Improved host cell protein analysis in monoclonal antibody products through ProteoMiner. Anal. Biochem., 2020, 610, 113972. doi: 10.1016/j.ab.2020.113972 PMID: 32979367
- Farrell, A.; Mittermayr, S.; Morrissey, B.; Mc Loughlin, N.; Navas Iglesias, N.; Marison, I.W.; Bones, J. Quantitative host cell protein analysis using two dimensional data independent LC-MS(E). Anal. Chem., 2015, 87(18), 9186-9193. doi: 10.1021/acs.analchem.5b01377 PMID: 26280711
- Huang, L.; Wang, N.; Mitchell, C.E.; Brownlee, T.; Maple, S.R.; De Felippis, M.R. A novel sample preparation for shotgun proteomics characterization of HCPs in antibodies. Anal. Chem., 2017, 89(10), 5436-5444. doi: 10.1021/acs.analchem.7b00304 PMID: 28414239
- Levy, N.E.; Valente, K.N.; Lee, K.H.; Lenhoff, A.M. Host cell protein impurities in chromatographic polishing steps for monoclonal antibody purification. Biotechnol. Bioeng., 2016, 113(6), 1260-1272. doi: 10.1002/bit.25882 PMID: 26550778
- Chen, Y.; Xu, C.F.; Stanley, B.; Evangelist, G.; Brinkmann, A.; Liu, S.; McCarthy, S.; Xiong, L.; Jones, E.; Sosic, Z.; Yeung, B. A highly sensitive LC-MS/MS method for targeted quantitation of lipase host cell proteins in biotherapeutics. J. Pharm. Sci., 2021, 110(12), 3811-3818. doi: 10.1016/j.xphs.2021.08.024 PMID: 34461112
- Johnson, R.O.B.; Greer, T.; Cejkov, M.; Zheng, X.; Li, N. Combination of FAIMS, protein A depletion, and native digest conditions enables deep proteomic profiling of host cell proteins in monoclonal antibodies. Anal. Chem., 2020, 92(15), 10478-10484. doi: 10.1021/acs.analchem.0c01175 PMID: 32628830
- Mörtstedt, H.; Makower, Å.; Edlund, P.O.; Sjöberg, K.; Tjernberg, A. Improved identification of host cell proteins in a protein biopharmaceutical by LCMS/MS using the ProteoMiner Enrichment Kit. J. Pharm. Biomed. Anal., 2020, 185, 113256. doi: 10.1016/j.jpba.2020.113256 PMID: 32229402
- Gao, X.; Rawal, B.; Wang, Y.; Li, X.; Wylie, D.; Liu, Y.H.; Breunig, L.; Driscoll, D.; Wang, F.; Richardson, D.D. Targeted host cell protein quantification by LCMRM enables biologics processing and product characterization. Anal. Chem., 2020, 92(1), 1007-1015. doi: 10.1021/acs.analchem.9b03952 PMID: 31860266
- Clavier, S.; Fougeron, D.; Petrovic, S.; Elmaleh, H.; Fourneaux, C.; Bugnazet, D.; Duffieux, F.; Masiero, A.; Mitra-Kaushik, S.; Genet, B.; Fromentin, Y.; Kreiss, P.; Laborderie, B.; Brault, D.; Menet, J.M. Improving the analytical toolbox to investigate copurifying host cell proteins presence: N -(4)-(β-acetylglucosaminyl)-L-asparaginase case study. Biotechnol. Bioeng., 2020, 117(11), 3368-3378. doi: 10.1002/bit.27514 PMID: 32706388
- Seisenberger, C.; Graf, T.; Haindl, M.; Wegele, H.; Wiedmann, M.; Wohlrab, S. Questioning coverage values determined by 2D western blots: A critical study on the characterization of anti-HCP ELISA reagents. Biotechnol. Bioeng., 2021, 118(3), 1116-1126. doi: 10.1002/bit.27635 PMID: 33241851
- Seisenberger, C.; Graf, T.; Haindl, M.; Wegele, H.; Wiedmann, M.; Wohlrab, S. Toward optimal clearance: A universal affinity-based mass spectrometry approach for comprehensive ELISA reagent coverage evaluation and HCP hitchhiker analysis. Biotechnol. Prog., 2022, 38(3), e3244. doi: 10.1002/btpr.3244 PMID: 35150475
- Waldera-Lupa, D.M.; Jasper, Y.; Köhne, P.; Schwichtenhövel, R.; Falkenberg, H.; Flad, T.; Happersberger, P.; Reisinger, B.; Dehghani, A.; Moussa, R.; Waerner, T. Host cell protein detection gap risk mitigation: Quantitative IAC-MS for ELISA antibody reagent coverage determination. MAbs, 2021, 13(1), 1955432. doi: 10.1080/19420862.2021.1955432 PMID: 34347561
- Huang, Y.; Molden, R.; Hu, M.; Qiu, H.; Li, N. Toward unbiased identification and comparative quantification of host cell protein impurities by automated iterative LCMS/MS (HCP-AIMS) for therapeutic protein development. J. Pharm. Biomed. Anal., 2021, 200, 114069. doi: 10.1016/j.jpba.2021.114069 PMID: 33901758
- Chen, I.H.; Xiao, H.; Daly, T.; Li, N. Improved host cell protein analysis in monoclonal antibody products through molecular weight cutoff enrichment. Anal. Chem., 2020, 92(5), 3751-3757. doi: 10.1021/acs.analchem.9b05081 PMID: 31999105
- Graf, T.; Tomlinson, A.; Yuk, I.H.; Kufer, R.; Spensberger, B.; Falkenstein, R.; Shen, A.; Li, H.; Duan, D.; Liu, W.; Wohlrab, S.; Edelmann, F.; Leiss, M. Identification and characterization of polysorbate-degrading enzymes in a monoclonal antibody formulation. J. Pharm. Sci., 2021, 110(11), 3558-3567. doi: 10.1016/j.xphs.2021.06.033 PMID: 34224732
- Bailey-Kellogg, C.; Gutiérrez, A.H.; Moise, L.; Terry, F.; Martin, W.D.; De Groot, A.S. CHOPPI: A web tool for the analysis of immunogenicity risk from host cell proteins in CHO-based protein production. Biotechnol. Bioeng., 2014, 111(11), 2170-2182. doi: 10.1002/bit.25286 PMID: 24888712
- Pythoud, N.; Bons, J.; Mijola, G.; Beck, A.; Cianférani, S.; Carapito, C. Optimized sample preparation and data processing of data-independent acquisition methods for the robust quantification of trace-level host cell protein impurities in antibody drug products. J. Proteome Res., 2021, 20(1), 923-931. doi: 10.1021/acs.jproteome.0c00664 PMID: 33016074
- Jones, M.; Palackal, N.; Wang, F.; Gaza-Bulseco, G.; Hurkmans, K.; Zhao, Y.; Chitikila, C.; Clavier, S.; Liu, S.; Menesale, E.; Schonenbach, N.S.; Sharma, S.; Valax, P.; Waerner, T.; Zhang, L.; Connolly, T. "High-risk" host cell proteins (HCPs): A multi-company collaborative view. Biotechnol. Bioeng., 2021, 118(8), 2870-2885. doi: 10.1002/bit.27808 PMID: 33930190
- Goey, C.H.; Alhuthali, S.; Kontoravdi, C. Host cell protein removal from biopharmaceutical preparations: Towards the implementation of quality by design. Biotechnol. Adv., 2018, 36(4), 1223-1237. doi: 10.1016/j.biotechadv.2018.03.021 PMID: 29654903
- Dovgan, T.; Golghalyani, V.; Zurlo, F.; Hatton, D.; Lindo, V.; Turner, R.; Harris, C.; Cui, T. Targeted CHO cell engineering approaches can reduce HCP-related enzymatic degradation and improve mAb product quality. Biotechnol. Bioeng., 2021, 118(10), 3821-3831. doi: 10.1002/bit.27857 PMID: 34125434
- Laux, H.; Romand, S.; Nuciforo, S.; Farady, C.J.; Tapparel, J.; Buechmann-Moeller, S.; Sommer, B.; Oakeley, E.J.; Bodendorf, U. Degradation of recombinant proteins by Chinese hamster ovary host cell proteases is prevented by matriptase-1 knockout. Biotechnol. Bioeng., 2018, 115(10), 2530-2540. doi: 10.1002/bit.26731 PMID: 29777593
- Chiu, J.; Valente, K.N.; Levy, N.E.; Min, L.; Lenhoff, A.M.; Lee, K.H. Knockout of a difficult-to-remove CHO host cell protein, lipoprotein lipase, for improved polysorbate stability in monoclonal antibody formulations. Biotechnol. Bioeng., 2017, 114(5), 1006-1015. doi: 10.1002/bit.26237 PMID: 27943242
- Kol, S.; Ley, D.; Wulff, T.; Decker, M.; Arnsdorf, J.; Schoffelen, S.; Hansen, A.H.; Jensen, T.L.; Gutierrez, J.M.; Chiang, A.W.T.; Masson, H.O.; Palsson, B.O.; Voldborg, B.G.; Pedersen, L.E.; Kildegaard, H.F.; Lee, G.M.; Lewis, N.E. Multiplex secretome engineering enhances recombinant protein production and purity. Nat. Commun., 2020, 11(1), 1908. doi: 10.1038/s41467-020-15866-w PMID: 32313013
- Van de Velde, J.; Saller, M.J.; Eyer, K.; Voloshin, A. Chromatographic clarification overcomes chromatin-mediated hitch-hiking interactions on Protein A capture column. Biotechnol. Bioeng., 2020, 117(11), 3413-3421. doi: 10.1002/bit.27513 PMID: 32706389
- Han, J.; Yang, J.; Wang, Y.; Li, Y. The adequate amount of sodium chloride in protein a wash buffer for effective host cell protein clearance. Protein Expr. Purif., 2019, 158, 59-64. doi: 10.1016/j.pep.2019.02.016 PMID: 30825515
- Wan, Y.; Zhang, T.; Chen, T.; Wang, Y.; Li, Y. Sodium caprylate induced precipitation post protein a chromatography as an effective means for host cell protein clearance. Protein Expr. Purif., 2019, 164, 105460. doi: 10.1016/j.pep.2019.105460 PMID: 31351123
- Luo, H.; Du, Q.; Qian, C.; Mlynarczyk, M.; Pabst, T.M.; Damschroder, M.; Hunter, A.K.; Wang, W.K. Formation of transient highly-charged mAb clusters strengthens interactions with host cell proteins and results in poor clearance of host cell proteins by protein A chromatography. J. Chromatogr. A, 2022, 1679, 463385. doi: 10.1016/j.chroma.2022.463385 PMID: 35933770
- Cui, T.; Chi, B.; Heidbrink Thompson, J.; Kasali, T.; Sellick, C.; Turner, R.; Cathepsin, D. Cathepsin D: Removal strategy on protein A chromatography, near real time monitoring and characterisation during monoclonal antibody production. J. Biotechnol., 2019, 305, 51-60. doi: 10.1016/j.jbiotec.2019.08.013 PMID: 31442501
- Zhang, Q.; Goetze, A.M.; Cui, H.; Wylie, J.; Tillotson, B.; Hewig, A.; Hall, M.P.; Flynn, G.C. Characterization of the co-elution of host cell proteins with monoclonal antibodies during protein A purification. Biotechnol. Prog., 2016, 32(3), 708-717. doi: 10.1002/btpr.2272 PMID: 27073178
- Lavoie, R.A.; Fazio, A.; Williams, T.I.; Carbonell, R.; Menegatti, S. Targeted capture of Chinese hamster ovary host cell proteins: Peptide ligand binding by proteomic analysis. Biotechnol. Bioeng., 2020, 117(2), 438-452. doi: 10.1002/bit.27213 PMID: 31654407
- Gilgunn, S.; El-Sabbahy, H.; Albrecht, S.; Gaikwad, M.; Corrigan, K.; Deakin, L.; Jellum, G.; Bones, J. Identification and tracking of problematic host cell proteins removed by a synthetic, highly functionalized nonwoven media in downstream bioprocessing of monoclonal antibodies. J. Chromatogr. A, 2019, 1595, 28-38. doi: 10.1016/j.chroma.2019.02.056 PMID: 30898377
- Bojar, D.; Fuhrer, T.; Fussenegger, M. Purity by design: Reducing impurities in bioproduction by stimulus-controlled global translational downregulation of non-product proteins. Metab. Eng., 2019, 52, 110-123. doi: 10.1016/j.ymben.2018.11.007 PMID: 30468874
Supplementary files
